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Abstract
Traditionally, an infinitesimal is regarded as a variable that

runs toward 0. Since a differential is a kind of infinitesimal, a
differential is essentially a variable running toward 0 too. As a
result, differentials are form invariant but not meaning
invariant. This paper proposes a Number Field of Ordered
Infinitesimals and Infinities (OII Number Field) which can be
seen as a kind of extension of real number field. The terminus
of a variable running toward 0 is no longer 0, but a point in the
OII Number Field, with an Order and a Weight. In this way,
the process of running is recorded in the destination, making
infinitesimals a kind of number which can be compared and
operated easily. On this basis, the differential of a variable is
invariant not only in form, but also in meaning. As a
differential becomes a variable on another number axis
parallel to the real number axis in OII Number Field, a
differential can generate differential too, thus giving rise to
high order differentials which are also invariant both in form
and in meaning.

Index Terms - High Order Differentials; Infinitesimals;
Infinities; OII Number Field

1 Introduction
When Newton and Leibniz built the theory of calculus

hundreds of years ago, the concept of infinitesimal was not
explained clearly. Newton sometimes said infinitesimals are 0,
sometimes said they are not, making people bewildered and
causing many attacks on calculus. With the development of
mathematics, infinitesimals were later defined rigorously,
which was the ε-δ definition well known today.

The ε-δ definition is actually saying that an infinitesimal is
a variable that runs toward 0. Since a differential is a kind of
infinitesimal, it is also a kind of variable that runs toward 0.
Suppose y = f (x) and x = h(t). When x is taken as independent
variable, the differential of y is

xxfy d)(d  . (1.1)

When t is taken as independent variable, the differential of x is
tthx d)(d  , (1.2)

and the differential of y is
xxftthxfy d)(d)()(d  . (1.3)

The dx in Equation (1.1) represents the infinitesimal increment
of x itself, but the dx in Equation (1.2) and (1.3) represents the
differential of x caused by infinitesimal increment of t.
Therefore, dx has two different meanings in the three
equations. Similarly, dy also has two different meanings. The
dy in Equation (1.1) represents the differential of y caused by
infinitesimal increment of x, while dy in Equation (1.3)
represents the differential of y caused by infinitesimal
increment of t. Although the dy in Equation (1.1) and the dy in
Equation (1.3) are both variables running toward 0, they are

generally not equal during the process of running. However,
the dy in Equation (1.1) and the dy in Equation (1.3) can both
be expressed as xxf d)( , though with different meanings of
dx. This phenomenon is called “the form invariance of
differentials”.

While the dy in Equation (1.1) and the dy in Equation (1.3)
are generally not equal during the process of running toward 0,
their ratio approaches 1. That is to say, they are equivalent
infinitesimals. In calculus, it is the relationship at the limits
that is concerned. So it will be much easier and clearer if the
process of running can be skipped and the relationship
between two infinitesimal variables can be studied directly at
the limits. For this purpose, this paper proposes a Number
Field of Ordered Infinitesimals and Infinities (OII Number
Field) as the final destination of infinitesimals running toward
0. In other words, an infinitesimal, as a running variable, does
not arrive at 0 in the end, but arrive at a number in the OII
Number Field, with a certain Order and a certain Weight. In
this way, the process of running is recorded in the destination.
On this basis, differentials are invariant not only in form, but
also in meaning. The differential dy, no matter induced by
which variable, has the same Order and Weight in the OII
Number Field, and is therefore equal to the infinitesimal
increment of y itself at the limits.

Now that first order differentials have gained invariance in
meaning, the research on high order differentials becomes
much easier. Traditionally, the second order differential of

)(xfy  is defined as 22 d)(d xxfy  which is not invariant
in form. If t is taken as the independent variable instead of x,
then )(thx  , tthx d)(d  , and as a result d2y can no longer

be expressed as 2d)( xxf  . In fact, second order differential
should be the differential of first order differential. Therefore,
by taking differential on both sides of xxfy d)(d  , the
following equation is obtained:

xxfxxfy 222 d)(d)(d  . (1.4)

It is the d2y and d2x in Equation (1.4) that are truly form
invariant second order differentials. Unfortunately, it is very
difficult to explain the meanings of d2y and d2x in Equation
(1.4) based on the ε-δ definition of infinitesimals. With the
help of OII Number Field, however, this difficulty is
overcome. This paper will discuss the meanings and properties
of high order differentials in depth.

The content of this paper was originally a research result
of the author Han Xiao as an undergraduate student at Beihang
University, with a Chinese manuscript [1] finished on Jan. 6th,
2003 and uploaded to Baidu Library on Jul. 21st, 2014. This
paper is mostly the same as the original Chinese manuscript,
but rather than directly translated into English, the content is
reorganized to present the idea more logically. Besides, there
are a few additions. For example, the recursion formulas of
high order differentials are presented in this paper.
Furthermore, two errors in the original Chinese manuscript
have been corrected.



The paper is organized as follows. Section 2 discusses the
definition and essence of infinitesimals, and proposes the
concept of OII Number Field and the operational laws in it.
Section 3 analyzes first order differentials from the
perspective of OII Number Field, and discusses the three
properties of first order differentials. Section 4 analyzes high
order differentials from the perspective of OII Number Field,
discusses the three properties of high order differentials, and
demonstrates the geometrical meanings of high order
differentials. Some further issues are discussed in Section 5,
including differential equations directly built with high order
differentials, and the application of OII Number Field in
engineering problems. Additionally, two questions to be
solved in the future are brought up. Section 6 summarizes the
whole paper.

2 Definition of Infinitesimals

2.1 Traditional Definition of Infinitesimals

2.1.1 The ε-δ Definition of Infinitesimals

Definition 2.1 Suppose function )(xf is defined in a
deleted neighborhood of x0 (or has definition when |x| is
greater than a certain positive number). If for any positive
number ε (no matter how small it is), there exists a positive
number δ (or positive number X) that for any x satisfying

 ||0 0xx (or Xx || ) the corresponding function value
)(xf satisfies the inequation

)(xf ,

then function )(xf is called an infinitesimal when 0xx
(or x ).

From this definition it can been seen that an infinitesimal
is essentially a variable running toward 0. The ε-δ definition is
equivalent to stating that “y = f (x) is an infinitesimal if y runs
toward 0 when x runs toward x0”. However, this statement is
redundant. As long as y runs toward 0, y is an infinitesimal.
There is no need to resort to the functional relationship
between y and other variables.

That is to say, if 0x , then x is an infinitesimal. Of
course, x can also be seen as a function of itself, which
satisfies the above ε-δ definition with the configuration of

xxf )( , and x0 = 0.

When x is an infinitesimal, so are 5x, x2, and x3, which all
satisfy the above ε-δ definition. However, the ε-δ definition
can actually be abandoned and replaced by a statement that
reveals the essence, namely “because x, 5x, x2, and x3 are all
running toward 0, they are all infinitesimals”.

Therefore, the essence of infinitesimals can be summarized
in one simple statement “variables running toward 0”. When
variable y starts from a nonzero real number and changes
gradually toward 0, it is called an infinitesimal. In calculus, it
is this process of changing that is studied.

2.1.2 The Relative Sizes of Infinitesimals

Functional relationship can exist between variables. Since
an infinitesimal is a kind of variable, so can functional
relationship exist between infinitesimals. Suppose x and y are
two infinitesimals, i.e. 0x and 0y , and suppose there
exists a functional relationship between x and y. Then during
the process of x running toward 0, each value it takes
corresponds to a value of y. For instance, when x = 0.1, y
could be equal to 0.07, and when x = 0.01, y could be equal to
0.005, etc. As x approaches 0 infinitely, y also approaches 0
infinitely. Though both running toward 0, the speeds of x and
y may not be equal. The functional relationship between x and
y determines the relationship between their speeds, which can
be classified into following cases.

1) If 0/ yx , then x is a “higher order infinitesimal”
relative to y, while y is a “lower order infinitesimal” relative to
x. In this case, x runs faster than y. During their process of
running toward 0, x becomes more and more insignificant in
face of y. As an analogy, when y equals the size of a basketball,
x equals the size of a table tennis ball; when y has shrunk to
the size of a table tennis ball, x has shrunk to the size of a
bacterium. In other words, the closer they are to 0, the greater
their disparity in size is, and this disparity grows infinitely.

2) If 0/ xy , then x is a “lower order infinitesimal”
relative to y, while y is a “higher order infinitesimal” relative
to x. In this case, y runs faster than x. During their process of
running toward 0, y becomes more and more insignificant in
face of x.

3) If Ayx / , where A is a nonzero constant, then x and
y are “infinitesimals of the same order”. In this case, the gap in
their speeds is not large. During their process of running
toward 0, the ratio between their sizes approaches a constant.

4) If 1/ yx , then x and y are “equivalent infinitesimals”
which is a special case of “infinitesimals of the same order”.
In this case, the speeds of x and y can be deemed as the same.
During their process of running toward 0, the ratio between
their sizes approaches 1:1.

2.2 New Definition of Infinitesimals

2.2.1 Number Field of Ordered Infinitesimals
and Infinities

Infinitesimals are a kind of variable running toward 0, and
by investigating their processes of running, the ratio between
the sizes of two infinitesimals with functional relationship can
be studied. Most importantly, it is the limit of their size ratio
that really matters. So, is it possible to skip the process of
running toward 0 and compute the size ratio between
infinitesimals directly at the limits? Apparently, it seems not,
because the limits of different infinitesimals are all 0, which
makes no difference. It seems that the size ratio between
infinitesimals can only be studied by investigating their
process of running toward 0. However, if a new kind of
number field is defined, this problem can be solved.



Fig. 1. OII Number Field

As shown in Fig. 1, a Number Field of Ordered
Infinitesimals and Infinities (OII Number Field) is defined. In
this figure, the horizontal axis indicates the Weight, while the
vertical axis indicates the Order. This figure is from
infinitesimals’ perspective, in which the Order of an
infinitesimal is always positive, the Order of an infinity is
always negative, while the Order of a finite real number is
always 0. In other words, a finite real number can be seen as a
0th Order infinitesimal or a 0th Order infinity. If 0x , then
x can be seen as unit first Order infinitesimal, namely a
number whose Order and Weight are both 1, as marked with
Point A in the figure. Accordingly, 2x, 3x and 4.8x are all first
Order infinitesimals, with Weights being 2, 3 and 4.8
respectively, as marked with Points B, C and D in the figure.
Meanwhile, 3x2 and 22x are second Order infinitesimals
with Weights 3 and 2 respectively, as marked with Points E
and F in the figure. Furthermore, x/1 is unit first Order
infinity, while x/3 and x/2 are first Order infinities with
Weights 3 and 2 respectively, as marked with Points G, H
and K in the figure.

In this way, by defining OII Number Field, the processes
of infinitesimals running toward 0 are recorded in the limits,
making the relative sizes of infinitesimals clear and explicit in
this new number field. The numbers in the OII Number Field
are actually a kind of abstraction of the processes of running.
When a running infinitesimal has not reached the destination
yet, it is a variable with a shrinking value in the real number
field; however, when it has reached its destination, its value is
deemed to be a number in the OII Number Field, rather than 0.
When x is taken as independent variable, the destination of

0x is usually defined as a number with Order 1 and
Weight 1 in the OII Number Field, namely unit first Order
infinitesimal. On this basis, x can be used as a reference to
deduce the Orders and Weights of other infinitesimal variables.

It is worth noting that infinities are included in this new
number field too, and that infinities are ordered too. In this
way, finite real numbers, different Orders of infinitesimals and
different Orders of infinities are unified in one number field.
Therefore, OII Number Field can be considered as a kind of
extension of real number field.

2.2.2 Symbols and Geometric Meanings

In the OII Number Field shown with Fig. 1, all the numbers
in the upper half plane are infinitesimals, while all the numbers

in the lower half plane are infinities. A number in OII Number
Field can be expressed as ba )0( , in which a represents the

Weight while b represents the Order. When b>0, ba )0( is an
infinitesimal located in the upper half plane in the figure. When
b<0, ba )0( is an infinity located in the lower half plane in the
figure. A number in OII Number Field can also be expressed as

ba )( , where a still represents the Weight while the Order
from infinitesimals’ perspective is b (or from infinities’
perspective, the Order is b). When b>0, ba )( is an infinity

located in the lower half plane in Fig. 1. When b<0, ba )( is
an infinitesimal, located in the upper half plane in Fig. 1.

ba )0( is called “an infinitesimal with Weight a and Order
b”; or equivalently, it can be seen as an infinity with Weight a
and Order b .

ba )( is called “an infinity with Weight a and Order b”;
or equivalently, it can be seen as an infinitesimal with Weight a
and Order b .

As shown in Fig. 2(a), if a cube, with the length of each
edge being 1, is sliced evenly into infinite pieces, then the
volume of each slice is unit first Order infinitesimal, namely
(0)1, while the total number of slices is unit first Order infinity,
namely (∞)1. The sum of the volumes of the infinite slices is
the volume of the cube. That is to say, unit first Order
infinitesimal multiplied by unit first Order infinity equals 1, i.e.

1)()0( 11  .

As shown in Fig. 2(b), if each slice is cut evenly into
infinite bars, which means a volume of (0)1 is divided evenly
into (∞)1 portions, then the volume of each bar is unit second
Order infinitesimal, namely (0)2. Since the total number of
slices is (∞)1 , and the number of bars in each slice is also (∞)1,
the total number of bars in the cube is 211 )()()( 
which is a unit second Order infinity. The sum of the volumes
of the infinite bars is the volume of the cube. That is to say,
unit second Order infinitesimal multiplied by unit second Order
infinity equals 1, i.e.

1)()0( 22  .

As shown in Fig. 2(c), each bar can be further cut evenly
into infinite blocks, and the volume of each block is unit third
Order infinitesimal, namely (0)3, while the total number of
blocks in the cube is unit third Order infinity (∞)3. The sum of
volumes of the infinite blocks is the volume of the cube. That
is to say, unit third Order infinitesimal multiplied by unit third
Order infinity equals 1, i.e.

1)()0( 33  .

An infinitesimal has no effect when added to a finite
number. For example, in Fig. 2(a), the volume of a slice added
to the volume of the cube still amounts to the volume of the
cube, i.e.,

1)0(1 1  .



(a)

(b) (c)

Fig. 2. Infinite Division of a Cube

Fig. 3. Number Axes of Different Orders in OII
Number Field

A finite number has no effect when added to an infinity.
For example, there are (∞)1 slices in Fig. 2(a), and if one more
slice is added, the total number of slices is still (∞)1, i.e.,

11 )()(1  .

A higher Order infinitesimal has no effect when added to a
lower Order infinitesimal. For example, a slice in Fig. 2(b) is
divided into (∞)1 bars, and since the volume of a slice is (0)1,
the volume of each bar is (0)2. If one more bar is added to the
slice, the volume of the slice will not change, i.e.,

121 )0()0()0(  .

An infinitesimal is different from real number 0, because 0s,
even in such large number as a first Order infinity, when added
together, is still 0, i.e.,

0)(0 1  ,

but first Order infinitesimals, if in a number as large as a first
Order infinity, when added together, will produce a finite
number, like

1)()0( 11  .

In the OII Number Field depicted in Fig. 1, if points with
the same Order are connected into number axes, infinitesimal
number axes and infinity number axes of different Orders are
obtained, as shown in Fig. 3. These number axes are parallel to
the real number axis, and numbers within each axis obey
operational laws similar to that of real numbers. The only
difference is that each number axis has a different unit number.
For example, the unit number of the first Order infinitesimal
axis is (0)1, the unit number of the second Order infinitesimal
axis is (0)2, the unit number of the first Order infinity axis is
(∞)1, and the unit number of the real number axis is 1 which
can also be written as 0th Order infinitesimal (0)0 or 0th Order
infinity (∞)0.

2.2.3 Operational Laws

Generally, numbers in OII Number Field obey the
following operational laws.
1) Reciprocal Law:

bb
b aaa

)(1)0(1
)0(

1
  , where 0a ,

bb
b aaa

)0(1)(1
)(

1



 , where 0a ;

2) Multiplication Law:
dbdb acca  )0()0()0( ,

dbdb acca  )()()( ,

dbdbdb acacca   )()0()()0( ;

3) Addition in the Same Order:
nnn caca )0)(()0()0(  ,

nnn caca ))(()()(  ;

4) Addition across Different Orders:
nmn aca )0()0()0(  , where mn  ,

mmn cca )()()(  , where mn  ;

5) Subtraction of Equivalent Numbers:
mnn caa )0()0()0(  , where mn  ,

nmm caa )()()(  , where mn  .

Among these operational laws, “Addition across Different
Orders” and “Subtraction of Equivalent Numbers” are worth
noting.

According to the rule of “Addition across Different Orders”,
a higher Order infinitesimal has no effect when added to a
lower Order infinitesimal, and a lower Order infinity has no
effect when added to a higher Order infinity. Infinitesimals can
be considered as infinities of negative Orders, while infinities
can be considered as infinitesimals of negative Orders.
Therefore, in the above formulas, n and m can both take
negative values.



Fig. 4. Computing the Area of a Rectangle

Fig. 5. Computing the Area under the Curve

A higher Order infinitesimal has no effect when added to a
lower Order infinitesimal. However, having no effect is
different from nonexistence. It is because the disparity in size is
infinitely large that the “effect” does not show up. When an
infinitesimal is subtracted from an equivalent one, the lowest
Order components are canceled out, and the effect of higher
Order components pops up. This is how the rule of
“Subtraction of Equivalent Numbers” works, which can be
demonstrated with the following example.

When 0x , x can be specified as unit first Order

infinitesimal, i.e. x = (0)1. Then, 2

2
1 x is now a second Order

infinitesimal with Weight 1/2, i.e.  22 0
2
1

2
1

x . According to

Taylor’s formula,

)(
!42

1cos1 4
4

2 xoxxx  .

Therefore, xcos1 is also a second Order infinitesimal
with Weight 1/2, but it contains components of a fourth Order
infinitesimal and even higher Order infinitesimals. According
to the operational laws in OII Number Field,

        24
4

2 0
2
10

!4
00

2
1cos1  ox .

Therefore, xcos1 and 2

2
1 x are equivalent infinitesimals

which are equal to each other in the OII Number Field and both

equal to  20
2
1 . However, when subtracting 2

2
1 x from

xcos1 , the result is not 0. This is because subtraction only
cancels out second Order components in the two infinitesimals,
and higher Order components will pop up when lower Order
components are absent. In fact,

      44
4

2 0
24
10

!4
0

2
1cos1  oxx ,

which means that 2

2
1cos1 xx  is a fourth Order

infinitesimal with Weight
24
1

 .

2.2.4 Interpretation of Definite Integral

As shown in Fig. 4, one can compute the area of Rectangle
ABCD by dividing it into many vertical bars and adding up the
areas of all the bars. The shadowed area in the figure is one of
the vertical bars. When the rectangle is divided evenly into
infinite bars, the width of each bar can be specified as (0)1, and
the total number of bars will be 3(∞)1, where 3 is the difference
between the horizontal coordinates of B and A. As the height of
each bar is 2, the area of each bar is 2(0)1, and therefore the
sum of the areas of all the bars is 2(0)1×3(∞)1＝6 which is
exactly the area of the rectangle. Since first Order
infinitesimals in such large number as a first Order infinity are

added up here, it is actually a definite integral of the simplest
form.

As depicted in Fig. 5, if the side CD of Rectangle ABCD is
replaced with a curve, one can still compute the area under
Curve CD by dividing it into many vertical bars and adding up
the areas of all the bars. The width of each bar can still be
specified as (0)1, and as a result, the total number of bars is still
3(∞)1. However, since the height of each bar is different now,
the area of each bar is different. The areas of the bars are first
Order infinitesimals with different Weights. In this
circumstance, adding up the areas of all the vertical bars is still
computing the summation of first Order infinitesimals in such
large number as a first Order infinity, but the Weight of each
infinitesimal is different. This is a definite integral of the
general form.

Similarly, it is easy to know that a double integral is the
summation of second Order infinitesimals in such large number
as a second Order infinity, with the Weight of each
infinitesimal being different, and that a triple integral is the
summation of third Order infinitesimals in such large number
as a third Order infinity, with the Weight of each infinitesimal
being different.

It is worth noting that, when the area under Curve CD in
Fig. 5 is divided into a finite number of vertical bars, the shape
of each bar is not a rectangle, but a trapezoid with a curve side,
like the one in Fig. 6. It is obvious that, when the width EF of
the curve-sided trapezoid approaches 0, the lengths of the two
vertical sides HE and KF tend to be equal, i.e., the length of
KG approaches 0. Therefore, when the area under Curve CD is
divided evenly into infinite bars, with the width of each bar
specified as unit first Order infinitesimal (0)1, the width EF of
the curve-sided trapezoid is unit first Order infinitesimal (0)1,
and the length of KG is also an infinitesimal (of first Order or
higher Order). As a result, the area of Rectangle EFGH, or
SEFGH, is a first Order infinitesimal, while the area of Curve-
sided Triangle HGK, or SHGK, is a higher Order infinitesimal.



Fig. 6. Trapezoid with a Curve Side

Fig. 7. Computing the Volume of a Cone

Fig. 8. The Increments of Independent and
Dependent Variables

Fig. 9. A Derivative Represents the Slope of a
Tangent Line

The area of Curve-sided Trapezoid EFKH is the summation of
SEFGH and SHGK. Since a higher Order infinitesimal has no
effect when added to a lower Order infinitesimal, in OII
Number Field, the area of Curve-sided Trapezoid EFKH is
exactly equal to the area of Rectangle EFGH in that both their
Weights and Orders are equal to each other. Now that they are
equal, they can substitute for each other. Therefore, in OII
Number Field, the area of Curve-sided Trapezoid EFKH can be
substituted with the area of Rectangle EFGH. Finally, the area
under Curve CD is obtained exactly by adding up the areas of
rectangles in such large number as a first Order infinity. This
principle can be called “Equivalent Infinitesimals Have the
Same Effect in Definite Integral”. It is the most important
principle for writing out definite integral expressions in
applications.

Similarly, another example can be given. As shown in Fig.
7, one can compute the volume of a cone by slicing it evenly
into infinite pieces and adding up the volumes of the infinite
slices. Each slice is a circular truncated cone whose thickness
can be specified as unit first Order infinitesimal (0)1, and the
difference between the radius of the lower surface and the
radius of the upper surface is a first Order infinitesimal with
Weight tanθ, where θ is half of the apex angle of the cone. It is
easy to see that the volume of the inside cylinder with the same
upper surface is a first Order infinitesimal, and that the
difference between the volume of the circular truncated cone

and the volume of the cylinder is a higher Order infinitesimal
which has no effect when added to a first Order infinitesimal.
Therefore, in OII Number Field, the volume of the circular
truncated cone is exactly equal to the volume of the cylinder in
that their Weights and Orders are both equal. Therefore, the
volume of the circular truncated cone can be substituted with
the volume of the cylinder. Finally, the summation of volumes
of the cylinders in such large number as a first Order infinity is
exactly the volume of the cone.

3 First Order Derivative and First Order
Differential

3.1 First Order Derivative

Suppose Variable y and Variable x have functional
relationship )(xfy  whose curve is shown in Fig. 8. The
horizontal coordinate of Point A on the curve is xA, while the
vertical coordinate is f (xA). If x has an increment x at xA, y
will have a corresponding increment y , and the point on the

curve will move to Point B. Ratio
x
y


 represents the slope of

Line AB. When 0x , y also approaches 0, and
consequently, Point B approaches Point A. In this circumstance,

the limit of
x
y


 is defined as the derivative of y with respect to

x at Point A, namely )( Axf  , and its geometrical meaning is
the slope of the tangent line at Point A, as shown in Fig. 9.

Traditionally, the derivative is defined in this way by
investigating the processes of x and y running toward 0.
Now that OII Number Field is defined, with the processes of
variables running toward 0 directly recorded in the limits, the
derivative of y with respect to x at Point A can be explained to
be the ratio between two infinitesimals y and x in OII
Number Field. If the Weight of x is specified to be 1, i.e.

1)0(x , then first Order infinitesimal y can be obtained

by )())0(( 1
AA xfxfy  , and the derivative can be

obtained by directly computing the ratio.



Fig. 10. Traditional Geometric Meaning of a
Differential

3.2 First Order Differential

In Fig. 10, the length of the line segment AC is the
increment x at Point A, while the length of the line segment
BC is the increment y at Point A. When y and x both
take finite values, their ratio is not equal to )( Axf  , the
derivative of y with respect to x at Point A. Traditionally, x is
defined as the differential of x at Point A, i.e. xx d , while

xxf A d)( is defined as the differential of y at Point A, i.e.
xxfy A d)(d  . It can be seen from Fig. 10 that, dy is the

length of the line segment CD which is not equal to y . When
x runs toward 0, y , dx and dy all runs toward 0, and during

their processes of running, dx is always equal to x , while dy
is always not equal to y . That is to say, traditionally, only the
differential of an independent variable is equal to the increment
of the variable itself, the differential of a dependent variable is
generally not equal to the increment of the variable itself.

When 0x , )( Axf
x
y 


 , and if 0)(  Axf , then

1
)(





Axfx
y . Taking the definitions of dx and dy into

account, namely xx d and xxfy A d)(d  , then

)( Axfx
y


 can be reduced to
y
y

xfx
y

A d)(d





 . Therefore,

when 0x , 1
d



y
y . That is to say, y and dy are

equivalent infinitesimals which are exactly equal to each other
in OII Number Field, with the same Order and Weight.

If x is specified to be (0)1, then 1)0(d x and
1)0)((d Axfyy  . Therefore, in OII Number Field, the

differential of any variable is equal to the increment of the
variable itself, no matter whether the variable is independent or
not.

3.3 Form Invariance of First Order Differential

Suppose )(xfy  and )(thx  . From traditional point of
view, only the differential of an independent variable is equal
to the increment of the variable itself. As a result, when x is
independent variable, xxfy A d)(d  , where xx d ; when t

is independent variable, xxftthxfy AAA d)(d)()(d  ,
where xtthx A  d)(d . That is to say, when the
independent variable has changed from x to t, the meanings of
dx and dy have both changed, but dx and dy still satisfy the
equation xxfy A d)(d  . Traditionally, this phenomenon is
called “the Form Invariance of Differentials” which implies
that the meanings of the differentials have changed under
invariant forms.

Although different choice of independent variable changes
the meanings of dx and dy, it does not change the fact that dx
and dy are running toward 0. In other words, whichever
variable is chosen as independent variable, dx and dy are
always running toward 0. What really matters is the limit of the
relationship between their sizes during their processes of
running. With the definition of OII Number Field, the running
processes of dx and dy are recorded in the limits. In other
words, they no longer arrive at 0, but arrive at numbers in OII
Number Field. On this basis, the relative sizes of dx and dy can
be directly studied at the limits in OII Number Field.

After OII Number Field is defined, the meaning of a
differential no longer change with different choice of
independent variable, because the finite real numbers that dx
and dy take during their processes of running toward 0 are no
longer cared about, instead, dx and dy are directly studied in
their destination of running, namely OII Number Field.
Whichever variable is chosen as independent variable, the
meaning of Differential dy is invariant, because in OII Number
Field, Differential dy is always equal to the increment of y
itself, namely y .

Therefore, a differential can be redefined as the value of
infinitesimal increment of a variable itself in OII Number
Field.

It is worth noting that the value of a differential in OII
Number Field has some freedom. For example, when x is taken
as independent variable, the value dx can be specified as (0)1,
and then 1)0)((d Axfy  ; by contrast, when t is taken as
independent variable, the value dt can be specified as (0)1, and
as a result, 1)0)(()(d AA thxfy  . Obviously, the value of dy
in OII Number Field is different under these two specifications.
However, the meaning of dy has not changed, and dy always
equals the increment of y itself in OII Number Field, namely
y .

Therefore, yd tthxf AA d)()(  xxf A d)( can be called
“the constraint between differentials”, for these equations
describes the relationships between the infinitesimal
increments of different variables in OII Number Field. When

)( Axf  ≠0 and )( Axh ≠0, dy, dt and dx are infinitesimals of
the same Order, and as long as one of their Weights is specified,
the other two Weights are determined.

Therefore, after OII Number Field is defined,
infinitesimals are not only invariant in form, but also
invariant in meaning. In other words, the meaning of an



Fig. 11. Specifying the Weight of a Differential at
Each Point

infinitesimal does not change with different choice of
independent variable either.

Hence, it can be summarized that differentials have three
properties.

1) Meaning Invariance.
A differential always represents the value of infinitesimal

increment of the variable itself in OII Number Field.
2) Form Invariance.
The differential relationship between the two variables x

and y satisfying functional relationship )(xfy  is always
xxfy d)(d  , which is not affected by any other variable. In

fact, it is more appropriate to call this property “the constraint
between differentials”.

3) Some Freedom.
Suppose y = f (x), where x varies on Interval ],[ ba . Then,

the Weight of Differential dx at each point in Interval ],[ ba
can actually be specified arbitrarily. In other words, the curve
in Fig. 11 can have arbitrary shape. Drawing a curve is
equivalent to specifying the Weight of Differential dx at each
point, and the Weight of dy at each point is thus determined by
the Equation xxfy d)(d  .

4 High Order Derivatives and High Order
Differentials

4.1 Two Lemmas

Lemma 4.1 Suppose A and B are variables in real number
field or infinitesimal number fields, i.e. the unit of A and B are
(0)m and (0)n respectively, wherem≥0 and n≥0. Then,

when 0dd  ABBA , ABBAAB dd)(d  ;
when 0dd  ABBA , BAAB dd)(d  .

Proof
ABBBAAAB  )d)(d()(d

ABBAABBAAB  dddd
BAABBA dddd  (4.1)

Since A and B are an m-th and n-th Order infinitesimals
respectively, AdB and BdA are both (m+n+1)th Order
infinitesimals, while dAdB is a (m+n+2)th Order infinitesimal.

When 0dd  ABBA , according to the rule of “Addition
across Different Orders” in Section 2.2.3, which is also
described as “higher Order infinitesimals have no effect when
added to lower Order infinitesimals”, ABBAAB dd)(d  . In
this case, d(AB) is a (m+n+1)th Order infinitesimal.

When 0dd  ABBA , Equation (4.1) becomes
BAAB dd)(d  . In this case, d(AB) is a (m+n+2)th Order

infinitesimal. That is to say, when the Weight of lower Order
component is 0, higher Order component pops up.

End of Proof

An example can be given to demonstrate Lemma 4.1.
Suppose A and B are both equal to x, it is easy to know that
d(AB) = d(x2), AdB+BdA = xdx+xdx = 2xdx, and dAdB = dx2.
Obviously, when 0x , d(x2) = 2xdx, i.e. d(AB) = AdB+BdA ;
when x = 0, d(x2) = dx2, i.e. d(AB) = dAdB.

Lemma 4.2 Suppose A and B are variables in real number
field or infinitesimal number fields, i.e. the unit of A and B are
(0)m and (0)n respectively, wherem≥0, n≥0 and B≠0. Then,

2
dd

B
BAAB

B
Ad 









.

Proof

BBB
BAAB

BBB
ABBBAA

B
A

BB
AA

B
Ad

d
dd

)d(
)d()d(

d
d

2 



















Since B is an n-th Order infinitesimal, B2 is a 2n-th Order
infinitesimal, while BdB is a (2n+1)th Order infinitesimal.
Since B≠0, according to the rule of “Addition across Different
Orders” in Section 2.2.3, B2+BdB = B2. As a result,

2
dd

B
BAAB

B
Ad 







 .

End of Proof

4.2 How does High Order Differentials Arise

Suppose Variables x and y have monotonic functional
relationship on their respective intervals, i.e. y = f (x) and x =
g(y). In addition, suppose x and y are both monotonic functions
of t on their respective intervals, i.e. x = x(t), y = y(t), t = h(x)
and t = s(y).

Taking differential on both sides of )(xfy  results in
xxfy d)(d  .

Taking differential on both sides of )(txx  results in
ttxx d)(d  .

Taking differential on both sides of )(tyy  results in
ttyy d)(d  .

If t is taken as independent variable, and is supposed to
generate equal differentials at each point, i.e. dt = (0)1 is



Fig. 12. The Weights of Differential td at
Different Points

Fig. 13. The Weights of Differential xd at Different
Points

Fig. 14. The Weights of Differential yd at Different

Points

specified, then 1)0)((d txx  and 1)0)((d tyy  . Obviously, in
this case, dx is not equal at different points, and dy is not equal
at different points either. In this circumstance, dx, dy and

)(xf  in the Equation xxfy d)(d  are all functions of t, with
dx and dy varying on the first Order infinitesimal number axis
in Fig. 3 while )(xf  varying on the real number axis.

Taking differential again on both sides of xxfy d)(d  ,
recording d(dy) as d2y, recording xx dd  as dx2, recording d(dx)
as d2x, and according to Lemma 4.1, the following equation is
obtained:

xxfxxfxxfxxfy 222 d)(d)()d(d)(d))((dd 

i.e.

xxfxxfy 222 d)(d)(d  (4.2)

where, 2112 )0)(()0(d)())0)(((dd tyttytyy  ,
22212 )0)(())0)(((d txtxx  ,

2112 )0)(()0(d)())0)(((dd txttxtxx  .

This means that d2y, dx2 and d2x are all variables on the second
Order infinitesimal axis, and that they are all functions of t.

d2y and d2x are second order differentials of y and x
respectively. By reviewing the process of their birth, it can be
found that an independent variable t has been used, and that t
has generated differentials twice at each point. When t
generates the first Differential dt, x and y generate
corresponding differentials dx and dy at each point. As dt at
each point is specified to be (0)1, dt becomes a constant, while
dx and dy become functions of t. Next, t generates Differential
dt again at each point. This time, not only x and y generate
corresponding differentials dx and dy, the previously generated
Differential dx and Differential dy now also generate
corresponding differentials d2x and d2y respectively at each
point. Hence it can be seen that second order differentials are
rooted in the fact that first order differentials dx and dy have
become variables on the first Order infinitesimal number axis.
As variables, dx and dy can also generate increments in
themselves, and their infinitesimal increments are naturally
located on the second Order infinitesimal number axis.

4.3 Form Invariance of High Order Differentials

In Section 3.3, the first order differential is redefined with
OII Number Field, and three properties of first order
differentials are summarized: 1) Meaning Invariance, 2) Form
Invariance, and 3) Some Freedom.

In Section 4.2, dt at each point is specified to be (0)1.
However, as differentials have some freedom, the Weights of
dt at different points can actually be specified arbitrarily. As
shown in Fig. 12, suppose the value range of t is Interval

] ,[ ba tt , then an arbitrary curve can be drawn to specify the
Weights of dt at different points.

Once the curve in Fig. 12 has been drawn, the functional
relationship between dt and t has been specified, and the

Weights of dt at different points have been determined.
According to ttxx d)(d  and ttyy d)(d  , the Weights of dx
and dy at different points have been determined too. In other
words, dx and dy are both functions of t. Since x is supposed to
be a monotonic function of t, for each value of x, there is a
corresponding value of t, and consequently, there is a
corresponding value of dx. Therefore, dx is a function of x.
Similarly, dy is a function of y. The functional relationship
between dx and x corresponds to the curve in Fig. 13. The
functional relationship between dy and y corresponds to the
curve in Fig. 14. As long as any one of the three curves in Fig.
12, Fig. 13 and Fig. 14 is drawn, the other two curves are
determined thereafter.

That is to say, Variable t is actually not needed at all. The
functional relationship between dx and x can be specified
arbitrarily, and once it has been specified, the functional
relationship between dy and y is also determined. Suppose dx =
u(x)(0)1, then according to xxfy d)(d  and x = g(y), the
functional relationship between dy and y can be obtained as

1)0))((())((d yguygfy  .



Since x and y are supposed to have monotonic functional
relationship in their respective intervals, the dy, )(xf  and dx
in Equation xxfy d)(d  all have monotonic functional
relationship both with respect to x and with respect to y. In
order to obtain second order differentials, x has to generate
Differential dx again at each point, and this time the Weights of
dx at different points can be specified arbitrarily again. In other
words, the functional relationship between dx and x is to be
specified arbitrarily again. In order to differentiate from the
previously generated dx, the dx generated for the first time can
be recorded as dx1, while dx generated for the second time can
be recorded as dx2. Correspondingly, dy generated for the first
time is recorded as dy1. Therefore,

11 d)(d xxfy  . (4.3.1)

Taking differential again on both sides, and according to
Lemma 4.1, the following equation is obtained:

).d(d)(dd)(           
)d(d)(d))(d()d(d

112

111

xxfxxxf
xxfxxfy





Since the d(dy1) and d(dx1) in this equation are both induced by
dx2, they can be recorded as d2y12 and d2x12, and as a result, the
above equation can be written as

12
2

1212
2 d)(dd)(d xxfxxxfy  . (4.3.2)

Differentials can be taken once more on both sides, and with
Lemma 4.1 referenced repeatedly, the following equation can
be obtained:

),d(d)(                

dd)()d(dd)(                

)dd(d)(ddd)()d(d

12
2

12
2

312

12123
)3(

12
2

xxf

xxxfxxxf

xxxfxxxxfy







where d(d2y12), d(dx2), d(dx1) and d(d2x12) are all caused by dx3,
and can be recorded as d3y123, d2x23, d2x13 and d3x123, resulting
in the following equation

.d)(              

dd)(dd)(              

dd)(ddd)(d

123
3

12
2

313
2

2

123
2

123
)3(

123
3

xxf

xxxfxxxf

xxxfxxxxfy







(4.3.3)

Three equations have been obtained. Equation (4.3.1)
describes the relationship between first order differentials of x
and y. Equation (4.3.2) describes the relationship between
second order differentials of x and y. Equation (4.3.3) describes
the relationship between third order differentials of x and y.
First order differentials have one degree of freedom, i.e., the
Weights of dx at different points can be specified arbitrarily,
and the Weights of dy at different points are determined
thereafter. Second order differentials have two degrees of
freedom, i.e., the dx generated for the first time and the dx
generated for the second time can both have their Weights
specified arbitrarily at different points. The dx generated for the
first time is recorded as dx1, while the dx generated for the
second time is recorded as dx2, and this means that dx1 and dx2

are two independent functions of x. Similarly, third order
differentials have three degrees of freedom, and the dx

generated for each time is recorded as dx1, dx2 and dx3

respectively, which are all functions of x that can be defined
arbitrarily.

Similarly, differentials can be taken on both sides of
Equation (4.3.3) continuously, resulting in fourth order
differentials, fifth order differentials and so on. It is easy to
know that n-th order differentials have n degrees of freedom.
That is to say, dx has to be generated n times and recorded as
dx1, dx2, ..., and dxn which are all variables on the first Order
infinitesimal number axis. The Weights of the n infinitesimal
variables are all functions of x, and these n functions can be
defined arbitrarily.

Since Equation (4.3.1) to (4.3.3) can be obtained without
resorting to Variable t, the relationships that high order
differentials of x and y satisfy have nothing to do with other
variables. Therefore, similar to first order differentials, high
order differentials are invariant in form.

As differentials of different orders are all variables in OII
Number Field, high order differentials are also invariant in
meaning, just as first order differentials. For example, d2x23

represents the infinitesimal increment of dx2 induced by dx3,
and is located on the second Order infinitesimal number axis.
As this fact is irrelevant to any other variable, d2x23 have an
invariant meaning.

Therefore, high order differentials have three properties
similar to those of first order differentials: 1) Meaning
Invariance, 2) Form Invariance, 3) Some Freedom.

4.4 High Order Differentials with Single Degree of
Freedom

It has already been discovered in the previous section that
n-th order differentials have n degrees of freedom. In other
words, dx has to be generated n times and recorded as dx1,
dx2, ..., and dxn which are all variables on the first Order
infinitesimal number axis. The Weights of the n infinitesimal
variables are all functions of x, and these n functions can be
defined arbitrarily. If these n functions are all defined to be the
same function, for instance, all defined with the curve in Fig.
13, then the degree of freedom of n-th order differentials is
reduced to 1. In this circumstance, although dx1, dx2, ..., and dxn
are generated at different times, their values at a given point are
the same, and therefore they can all be written as dx. Similarly,
the values of d2x23, d2x12 and d2x13 at a given point are the same,
and therefore they can all be written as d2x. According to the
constraint between first order differentials, dyk is equal to

kxxf d)( , where k=1,2,...,n. This indicates that the values of
dy1, dy2, ..., and dyn at a given point are no longer different, and
therefore they can all be written as dy. As a result, the
constraint between first order differentials of x and y can be
written in a unified form:

xxfy d)(d  . (4.4.1)

Originally, taking differential twice on both sides of
11 d)(d yygx  will result in an equation similar to Equation

(4.3.3), i.e., on the right side of the equation will appear three



Fig. 15. The Geometric Meaning of a First Order
Differential

types of second order differential: d2y23, d2y12 and d2y13 which
represent the values of infinitesimal increments of dy2, dy1 and
dy1 caused by dx3, dx2 and dx3 respectively. However, now that
dx1, dx2, ..., and dxn are specified with the same function, the
values of d2y23, d2y12 and d2y13 at a given point are no longer
different, and can all be written as d2y. As a result, Equation
(4.3.2) becomes

xxfxxfy 222 d)(d)(d  . (4.4.2)

Similarly, Equation (4.3.3) becomes

xxfxxxfxxfy 323)3(3 d)(dd)(3d)(d  . (4.4.3)

Therefore, when the Weights of dx at different points are
always specified with the same curve, the degrees of freedom
of high order differentials are all reduced to 1, resulting in
concise equations of high order differentials. High order
differentials of this type still satisfy the aforementioned three
properties: 1) Meaning Invariance, 2) Form Invariance, 3)
Some Freedom.

For example, d2y is a variable on the second Order
infinitesimal number axis in OII Number Field, and it always
represents the infinitesimal increment in the infinitesimal
increment of y itself, namely the infinitesimal increment in dy,
with dy located on the first Order infinitesimal number axis.
The Weight of dy is a function of y, and this function can be
defined arbitrarily. Therefore, d2y is irrelevant to any other
variable, and is thus invariant in meaning.

Of course, once the functional relationship between dy and
y is specified, the functional relationship between dx and x is
determined. In turn, once the functional relationship between
dx and x is specified, the functional relationship between dy
and y is determined. Nevertheless, this will not affect the
meaning invariance of d2y and d2x. The second order
differentials d2y and d2x always represent the infinitesimal
increment in the infinitesimal increment of y and x respectively,
while they always satisfy the constraint described in Equation
(4.4.2). Since this constraint equation is irrelevant to any other
variable, d2y and d2x are invariant in form too. In fact, the so
called “Form Invariance” is actually saying that, whether or not
x is independent variable, or in other words, no matter how the
functional relationship between dx and x is specified, d2y can
always be expressed in the form of xxfxxf 22 d)(d)(  .

It is notable that, when the Weights of dx at different points
are specified to be equal, dx becomes a constant, and therefore
d2x = 0. In this case, Equation (4.4.2) becomes

22 d)(d xxfy  . (4.4.4)

If Equation (4.4.4) is used as the definition of d2y, it is not
invariant in form. This is because Equation (4.4.4) is only
satisfied when the Weights of dx at different points are
specified to be equal, and is not satisfied in general.

To simplify the research, only high order differentials with
single degree of freedom are discussed in rest of the paper, and
y = f (x) is always discussed on one of its monotonic intervals.
As the Weight of dx at a given point is specified to be always
the same each time dx is generated, the Weight of dy at a given

point is always the same too, each time dy is generated.
Therefore, all one needs to do is specify the functional
relationship between dx and x once, or specify the functional
relationship between dy and y once, and the Weight of every
order of differential of every variable at every point is thus
determined.

Equation (4.4.1) to (4.4.3) are the equations of first, second
and third order differentials derived from y = f (x). Similarly,
equations of first, second and third order differentials can also
be derived from x = g(y), and they are equivalent to Equations
(4.4.1) to (4.4.3) respectively. Equations of even higher order
differentials can be derived by taking differentials continuously
on both sides of Equation (4.4.3).

4.5 Geometric Meanings of High Order Differentials

As depicted in the left of Fig. 15, the height of a square
prism is h, while the length of each side of the basal square is x.
Therefore, the volume of the prism is y = x2h. When the length
of each side of the basal square generates an increment dx, the
volume of the square generates an increment dy. It can be seen
from the figure that the geometric meaning of dy is like a hinge
of a door which is shown again separately in the right of the
figure for clarity. It is easy to know that dy = (x+dx)hdx + xhdx
= 2xhdx + hdx2 = 2xhdx. Since hdx2 is a higher Order
infinitesimal compared to 2xhdx, it has no effect when added to
2xhdx.

As shown in Fig. 16, if x generates an increment again,
recorded as x , then two prisms are obtained. The length of
each side of the basal square of one of the prisms is x, while the
length of each side of the basal square of the other prism is

xx  . The volume increment caused by the dx that happens
in the first prism is dy = 2xhdx, and its geometric meaning is a
small hinge. By contrast, the volume increment caused by the
dx that happens in the second prism is xhxxy d)(2d  , and
its geometric meaning is a large hinge. For clarity, these two
hinges are shown separately in the right of the figure again. If
dx is specified to be equal at different points, then the thickness
of the two hinges are the same, both equal to dx. Now, the two
hinges can be put together overlapping with each other, and the
difference between their volumes are the shaded areas in the



Fig. 16. First Order Differentials at Two Different
Positions

Fig. 17. The Geometric Meaning of a Second Order
Differential

left of Fig. 17. This volume difference represents the )d( y
caused by x .

If 0x , then x becomes dx generated for the second
time, and )d( y becomes d2y. According to the stipulation of
single freedom, the dx generated at a given point each time is
always the same. Therefore, as shown in the right of Fig. 17,
the shaded areas in the left of Fig. 17 become two
infinitesimally thin square prisms which are the geometric
meaning of the second order differential d2y in this problem.

This shows that, when the original function y = x2h
represents the volume of a three dimensional object, the first
order differential dy = 2xhdx represents the volume of some
surfaces, while the second order differential d2y = 2hdx2

represents the volume of some lines. It is worth noting that the
d2y = 2hdx2 here is obtained on the assumption that the Weight
of dx is the same at different points. Therefore, this is a second
order differential of a special case. In general, the Weight of dx
is not the same at different points, and consequently the second
order differential of y should be expressed in its full form, i.e.
d2y = 2hdx2 + 2xhd2x. In this case, the geometric meaning of
d2y not only includes the two infinitesimally thin square prisms
in the right of Fig. 17, but also includes the product of d2x and
2xh, where d2x represents the difference between the
thicknesses of the two hinges while 2xh represents the area of
one of the hinges.

4.6 Expressing High Order Derivatives with High
Order Differentials

Suppose y = f (x) is a monotonic function of x on a certain
interval, and the functional relationship can also be written as

)( ygx  . Starting from y = f (x), the constraints between first,
second and third order differentials of x and y can be deduced
successively, resulting in Equation (4.4.1) to (4.4.3) which are
displayed again as follows.

xxfy d)(d  (4.4.1)

xxfxxfy 222 d)(d)(d  (4.4.2)

xxfxxxfxxfy 323)3(3 d)(dd)(3d)(d  (4.4.3)

Starting from x = g(y), the constraints between first, second
and third order differentials of x and y can be deduced again,
resulting in the following three equations.

yygx d)(d  (4.6.1)

yygyygx 222 d)(d)(d  (4.6.2)

yygyyygyygx 323)3(3 d)(dd)(3d)(d  (4.6.3)

Equation (4.4.1) is equivalent to Equation (4.6.1). Equation
(4.4.2) is equivalent to Equation (4.6.2). Equation (4.4.3) is
equivalent to Equation (4.6.3). These equations can be
collectively called “the constraints between high order
differentials”, with first order differential deemed as a special
case of high order differentials. The high order differentials
studied here are all the single freedom high order differentials
described in Section 4.4.

Equation (4.4.1) can be transformed into

x
yxf

d
d)(  . (4.6.4)

So the first order derivative of y with respect to x, namely
)(xf  , is expressed with first order differentials dy and dx.

Taking derivative again on both sides of Equation (4.6.4), and
using Lemma 4.2, results in
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namely
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d)(
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x
yxf  . (4.6.5)

So the second order derivative of y with respect to x, namely
)(xf  , is expressed with second order differentials d2y and d2x

as well as first order differentials dy and dx. Equation (4.6.5) is
equivalent to Equation (4.4.2).

Similarly, Equation (4.6.1) can be transformed into

y
xyg

d
d)(  . (4.6.6)

Taking derivative again on both sides of the equation with
respect to y, results in
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y
xyg  . (4.6.7)

In this way, the first order and second order derivatives of x
with respect to y are expressed with differentials of different
orders. Equation (4.6.7) is equivalent to Equation (4.6.2), and
is also equivalent to Equation (4.6.5).

Starting from Equation (4.6.5) or Equation (4.6.7), taking
derivatives continuously with respect to x or with respect to y
on both sides of the equal sign, and using Lemma 4.1 and
Lemma 4.2, results in derivatives of even higher orders
expressed with differentials of different orders.

It is easy to know from Equation (4.6.5) that, if the values
of dx at different points are specified to be the same, then d2x =
0. Only in this special case is )(xf  equal to the quotient of

d2y and dx2, namely 2

2

d
d
x
y . In general, )(xf  is not equal to the

quotient of d2y and dx2. However, traditionally, people are

accustomed to using 2

2

d
d
x
y to represent the second order

derivative of y with respect to x. Therefore, in this traditional

way of expression, 2

2

d
d
x
y has to be treated as an indivisible

whole. If one wants to treat 2

2

d
d
x
y as divisible, then he has to

express the second order derivative )(xf  with Equation
(4.6.5).

5 Further Discussion

5.1 Is There a General Equation for n-th Order
Differentials?

From Equation (4.4.1) to Equation (4.4.3), the formulas of
first, second and third order differentials are deduced in
sequence. And this deduction process can be continued. The
higher the order is, the more complex the formula is. Then, is
there a general formula for n-th order differentials? This is a
question to be answered in the future.

Similarly, from Equation (4.6.4) to Equation (4.6.5), the
formulas expressing first and second order derivatives with
differentials of corresponding orders are deduced successively,
and this deduction process can be continued to obtain the
expressions of even higher order derivatives. Then, for a
general n-th order derivative, is there a universal formula to
express it with high order differentials? In fact, this is
essentially the same problem as the former one, because it can
be discovered by observing Equation (4.4.2) and (4.4.3) with
Lemma 4.1 that, for the general n-th order differential ynd , the

first and last item in its expression must be nn xxf d)()( and

xxf nd)( respectively, while the intermediate items include

)()( xf k in sequence, where 2,...,2,1  nnk . Therefore,

the high order differential expression of )()( xf n can be
obtained by subtracting all the items on the right side of the
equation except nn xxf d)()( and then dividing both sides of the

equation with nxd .
Though it seems difficult to obtain the explicit form of the

general formula of n-th order differentials, it is quite easy to
deduce the recursion forms of the general formula, with the
help of Leibniz’s Formula.

Theorem 5.1 (Leibniz’s Formula) If functions u and v
have derivatives of any order, then

)()(

0

)()( kkn
n

k

k
n

n vuCvu 


 , (5.1.1)

where
)!(!

!
knk

nC k
n 
 , uu )0( and vv )0( .

The derivative and the differential of the product of two
functions obey similar operational laws. The derivative obeys

vuvuvu  )( ,

while the differential obeys
vuvuvu dd)(d  .

Therefore, Leibniz’s Formula can be adapted to high order
differentials.

Theorem 5.2 If functions u and v have derivatives of any
order, then

vuCvu kkn
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k
n

n dd)(d
0




 , (5.1.2)

where
)!(!

!
knk

nC k
n 
 , uu 0d and vv 0d .

Suppose )(xfy  , then xxfy d)(d  . Taking th)1( n
order differential on both sides of the equation, results in

)d)((d)d(dd 11 xxfyy nnn   . (5.1.3)

Replacing the n, u and v in Equation (5.1.2) with 1n ,
)(xf  and dx respectively, results in
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   . (5.1.4)

Taking the equation )(xfy  into account, the following
formula can be deduced from Equation (5.1.3) and (5.1.4):
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0
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  , (5.1.5)



where n≥2.
Replacing the n, u and v in Equation (5.1.2) with 1n , dx

and )(xf  respectively, results in
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1 . (5.1.6)

Taking the equation )(xfy  into account, the following
formula can be deduced from Equation (5.1.3) and (5.1.6):

xxfCxf knk
n

k

k
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n 
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  d)(d)(d

1

0
1 ， (5.1.7)

where n≥2.
Equation (5.1.5) and (5.1.7) are equivalent. They are both

recursion formulas, expressing the n-th order differential
)(d xfn with the 0th to th)1( n order differentials of the

derivative function )(xf  and the 1st to n-th order differentials
of x.

5.2 Literal “High Order Differential” Equation

Traditional “high order differential equations” are actually
“high order derivative equations” composed of derivatives of
different orders, like

0 yyxy .

High order differentials defined on the basis of OII Number
Field are invariant both in form and in meaning. Therefore, it is
now possible to study equations directly composed of high
order differentials, making the phrase “differential equation”
worth its name. To facilitate discussion, only high order
differentials with single degree of freedom as described in
Section 4.4 are studied here.

Equations directly built with high order differentials can be
further classified into two categories: those equivalent to high
order derivative equations, and those not.

For instance, 3222 ddddddd xxxyxyxy  can be
transformed to a high order derivative equation. In fact,
dividing both sides of the equation with dx3, results in
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d
d
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2
.

According to Equation (4.6.4) and (4.6.5), it is equivalent to
xyy  .

Now that it can be transformed to a high order derivative
equation, it can be solved as a traditional high order derivative
equation.

If an equation composed of high order differentials cannot
be transformed to a high order derivative equation, then it is
generally an “indefinite differential equation”. For example,

0dddd 22  xyyxy (5.2.1)

is an indefinite differential equation. In fact, according to
Equation (4.4.2), namely

xyxyy 222 ddd  ,

and by substituting for d2y in Equation (5.2.1), the following
equation is obtained

0ddddd 222  xyyxxyxy . (5.2.2)

Dividing both sides of the equation with dx2, results in
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x
xyy . (5.2.3)

High order differentials have one degree of freedom, which
means that the functional relationship between dx and x can be
defined arbitrarily. Suppose 1)0)((d xhx  , then

xxhxx d)0)(()d(dd 12  ,

and it follows that
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So Equation (5.2.3) can be transformed to

0
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xh
xhyy , (5.2.5)

and can be further transformed to
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For any function y = f (x), the expression on the right side of
Equation (5.2.6) can be represented with w(x), and the equation
can be therefore rewritten as

)(1
d
d xw

hx
h



which can be transformed to

xxw
h
h d)(d
 .

Taking indefinite integral on both sides of the equation, results
in

1d)(||ln Cxxwh   ,

where C1 is an arbitrary constant. This equation can be further
transformed to

  xxwxxwC Ceeeh d)(d)(1 ,
where C is an arbitrary nonzero constant. Since h(x) can be
defined arbitrarily, this means that any function )(xfy  can
satisfy Equation (5.2.5), with h(x) defined as

 xxwCexh d)()( ,

where
)(

)()()()(
xf

xfxfxfxw



 .

In other words, by specifying 1d)(1 )0()0)((d  xxwCexhx ,
any function y = f (x) can satisfy Equation (5.2.3). This means
that Equation (5.2.3) is an indefinite differential equation. As



Fig. 18. A Second Order Circuit

Equation (5.2.3) and Equation (5.2.1) are equivalent, Equation
(5.2.1) is also an indefinite differential equation.

Multiple indefinite differential equations may constitute a
“definite differential equation set”. For instance, the equation
set







0dd)1(
0dddd

22

22

xyx
xyyxy (5.2.7)

is composed of two indefinite differential equations. The first
equation has already been analyzed above. It is also easy to
prove that the second equation is an indefinite differential
equation. According to Equation (4.4.2), namely

xyxyy 222 ddd  , and by substituting for the d2y in the
second equation, the following equation can be obtained
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x
xyxyyx . (5.2.8)

Similar to the analysis of the first equation, it can be deduced
that any function y = f (x) can satisfy Equation (5.2.8), making
it an indefinite differential equation. The first equation in
Equation Set (5.2.7) is equivalent to Equation (5.2.3), while the

second equation is equivalent to Equation (5.2.8). As 2

2

d
d
x
x is

contained both in Equation (5.2.3) and Equation (5.2.8), 2

2

d
d
x
x

can be canceled out, resulting in
0))(1()1(  yyyyxyyyx

which can be further reduced to
0))(1(  yyyxyy . (5.2.9)

Equation (5.2.9) is a second order derivative equation.
Therefore, the two indefinite differential equations in Equation
Set (5.2.7) form a “definite differential equation set” which can
finally be reduced to a high order derivative equation.

In some application problems, it might be possible to write
out differential equation (set) directly with high order
differentials. There are two situations. One is the case when a
single differential equation which can be transformed into a
derivative equation is obtained. The other is the case when
multiple “indefinite differential equations” are obtained,
constituting a “definite differential equation set”. The latter
situation might be more common. As a result, high order
differentials might facilitate the processes of building
mathematical models for complex application problems.

5.3 Application of OII Number Field

As the theoretical basis of high order differentials, OII
Number Field is very helpful in many fields. Problems related
to infinitesimals and infinities are often complicated and not
easy to explain. However, from the perspective of OII Number
Field, those problems become very clear and explicit. Here is
an example to demonstrate this.

Example Please explain the impulse response of a second
order circuit.

Answer
In the second order circuit as shown in Fig. 18, the property

of the capacitor is described by

t
uCi C

d
d

 , (5.3.1)

while the property of the inductor is described by

t
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 . (5.3.2)

Therefore,
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According to Kirchhoff’s Voltage Law,

sCL uuiRu  . (5.3.4)

From Equation (5.3.1), (5.3.3) and (5.3.4), the following
equation is obtained
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When )(tus  which is a unit impulse function, the
response )(tuC is to be determined from this equation.

The definition of )(t is: 1d)(
0

0





tt , and when t≠0,

)(t ＝0.

From the perspective of OII Number Field, 0 and 0+ are
two points on the left and right side of 0 respectively on the
real number axis, with their distances from 0 being first Order
infinitesimals. The dt at 0t is the time interval from  0t
to  0t , and can be recorded as  00|d tt which is a first
Order infinitesimal too. If its Weight is specified to be 1, i.e.

1
00 )0(|d  tt , and if )(t is considered to be a rectangular

impulse, then )0( is unit first Order infinity, i.e. 1)()0(  .

In this case, tt d)(
0

0



 represents the product of  00|d tt and

)0( , i.e. 11 )()0(  , and the result is naturally 1.

That is to say, when the time interval dt from  0t to
 0t is specified to be unit first Order infinitesimal (0)1, and



Fig. 19. Impulse Function )(t

Fig. 20. A Rectangular Impulse

Fig. 21. A Triangular Impulse

)(t is considered to be a rectangular impulse, then the
function )(t can be defined as









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In this case, )(t is a rectangular impulse with its width being
unit first Order infinitesimal (0)1 and its height being unit first
Order infinity (∞)1, as depicted in Fig. 19. Since first Order
infinity appears in the function values of )(t , )(t is
different from conventional functions whose values are always
finite numbers.

Now let us analyze the differential equation (5.3.5).

First of all, let us prove with reductio ad absurdum that Cu
cannot jump at 0t .

If Cu is hypothesized to jump from  0t to  0t , then

Cud across 0t is a finite number rather than a first Order
infinitesimal. Suppose 0)0( Cu and kuC )0( , then the
increment of Cu from  0t to  0t is ku tC  00|d ,
and therefore the derivative of Cu at t=0 is
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which means that
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t
u is a first Order infinity with Weight

k. Because the time interval  00|d tt multiplied by the

derivative
0d

d

t

C

t
u equals the increment of Cu from  0t to

 0t , the derivative of Cu has to be constantly equal to

0d
d

t

C

t
u at every point in the time interval from  0t to

 0t . This means that
t
uC
d

d is a rectangular impulse with its

width being unit first Order infinitesimal (0)1 and its height
being a first Order infinity k(∞)1, as depicted in Fig. 20. To

make things clear, the value of
t
uC
d

d in the time interval from

 0t to  0t is recorded as
 00d

d
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t
u , and it is easy to

know that
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In order to demonstrate the difference between a
rectangular impulse and a non-rectangular impulse, Fig. 21
shows a triangular impulse with its width being unit first Order
infinitesimal (0)1 and its height being the same first Order
infinity k(∞)1. Then the area of this triangular impulse is

2
)()0(

2
1 11 kk  ,

while the area of the rectangular impulse in Fig. 20 is k. This
shows that a rectangular impulse is different from a triangular
impulse even though their widths are the same infinitesimal
and their heights are the same infinity.

It has been discussed previously in Section 3.3, Section 4.3
and Section 4.4 that the Weight of a differential has some
freedom, or in other words, the Weight of a differential can be
specified arbitrarily as long as it satisfies the constraints. The
infinitesimal time interval from  0t to  0t is recorded
as  00|d tt , and is specified as unit first Order infinitesimal
(0)1. The time interval from  0t to 0t can be recorded as

00|d  tt , while the time interval from 0t to  0t can be
recorded as  00|d tt . As long as 00|d  tt and  00|d tt are
infinitesimals with positive Weights satisfying the constraint
condition   000000 |d|d|d ttt ttt , their Weights can
actually be specified arbitrarily. Suppose their Weights are
specified as a and b respectively, i.e. 1

00 )0(|d at t  and
1

00 )0(|d bt t  , where a and b are constants greater than 0
and 1 ba .



As
t
uC
d

d is a rectangular impulse, it has a vertical rising

edge at  0t , rising from 0 to 1)(k . Because the width of
this rectangular impulse is a first Order infinitesimal, the
corresponding dt of the rising edge has to be a higher order
infinitesimal. Let us deem it as a second Order infinitesimal
with Weight c, then 2

)0( )0(d ct U 


, where )0( U represents

an interval at  0t with a width of a second Order
infinitesimal. )0( U is the interval in which the rising edge of

t
uC
d

d occurs. So the gradient of
t
uC
d

d in the interval )0( U

can be computed as
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which indicates that the 




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t
u

t
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d
d

d
d in Differential Equation

(5.3.5) is a third Order infinity in the interval )0( U .

It is easy to know that, in the interval )0( U ,
t
uC
d

d rises

from 0 to a first Order infinity 1)(k , Cu remains 0, while

)(tus  rises from 0 to a first Order infinity 1)( .

When inspecting Differential Equation (5.3.5) in the
interval )0( U , it can be found that the summation result of
the left side of the equation is a third Order infinity while the
right side of the equation is a first Order infinity. Because the
two infinities are different in Order, the left side and the right
side of the equation are not equal, i.e. Differential Equation
(5.3.5) is not satisfied.

Similarly, it can be proved that in the interval U(0+), which
is an interval at  0t with a width of a second Order
infinitesimal, Differential Equation (5.3.5) is not satisfied.

However, the differential equation obtained with
Kirchhoff’s Voltage Law should be satisfied at any moment.
Therefore, the hypothesis that Cu jumps from  0t to

 0t is wrong. This means that Cu is continuous at 0t .

To make the differential equation satisfied,
t
uC
d

d , instead

of Cu , should be assumed to jump at 0t with a finite
increment in value. Only under this assumption are both sides
of the differential equation first Order infinities which are
possible to be equal. In this case, in the time interval from

 0t to  0t , the left side of Differential Equation (5.3.5)

is the summation of a first Order infinity 







t
u

t
LC C

d
d

d
d , a

finite number
t
uRC C

d
d , and Cu which remains 0. The result of

this summation is the first Order infinity 







t
u

t
LC C

d
d

d
d .

Meanwhile, the right side of the equation is the impulse
function )(t , whose value is unit first Order infinity (∞)1.
Therefore,

)(
d

d
d
d t

t
u

t
LC C 






 , where  00 t .

Multiplying both sides with dt, results in

tt
t
uLC C d)(
d

dd 





 , where  00 t .

This equation can also be written as
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00
)0()(

d
d

d
d











 t

C

t

C

t
u

t
uLC

which is reduced to

10
d

d

0











t

C

t
uLC ,

i.e.

1
d

d

0


t

C

t
uLC .

Taking Equation (5.3.1) into account, results in
1)0( Li .

Therefore,

L
i 1)0(  ,

which means that Current i jumps from 0 to
L
1 at 0t . This

conclusion is the same as that in a circuit textbook.

5.4 Fractional Order Differentials

Fractional order calculus has a history of hundreds of years,
and developed in parallel with integer order calculus. The
theory of fractional order calculus gives fractional order
derivatives their definition, such as the 0.5th order and 1.6th
order derivatives of y with respect to x. Now that fractional
order derivatives exist, it is natural to ask whether there are
fractional order differentials.

From the perspective of OII Number Field, since integer
order differentials are infinitesimals of integer Orders,
fractional order differentials should naturally be infinitesimals
of fractional Orders. As shown in Fig. 22, a 0.5th order
differential should be located on the infinitesimal number axis
of Order 0.5, and a 1.6th order differential should be located on
the infinitesimal number axis of Order 1.6.

Then the key problem is how to define fractional order
differentials, or equivalently, what is the relationship between
fractional order differentials and fractional order derivatives.

If simply defining the 1.6th order differential of y = f (x) as
6.1)6.1(6.1 d)(d xxfy  , namely the 1.6th power of dx times the

1.6th order derivative of y with respect to x, then it might not
be a good definition. As mentioned previously in Section 4.4, if



Fig. 22. Number Axes of Fractional Order
Infinitesimals

d2y is defined as 22 d)(d xxfy  , then it is not invariant in
form, because this equation is only satisfied when the Weights
of dx at different points are specified to be equal, and in general
this equation is not satisfied. Instead, the generally satisfied
equation is Equation (4.4.2) which is displayed again here:

xxfxxfy 222 d)(d)(d  . (4.4.2)

Then, for fractional order differentials, is there a form invariant
general equation like Equation (4.4.2)? This is a problem to be
solved in the future.

6 Summary
From the traditional definition of infinitesimals, it can be

discovered that an infinitesimal is essentially a variable running
toward 0. By defining OII Number Field, the processes of
infinitesimals running toward 0 are condensed onto the limits.
The final foothold of a running infinitesimal variable is no
longer 0, but a number in the OII Number Field, with a certain
Order and a certain Weight. In this way, the relative sizes of
different infinitesimals with functional relationship are clear
and explicit.

The OII Number Field can be seen as an extension of the
real number field. Different infinitesimals and infinities are all
endowed with Orders and Weights, turned into a kind of
number which can be operated. On this basis, definite integral
is explained as “the summation of first Order infinitesimals
with different Weights in such large number as a first Order
infinity”.

With OII Number Field, the differential of a variable at a
point can be treated as a number. In this way, differentials are
not only invariant in form, but also invariant in meaning. At a
given point, no matter dy is caused by which variable, it has the
same Order and Weight in OII Number Field. Therefore, dy is
always equal to the infinitesimal increment of variable y itself.
The properties of differentials are summarized into three items:

1) Meaning invariance,
2) Form invariance, i.e. the relationship between the

differentials of the two variables x and y in the univariate
function y = f (x) is not affected by any other variable, and

3) Some freedom, i.e. the Weight can be specified
arbitrarily on condition that the constraint is satisfied.

Now that a differential at a given point becomes a number,
the same differential at different points then form a variable
which can generate a differential again, thus giving rise to high
order differentials. It turns out that high order differentials also
satisfy the above three properties. To simplify the research, the
degree of freedom of any high order differential is restricted to
1. After that, constraint equations satisfied by high order
differentials of two variables with functional relationship are
deduced, with each order corresponding to one constraint
equation.

Thus it can be seen that the research of high order
differentials cannot go without OII Number Field. Traditionally,
without OII Number Field, infinitesimals can only be studied
by investigating the processes of variables running toward 0,
thus leading to the consequence that differentials are only
invariant in form but not invariant in meaning. Under this
circumstance, the research of high order differentials is
extremely difficult. Thanks to OII Number Field, all about
infinitesimals and infinities becomes concise and explicit,
making high order differentials exist naturally.

On this basis, differential equations directly built with high
order differentials are discussed. Some problems in physics and
engineering might benefit from this method, with mathematical
models directly built with high order differentials, resulting in
literal “high order differential” equations. This might give rise
to more ways and ideas in research work.

After that, the impulse response of a second order circuit,
which is an engineering problem, is analyzed from the
perspective of OII Number Field. This example demonstrates
the fact that OII Number Field not only facilitates the research
of high order differentials, but also brings convenience to the
analysis of problems in physics and engineering disciplines.

In addition, two problems to be solved are presented. The
first one is about the existence of a general formula describing
the relationship between n-th order differentials and n-th order
derivatives. The second one is about the definition of fractional
order differentials and their relationship with fractional order
derivatives.
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