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Abstract. In this paper, new explicit tests for exponential stability of systems ofrgkooder equations are proposed. Our approach
is based on nonoscillation of solutions of the corresponding diagonial second order delay fiérential equations.
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Introduction

In this paper, we develop the positivity-based stabilitplgsis for the system of second order equations with delay.
Second order equations (as a result of the second law of M@wtscribe wide field of controlling and stability of
physical processes, for example, controlling and stghilitdrone flight as described in [1]. Noticeable delay can be,
for example, a result of vision-based navigation as desdrib [2]. Generally

X (0) = Gi(OX( - 7i(0) + 21 pij Ox(t - 6 (D)),

i=1,..,n te]0,+o),

1)

whereq;, pij € L (the space of essentially bounded functiong}) and;; (t) measurable nonnegative bounded
functions. The positivity-based approach to the studyabiity was used for systems of the first order equations

X(t) = Z pij (D)t = 6;;(1), i =1,...,n, tel0,+c0), (2)
i1

for example, in the books [3, 4]. Denote the matrix of theffiorntsP(t) = {pij(t)}inj:l.

Definition 1.1. The matrix P is Metzler if all its g-diagonal elements are nbnnegative for 0, i.e. pj(t) > 0
foreveryi j,i,j=1,..,n.

Consider the autonomous system of ordinaffedential equations

X(t) = PX(t), te[0,+), 3)

hereP(t) = P is ann x n matrix. It is clear that system (3) is asymptotically staaled also exponentially stable) if
and only if the matrixP is Hurwitz. The matrix is said to be Hurwitz if all eigenvatikeave negative real part.

Proposition 1.1.(see, for example, [5, 6])f matrix P is Metzler, the following 4 facts are equivalent:

A) P is Hurwitz,

B) there exists a constant-vectorzcol{z, ..., z,} with all positive components such that all components of the
constant vector Pz are negative,



C) the matrix £P)~! exists and all its entries are nonnegative,
D) system of ordinary dgferential equations (3) is exponentially stable.

It is well-known (Remark 2.1 from [7]) that (2) with a Hurwitnatrix P can be unstable for fiiciently large
delays. It was demonstrated in [8, 9] that under the conditio a smallness of the products

1.
|pii|9; < E, i=1..n, (4)

whered; =esssupod;(t), the equivalence of the assertioA}B),C)andD) is preserved for delay systems of first
order equations (2J-or the more complicated system

XM =D D ek - ), te[o,+o), (5)

n
=1 k=1

suficient conditions of the exponential stability, which be@necessary and §icient in the case of constant ¢be
cients, are obtained in the recent paper [7].
We propose an analogue of Proposition 1.1 for the system

n

X (0) = aX(t- i)+ > pyxit—6;(1), i=1...n te[0,+oo), (6)

=1

with constant cogiicientsg; and pj;.
Theorem 1.1.1f matrix P is Metzler,

1 .
Pi <0, G <0, [gl6f < -, i) <7i() <7j <o, =10, 7

and
4lpil < i=1..n, (8)

then 4 facts A),B),C) and E) are equivalent for equation \{&)ere
E) system (6) is exponentially stable.
For system (1) with variable c@ecients and delays we proposefstient conditions of the exponential stability.

Preliminaries

Let us define the Cauchy functiat, s) of the scalar diagonal equation

X (1) = G (t = 7i(1)) + P (% (t = 6i (1), te[0,+o0), 9)
X(€) =0, X(¢) =0for £ <0, (10)

as follows [10]: for every fixed > 0, as a function of the variabke it satisfies the equation
(@)t 9 = GOt - (1), 9 + Pi®)ci(t - (1), 9), te[s +oo), (11)

Ci(£,9 =0, for £ <
and the initial conditions p
C.
ci(s ) =0, a—t'(s s)=1 12)
The general solution of the scalar diagonal equation
X (1) = GO (t = 7i(1) + pi )Xt - 6i (1) + fi(t), te[0,+o0), (13)
X(€) =0, X(&) = 0for £ <0,



wheref; € L., can be represented in the form [10]

t
%0 = [ 6t 9T(9ds+ xa(0X0) + X2 (OX(O) (14)
0
wherex;;(t) andxyi(t) are solutions of the homogeneous equation (9) satisfyiagritial conditions
x1i(0) = 1, x;;(0) = 0, %i(0) = 0, x5(0) = 1, (15)

respectively.
Consider now the system ofsecond order equations

{0 = GOXE7(0) + 3, O 50) + 0,

- (16)
te[0,+),i=1,..,n,
X(€) = 0, X(¢) = O for £ <0.
We can rewrite it in the form of system ohZirst order equations
n
Yoi_1 (1) = ai(®)yzi-1(t — 7i(1)) + 2 pij(©)yz;(t - 65 (1) + fi(t),
j=1 17)

Yoi(t) = yai-a(t), t€[0,+0), i =1,..,n,
yi(¢) =0for ¢ <0, j=1,..,2n, (18)
The general solutiog(t) = col{yi(t), ..., y2n(t)} of the system (17) can be represented in the form

t
y(t) = fo C(t, 9)g(s)ds+ C(t. 0)y(0), (19)

where the B—vectorg(t) = col{0, fi(t), ..., 0, fa(t)} . Its kernelC(t, s) is called the Cauchy matrix of system (17).
Definition 2.1. The Cauchy matrix @, s) is said to satisfy the exponential estimate if there exisitpe numbers

N andea such that for all the entries of the Cauchy matrig Q) = {ci,j(t, s)}i =L
|cij(t.9| < Nexp{-a(t-9)}, i,j=1..n 0<s<t<+o. (20)

In this case we say that system (16) is exponentially stable.

Our main results are based on the following extension of ldsecal Bohl-Perron theorem:

Proposition 2.710]. In the case of bounded delagg(t), 7i(t) and cogficients in the matrices® (i, j = 1, ..., n),
the fact that for every bounded right-hand side the solusiih = col{x;(t), ..., Xon(t)} of system (17) is bounded on
the semiaxi$0, +0) is equivalent to the exponential estimate (20) of the Caunaatyix C(t, S).

Definition 2.2. The system (16) is called positive if all the entries of thecy matrix Gt, s) = {ci,,-(t, s)}

i,j=1,...,n
of (17)in even lines are nonnegative in the trian@l& s<t < co.
Main results
Denotelg;i|* =esssupo [di (t)I, Giil. =essinfo g (1) -
We obtain the following assertion.
Theorem 3.1.Assume that
* ok l % .
pi(t) <0, gi(t) <0, |gil g; < & Gi () < 7i(t) < T <oo, 1=1,..,n, (22)

Alpi ) < lgil?, i=1,...n, (22)



and there exist a positive vectoe col{z, ..., z,} such that

n

pi (V)z + Z |pij(t)l zj<-e<0,i=1..,n, (23)

j=1, j#

then system (16) is exponentially stable.

Lemma 3.1.Let the condition (21) and (22) be fulfilled, then the Cauadhycfions of all scalar diagonal
equations (9) for i 1, ..., n, are positive in the triangl® < s<t < +co.

Proof. The proof follows from Theorem 16.12 [11].

Proof of Theorem 3.1.Using Lemma 3.1, we prove the positivity of the system

X (1) = G ()X (t — 7i(t) + pi ()% (t — 6 (1) +

n

D PO -6;(®), i =10 te[0,+oo), (24)

j=1, j#i

repeating the proof of Theorem 3.1 in [7] and the exponestability of system (16), repeating the proof of Theorem
3.2in[7].

Proof of Theorem 1.1.In order to prove sfliciency we note that condition&) andB) are equivalent for the
Metzler matrixP (see Proposition 1.1). The conditi®) coincides with the condition (23) of Theorem 3.1. Then
all the conditions of Theorem 3.1 are fulfilled and, accogdio Theorem 3.1, we obtain the exponential stability of
system (6).

To prove necessity, let us consider the initial value pnoble

X (O = aX(t-®)+ > pyxit—6; )+ f(®), i=1,...n te[0,+oo), (25)
=1

%(0) =1z, 5(0)=0, (26)

wherefit)y =1fort>0,i=1,..,n,

® =maxmaxi<izn €SSSURTi(t). MaX<i jn €SSSUR M (1)}

The constant vectar = col{z, ..., z,} has to satisfy this initial value problem. The represeatatf solutions
(19) leads to the equalities

Z = [y 22 caij(t, 9 fi(9ds+ X2 cz1(t, 0)z =

. (27)
22 it 9fi(9ds+ [ 22 caj(t, 9ds+ 22, a1t 0)z, i = L, ..
The exponential estimate (20) of the Cauchy matrix of sygtefimplies that
® 2n
f Z Coij(t, 9 Fi(S)ds — 0, i j(t.0) — O fort — +co, i=1,...n. (28)
0 j:]-

The conditionc,i (s, ) = 1 leads to existence of the interval § + 6], wherec, »i(t, S) > 0. This and nonnegativity
of all ¢y j(t, s) lead to the conclusion that all components of the constactovz are positive. We have proven that
the exponential estimate (20) implies assert®)for system (6). Equivalence &) andB) (see Proposition 1.1)
completes the proof.
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