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Abstract

In this work we give a short probable proof for the fact that the chro-
matic number of the graph formed by the adjoining of k cliques such that
any two cliques share at most one vertex is k.

1 Introduction

In graph theory, one of the famous conjectures is Erdos-Faber-Lovasz (EFL)
conjecture. It states that, if H is a linear hypergraph consisting of n edges of
cardinality n, then it is possible to color the vertices of H with n colors so
that no two vertices with same color are in the same edge. Reducing to the
case of simple graphs, it is equivalent to the fact that the union of n pairwise
edge-disjoint complete graphs with n vertices is n-colorable[8].

Infact in 1975, Erdos offered 50 USD and in 1981, offered 500 USD for the
proof or disproof of the conjecture. Many people worked on this and have some
results. Chang et al.[4] showed that for any simple hypergraph H on n ver-
tices, the chromatic index of H is at most [1.5n-2]. Kahn [3] proved that the
chromatic number of H is at most n + o(n). Jackson et al. [1] showed that
the conjecture is true when the partial hypergraph S of H determined by the
edges of size at least three can be Ag-edge-colored and satisfies Ag < 3. In
particular, the conjecture holds when S is unimodular and Ag < 3. Viji Paul
and Germina [6] established the truth of the conjecture for all linear hyper-
graphs on n vertices and A(H) < /n + v/n + 1. Sanchez-Arroyo [7] proved the
conjecture is true for dense hypergraphs. Faber [5] proved that for fixed degree,
there can be only finitely many counterexamples to EFL on both regular and
uniform hypergraphs. Hegde et al. [2] gave a method for assigning colors to
the graphs which satisfies the hypothesis of the EFL and every complete graphs
has at most 5 vertices of clique degree greater than one using symmetric latin
squares and clique degrees of the vertices of the graph.



2 Coloring Procedure

Theorem 2.1. Let graph G be a graph with union of k cliques with size k and
no two clique share more than one vertez, then x(G) = k.

Proof. We consider the graph formed by k cliques of order k£ sharing at most
one vertex in common. Now, to color the graph, we color one of the cliques
with &k colors. Now, we consider a vertex of the clique, and, if it is shared by
m cliques (m > 0), then we can color one vertex from k — m cliques which is
not dominated by the vertex ; with the same color. Thus, all cliques have one
of the vertices colored with the same color. Note that the vertices colored need
not be distinct, that is, if one of the k — m vertices are being in turn shared
by some other cliques, then we are just actually picking one vertex for all those
cliques. This means we are picking each representative vertex from each dis-
tinct clique. This can always be done, as every vertex has one undominated
(non-adjacent) (in fact k£ — 1) vertex from each of the cliques that do not share
that vertex (otherwise those cliques would share that vertex). Since the cliques
may share a single vertex, therefore a single vertex would represent the cliques
that share it. Similarly, we pick all the other vertices of the clique we have al-
ready colored and do a similar procedure of coloring other non-adjacent vertices
(representative vertices from each clique). This gives a k— coloring of the graph.

In the figure above, we first color the clique 1 —2 —3 —4 — 5, to give us 5
color classes. Now, the vertex 1 dominates 2 —3—4—5 but has all other vertices
in the graph undominated. Now, we choose the vertices 6, 18,10, 14 and color
them with the same color as vertex 1. Again, we choose the vertex 2 and see
that all other vertices except 1 —3 —4 —5 are undominated. Now, we choose the



vertices 7,19, 12 and color them with the same color as the vertex 2. We see that
even though we are choosing 3 distinct vertices, but we are actually choosing 4
representatives from each of the other cliques of which the vertex 2 is not a part
of. Next, we choose the vertex 3 and choose the undominated vertices 8,11, 16
and give them the same color as the vertex 3. Similarly, the vertex 4 is chosen
and the undominated vertices 21, 13,17 and put them in the same color class as
the vertex 4. Lastly, we choose the vertex 5 and give the undominated vertices
9,20, 11, 15 the same color. Thus, the final coloring of the vertices of the graph is
[1,6,18,10,14];[2,7,12,19];[3,8,11,16]; [4,13,17,21],[5,9, 11, 15, 20], which is a
5 coloring of the whole graph.

O

This coloring can be also extended to any n cliques of order k sharing a
common vertex. The coloring is done in a similar manner, that is, coloring fully
one clique, and putting a representative vertex of each clique in each previous
color class.

This can be extended to n-coloring of the vertices of n linear hypergraphs,
as the graph version is equivalent to the linear hypergraph verison [8].
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