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Abstract

This article gives a way to quickly understand Euler’s formula.

Introduction

Euler’s formula, e�i
D �1 is arguably the most important and wonderful

equation of mathematics. Most mathematicians want to see it as soon as

possible in mathematics courses, even elementary algebra. But alas! It is

mentioned in Blitzer’s algebra textbook [2], but without any proof or argu-

ment for why it might be true. In calculus texts, such as Larson’s [4], it is

implied in a problem, but not stated directly. It is certainly possible to prove

it using Taylor series for ex , sin x, and cos x, but as complex numbers are

thought of as off topic for elementary calculus, this isn’t generally done –

Larson in his calculus text doesn’t do it, for example. Stewart [7] does give

this Taylor series proof albeit in an appendix. An older introductory analysis

(now termed pre-calculus) text does give such a proof in a regular chapter

[3] and an older trigonometry book, [5] does give in some sense a more in-

tuitive or deeper proof as part of its chapter on series. We reproduce these

proofs below. Differential equations texts rely on complex numbers and in

particular eix
D cos x C i sin x, also called Euler’s formula. In Zill’s book

on the subject [8], he gives the series proof in footnote form. Later in the

mathematical curriculum, in real and complex analysis books, such at [1, 6],

ex is defined with a series and eix is used to define, with series, cos x and

sin x. We want a quick idea as to why it might be true. That’s attempted

here.
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DeMoivre’s Theorem

DeMoivre’s theorem really does the trick. The theorem:

.cos x C i sin x/n
D cos nx C i sin nx

and more in particular its beginnings,

.cos x C i sin x/.cos y C i sin y/ D cos.x C y/ C i sin.x C y/

should immediately be likened to .ex/n
D enx and ex

� ey
D exCy, respec-

tively: exponential ideas. Granted there isn’t any particular reason why the

base should be e and not some other number, but the exponential identities

are clear and the point to be emphasized.

The back story

The introduction of cos x C i sin x is just a gloss on the plane. Typically

a unit circle is used to develop the circular (as opposed to trigonometric)

functions. The Cartesian versus the complex plane are the same plane with

multiplication (complex) possible.

The geometry glitch solved

The derivation of the derivative of ex is ex is straight forward and unlike the

derivative of the sin does not involve a geometric proof of ancillary limits.

We can use ex to find two derivatives. If we assume

eix
D cos x C i sin x

and
d

dx
eix

D ieix
D � sin x C i cos x;

then we can conclude

d

dx
cos x D � sin x and

d

dx
sin x D cos x:

If it is desired to avoid the geometric proofs that

lim
x!0

sin x

x
D 1 and lim

x!0

1 � cos x

x
D 0; (1)

then the question is how to prove Euler without appeals to series, appeals to

Taylor that are dependent on derivatives of cos and sin. Dolciani gives the

way.
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Using approximations for Euler

Here is a reproduction of a proof that eix
D cos x C i sin x given in [5]. It

is based on DeMoivre’s theorem and the identity

lim
n!1

.1 C 1=n/n
D e: (2)

Blitzer [2] uses (2) to define e. Larson [4] proofs it in an appendix. One

can start with the series for e and apply the binomial theorem to (2) and

grind it out. Rudin [6] uses this method. Larson’s a little quicker and more

elegant than Rudin, but not as quick and elegant as Stewart [7].

Let f .x/ D ln x then f 0.x/ D 1=x and so f 0.1/ D 1. Using the

definition of the derivative as a limit, this means

f 0.1/ D lim
h!0

f .1 C h/ � f .1/

h
D lim

x!0
ln.1 C x/1=x

D 1:

But what must e be raised to in order to equal e1? This gives (2).

Theorem 1.

eix
D .cos x C i sin x/ (3)

Proof. We have, for large n,

�

cos
x

n
C i sin

x

n

�n

�

�

1 C i
x

n

�n

;

using DeMoivre’s gives

cos x C i sin x �

�

1 C i
x

n

�n

and with some further algebraic manipulations this is cos x C i sin x D eix .

Euler regular

Once you have Taylor for cos and sin then the limits in (1) are trivial to

prove. Just use

cos x D 1 � terms with x

for the first and

sin x D x.1 � terms with x to higher degrees than 1/
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for the second.

For Euler regular and assuming (3), just use

ex
D

1
X

kD0

xk

kŠ

and substitute xi for x.

Conclusion

Motivation is the key for some mathematicians. The math given here seems

more motivated and natural. The next stop is to cross reference trigonomet-

ric identities with solving integrals. It seems clear to me that solving inte-

grals and differential equations piques juices more. All the major trigono-

metric identities are used in later math to good avail; perhaps modern stu-

dents are ready to see this bigger picture sooner. It is the bigger picture that

should be stressed – think of global warming. Just having obedience to and

faith in authorities is silence and what is silence now?
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