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Abstract

We first find a Hamiltonian H that has the Hurwitz zeta functions
¢(s,z) as eigenfunctions. Then we continue constructing an operator G
that is self-adjoint, with appropriate boundary conditions. We will find
that the ((s, z)-functions do not meet these boundary conditions, except
for the ones where s is a nontrivial zero of the Riemann zeta, with the
real part of s being greater than % Finally, we find that these exceptional
functions cannot exist, proving the Riemann hypothesis, that all nontrivial
zeros have real part equal to %

1 Introduction

The Hurwitz zeta function (s, x) can be represented by a Newton series repre-
sentation [2].

C('S?x) =

I = 1 K(n -
51;)71+1kz_o(k>(x+k) 1)

For Re(s) > 1, this function can be expressed as a single infinite series.

1
((s,2) = Z: CEL (2)
n=0
The Riemann zeta function ((s, 1) has trivial zeros at the negative even s-values.
The Riemann hypothesis states that the nontrivial zeros of the Riemann zeta
function are complex numbers with real part % In this paper, we will prove for
the first time that the Riemann hypothesis is true.

So now that we know what problem we are solving, lets go ahead and find
a Hamiltonian!
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2 Finding the Hamiltonian

Right now, I haven’t even told you what a Hamiltonian is. But let me explain
along the way, because we have a long journey ahead! First, lets expand the
series in (2) and see what we are working with here.

Ly 1o, o1

s (1+z)* (242 (B+x)°

C(S"T) =

Now this seems like a nice pattern. When we shift « by one, we almost get the
same series.
1 1 1 1

et D= T vy T B Ay

The two series are almost the same, so subtracting might be a good idea here.

C(S,LL’) - C(S,l‘ + 1) = i

IS
That leaves us with only one term, instead of infinite many. That’s good progress
so far. If we use the symbol A for these two operations combined, we’d be saving
some ink and the environment.
1
This is known as the forward difference. Now what can we do next? Lets try

differentiating.
s

0
77200 2) = ——3

ox
Every new operator that we put in front and on the left, acts on the function
to the right of it.

We now have a different exponent in de denominator. We can fix that by
multiplying by x.
0 Ac(s,a) =~
T— $,x) = ——
Jr s

This looks good. It looks similar to what we had before differentiating. We can
even get back the infinite series by inverting the forward difference.

4, 0 1 1 1 1
A 1I%AC(S,I) = —S (,’BS + (1+$)S + (2_’_3:)8 + (3+$L’)S +> = 78((‘9"%)

After applying four operators, we got back our (-function, multiplied by —s.
We can give this whole sequence of operations a name, A = Aflxa%A

AC(S,I) = —s((s,x)

We call ((s,z) an eigenfunction of operator A with eigenvalue —s. For each
value of s, we get a different eigenfunction with a different eigenvalue.
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After the forward difference step, we could have also multiplied by z first, and
then differentiate after. With B = A‘lﬁxA, the (-functions turn out to be

eigenfunctions of B as well, but with different eigenvalues 1 — s.

B((s,z) = (1 - s)((s,2)

We can also see that the order of operation can affect the result. Though some
operators commute with each other. Differentiation commutes with the forward
difference.

0

0
A = f'(z)—f 1)=A—
CAf() = @) - e +1) = A f(@)
And differentiation also commutes with the backward difference V.

) , , _o9
5 V@) =1"(@) = f'(x = 1) = Vo f(2)

This means that we can change the order for these operators.

0 0
22~ %
0 0
Y = Var

The sum of A and B looks very symmetrical and it has the nice property, that
the (-functions are also eigenfunctions of A + B, with eigenvalues 1 — 2s.

A+B=A""! <:ca+a:17>A

We’ve now reached a point in our journey that several others [1] have reached
before. Further along the road, there has been a lot of struggling. Right now,
would be a good time to pause for a moment and look at some properties of the
operators we have used so far.

In the next section we’ll take some time to discuss the concept of inner products
and adjoint operators. After that, we will continue finding the Hamiltonian and
construct a new operator that is closely related to this Hamiltonian. The good
thing about the new operator will be, that it is self-adjoint!

3 Inner product and adjoint operators

Now, you may already be familiar with the concept of an inner product or a
dot product. For two complex functions f and g, we can use the folowing inner
product.

o = [ o 7@ g(o) (4)

—0o0
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It’s good to notice that (f|g) is usually not the same as (g|f) for complex
functions. Rather, they are each others complex conjugate.

Tlah= [ o Fate) = [ do 5@ ) = ) (5)

— 00 — 00

Two functions are said to be orthogonal to each other if their inner product is
zero. The inner product of a nonzero function with itself is always a positive
real number. The norm of a function is the square root of this number.

11l = V£ (6)

If operator V is the adjoint of operator W, then the following equality must
hold by definition.

(v4ls) = (o) "

The position operator x is self-adjoint. Proof of this is very straightforward.
lag) = [~ do 7@l wg() = [~ do5f@) ota) = (asla) 9

The differentiation operator 8% is not self-adjoint.

<f‘§;g> | @@ g
=~(atls)

The term [f(x) g(x)] R (9) vanishes when the conditions f(z) g(x) = 0 are

met at the boundaries.

We will want to replace the differentiation operator by the momentum operator
p, which also includes differentiation.

0

The momentum operator is self-adjoint, when the boundary conditions are met.

tlin gy = {~inglg (11)
15) 0

The momentum operator and the reduced Planck constant i play major roles
in quantum physics.
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The backward difference operator is the adjoint of the forward difference op-
erator.

<ﬂAm—1/mdxﬁ7<<>—gm+1»:
o) = [ e T glo+1) =

—0o0

:/Z )—/o;dyf(y—l)g(y)=
[

\
8
“”\ “’\

— [z =1))g(z) =
= (V/flg) (12)

Now we are ready to continue with finding the Hamiltonian and constructing
the self-adjoint operator from it.

4 The Hamiltonian

At the end of section 2, we found that the (-functions were eigenfunctions of
A+ B, with eigenvalues 1 — 2s.

@+®qWﬁ¢*@i+£QA«m>u—m«:

Now replacing the differentiation operator by the impulse operator, gives us a

Hamiltonian H. R
H=A"(zp+pr)A (13)

It has the same eigenfunctions, but the eigenvalues are now —ifi(1—2s). In quan-
tum mechanics, the eigenvalues of a Hamiltonian represent the stable energy
levels of a system. The values for the energy levels are always real numbers.
This has lead researchers to believe that studying this Hamiltonian, could lead
to a proof of the Riemann hypothesis [1], because for H these eigenvalues can
only be real when Re(s) = 1.

One of the problems in moving forward from here, is that this Hamiltonian
is not self-adjoint. If H were self-adjoint, then that would ensure the reality of
the eigenvalues. If ¢ is a normalizable eigenfunction of a self-adjoint Hamilto-
nian H with corresponding eigenvalue A, then the eigenvalue has to be real.

X ple) = <¢‘Hs0> = <I§T<p‘<p> = <w’ﬁw> =X {ple) (14)

An eigenfunction ¢ is normalizable if the inner product (p|p) exists. This
normalizability is exactly the second problem. The eigenfunctions (s, ) have
infinite norm for s < 1.
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We solve the first problem by constructing a new and self-adjoint operator
G. And by using this operater, we get around the second problem as well.
The operator is be very similar to H , only that A~! has been replaced by the
backward difference operator V.

G =V (zp+pr)A (15)

But this substitution comes with a cost. The (-functions are not eigenfunctions
of G. But we do have a close relationship between these two operators.
G =V (zp+pr)A=
=VA (A ' (zp+p2)A) =
= VAH (16)

With this new operator, we can go forward and have G act on the ¢-functions.

G¢(s,z) = VAH((s,z) =
= —ih(1 — 28)VA((s, x) (17)

Finally, we take the following inner product.

(¢ls,2)|GC(s,2)) = =ih(1 = 25) (C(5,2) VAG(s.2)) = (18)
= —ih(1 - 28) (AC(s.0) [ A(s,2)) = (19)
= —ih(1 —2s) (z|z™*) (20)

So the eigenvalues A4 of the Hamiltonian H can be expressed as follows.

(¢(s,2)|G¢(s,2) )

et

As = —ih(l — 2s) =

(21)

If inner product in the denominator in (21) does not diverge to infinity, it has to
be a positive real number. And assuming that G is self-adjoint, the numerator
in (21) must be real as well, as it would be equal to its complex conjugate.

(¢(s,2)|Gcls,2)) = (Gcls,2)[¢(s,2)) = (s )| GC(ss2))  (22)

Then we would have found proof that the eigenvalues of H are real for the values
of s that meet the boundary conditions. But in general, the ((s,z)-functions
do not obey the boundary conditions.

In the next section we will find out what the boundary conditions are exactly
and use it to prove the Riemann hypothesis. Sp lets move on to the endgame
and determine boundary conditions for which G is self-adjoint.
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5 Boundary conditions

We are at the final steps of proving the Riemann hypothesis. 160 years after
the publishing of Riemann’s Manuscript in 1859, the moment is here and now.
So lets get onto it!

We need conditions on the ¢-functions for which G is self-adjoint. We first
define another operator w. We will see why very soon.

w = VzA (23)

The operator w is self-adjoint. We prove this by using (7) three times.

The operator G can be split into a sum of two operators.
G =V (zp+pr)A=
= VapA + VpzA =
= VzAp + pVzA
= wp + pw (25)

We let operator w act on the {-function.

w((s,z) = VeA((s,z) =

=Vz (x_s) =

= v (xl_s) =

=27 —(z - 1)'¢ (26)
Now, lets find pw((s,z). We will use it to determine the domain for the (-
functions.

pw((s,z) = —ih (' — (z — 1) %) =
=—ih(l1=s)(z7° = (z —1)7%)

It’s important to notice here, that pw((s, x) is continuous on the domain [1, c0).

If we start the domain at any value lower than 1, there would be a discontinu-
ity at x = 1 for Re(s) > 0 and the formula for integration in (9) would not work.

Lets consider the following inner product.

(C(s, z)[pw((s, z)) (27)
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The same (-function appears on both sides of the inner product. If we used two
different (-functions, it would not contribute at all to proving the reality of the
eigenvalues.

From (9) and (11), we know that the momentum operator p is self-adjoint,
if the following condition applies at the left boundary of z = 1 and for x — oco.

g(S,IE) w C(Svgj) =0

With (26), this becomes:
C(s,x) (xl_s —(z— 1)1_8) =0
The two boundary conditions are then as follows.

((5,1)=0 (28)
lim ((s,z) (' = (z —1)'"%) =0 (29)

T—r 00

The first boundary condition, requires that s is a zero of the Riemann zeta. Now
for the second boundary condition, we need to find out how this expression

M(‘Tlis o (SC o 1)175)

behaves for large values of .

For the first factor {(s, z), we can use {(s,z)—((s,z+1) = 5. Because the for-
ward difference of ((s, ) is 2%, we can expect (s, ) to grow like z175/(1 —s).
But this is an important part of the proof and we don’t want to leave any doubts.
So here are the more rigorous steps, using calculus.

—((s,1)=0
((s,1) = ¢(s,2) =17°
¢(s,2) —¢(s,3) =277
¢(s,3) —((s,4) =377

If we use the first n equations above, take the sum of the left hand sides, then
it must be equal to the sum of the right hand sides.

n—1
—((s,m) =142 43+ (n-1)" =D Kk
k=1

For some of the following steps, we're assuming that the real part of s lies be-
tween 0 and 1. It has already been well proven that there are no nontrivial zeros
of the Riemann zeta function outside of this critical strip.



June 25, 2019 5 BOUNDARY CONDITIONS

The norm of (s, z) is bounded by 171%16(5)1,1—1%@(3)_

<

1<(s,n)ll =

n—1

5

k=1
n—1

<3 ) =
k=1
n—1

— Z k—Re(s) <
k=1

n—1
S/ dx IfRe(s) _
0

1 n—1
_ {xl—Re(s)} _

1 — Re(s) 0

1
< 1 1—Re(s)
~ 1— Re(s) (n=1)

We expect the second factor #17% — (z — 1)17% to decrease like 27°/(1 — s). We
show that our calculus also agrees.

o= = =17 = =1 -

1 xT
= d —$
1—s/z,1 vy

<

1 x
< d - <
<\ A_lyHy | <

1 T
< - d —Re(s) <
_1—R€(8)L1 yy >
1
<= (x-1 —Re(s)
~ 1— Re(s) (z-1)

Now, with the two factors combined, we can see if the second boundary condition
can be satisfied.

1—2Re(s)

T

e (@~ 1)

B
(1 — Re(s))

Will this go to zero for z — 0o? Yes, for Re(s) > %, it definitely will!
With the two boundary conditions, we know now that a {(s, z)-function obeys

these conditions when s is a zero of the Riemann zeta function with real part
of s greater than %
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6 Riemann hypothesis is true!

When the boundary conditions have been met for a (-function, then wp is the
adjoint of pw.

(s, (s,2)) = (s, 2w (s,@)) = (wpl(s,2)|C(s,2))  (30)
Then G is self-adjoint.
(¢(s,2)[G¢(s,2)) = (Cls,) | (wp+ pu)((s,2)) =
= ((p + wp)((s,2) | ¢(5,2))
= (G¢(s.0)|¢(s.2))

In section 4 we found the equation for the eigenvalues and the eigenfunctions
¢(s,z) of the Hamiltonian H.

(¢ls,)|G¢(s,2) )

o=la =)

As = —ih(l — 2s) =
The denominator converges to a real number for Re(s) > %

<I75|x75> :/ dx x72Re(s) _
1

_ 1 1—2Re(s) > _
~ 2Re(s) -1 [x L

_ 1

~ 2Re(s) — 1

For s being a zero of the Riemann zeta function with real part of s greater than
%, the boundary conditions are satisfied. Then the numerator is real and the
eigenvalue has to be real. But that’s not possible for Re(s) > % So we can only
conclude that the Riemann zeta has no zeros with real part greater than %

To make the proof complete, we have the functional equation [3], which relates

C(s,1) to (1 —s,1).
C(s,1) = 2°7°~ Sin(%s)F(l —8)¢(1—s,1) (31)

It follows from this equation that, if there are no zeros with real part between
% and 1, there can be no zeros with real part between 0 and % either.

The Riemann hypothesis is true!

10
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PROOF OF RIEMANN HYPOTHESIS

o1
¢(s,x) = ;(n + x)*

—_ ‘ha
p="t dx

Af(x) =f(x) —f(x+1)
Vi) =f(x) —fx—1)

G =V(xp + px)A

(flg) = L dx T 9(x)

1
IF {(s,1) =0 AND Re(s)>>

THEN (G{(s,x)|{(s,x)) = ({(s,x)|G{(s,x))

(¢(s,x)|G{(s,x))

—ih(1 —2s) = (AL(s,x)|AL (s, %))

1
THEN Re(s) = >

CONTRADICTION

11
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