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Abstract

A study of the simplest Jordan-Brans-Dicke-like action within the con-
text of Weyl geometry, combined with the findings of Weinberg’s Asymp-
totic Safety program in quantum gravity, leads to a plethora of nice nu-
merical results : (i) like singling out the quartic potential from all others;
(ii) having (Anti) de Sitter space as the most natural solution; (iii) furnish-
ing the value of the observed vacuum energy density at the Hubble scale

3
8πGNR

2
H

∼ 10−122M4
P ; (iv) a 3

8π
M4
P vacuum energy density at the Planck

scale; and (v) allowing the possibility that our universe is a Black Hole
whose horizon coincides with the cosmological Hubble horizon. It is war-
ranted to explore deeper the interplay among Weyl geometry, Asymptotic
safety and Maldacena’s AdS/CFT correspondence (holographic renormal-
ization group flow). Also relevant is the work by Wetterich on the role
of dilatation symmetry in higher dimensions and the vanishing of the
cosmological constant. Last, but not least, we should also consider the
implications of Penrose’ Conformal Cyclic Cosmology and Nottale’s Scale
Relativity Theory with the key findings of this work.

Keywords: Weyl Geometry, Cosmology, Asymptotic Safety, Brans-Dicke-Jordan
Gravity,

∗Dedicated to the loving memory of Irina Novikova, a brilliant and heavenly creature who
met a tragic death
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1 Introduction : Why Weyl Geometry

The problem of dark energy and the solution to the cosmological constant prob-
lem is one of the most challenging problems facing Cosmology today. There
are a vast numerable proposals for its solution. We refer to the monograph [9],
[8], [27], [26] and many references therein for details. There have been many
previous proposals [7] to explain dark matter (instead of dark energy) in terms
of Brans-Dicke gravity. One purpose of this work is to show that it is not only
necessary to include the Jordan-Brans-Dicke scalar field φ, but it is essential to
include a Weyl geometric extension and generalization of Riemannian geometry
(ordinary gravity ). In doing so we shall see how one can recover a plethora of
key numerical results in Cosmology.

Given the Lorentzian signature (−,+,+,+), let us begin with an action in
a curved Riemannian background

S =

∫
d4x

√
|g|
(

R

16πGo
− gµν

2
(∂µΦ) (∂νΦ) − V (Φ)

)
(1.1)

and associated with a canonical real scalar field Φ with a known prescribed
potential V (Φ). Varying the action with respect to the two fields gµν ,Φ yields

Rµν −
1

2
gµν R =

8πGo

(
(∂µΦ)(∂νΦ) − 1

2
gµν g

αβ(∂αΦ)(∂βΦ) − gµνV (Φ)

)
(1.2)

1√
|g|
∂µ

(√
|g| gµν ∂νΦ

)
− ∂V (Φ)

∂Φ
= 0 (1.3)

The two equations (1.2, 1.3) are now coupled and induce a nonlinear Klein-
Gordon-like equation for Φ after solving eq-(1.2) for the metric gµν in terms
of Φ. Namely, a substitution of the form gµν [Φ] into (1.3) yields a nonlinear
Klein-Gordon-like equation.

The nonrelativistic limit of the two coupled equations (1.2, 1.3), when V (Φ) =
0, furnish the nonlinear Newton-Schrödinger equation [23]

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) −

(
Gm2

∫
|Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t) (1.4)

which is obtained after solving the Poisson equation

∇2U = 4πGomρ = 4πGom Ψ∗Ψ (1.5)

for the Newtonian potential U = V (Ψ,Ψ∗) and substituting its value into the
Schrödinger equation.

The immediate advantage of recurring to Weyl geometry, is that it will allow
us to find exact solutions to the very complicated coupled system of equations
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(1.2, 1.3). And, in doing so, it will furnish the value of the observed vacuum
energy density at the Hubble scale 3

8πGNR2
H

∼ 10−122M4
P ; and a value 3

8πM
4
P

for the vacuum energy density at the Planck scale.
It is essential to emphasize that the Weyl geometric approach undertaken

in this work is not the same as working with Conformal gravity based on the
full Conformal group of translations, Lorentz boosts, dilations, and conformal
boosts. The standard approach in Conformal gravity to recover ordinary Ein-
stein gravity is based on the action corresponding to the kinetic terms of a real
scalar field ϕ

S =

∫
d4x

√
|g| 1

2
[ ϕDc

µD
µ
c ϕ ] (1.6)

the conformal Laplacian can be rewritten

Dc
µD

µ
c ϕ =

1√
|g|
∂µ

(√
|g| gµν Dc

νϕ
)

+ AµD
µ
c ϕ +

ϕ

6
R (1.7)

One can fix, firstly, the conformal boosts transformations by choosing the gauge
Aµ = 0. And, secondly, one can then fix the scaling symmetry by gauging ϕ
to a constant ϕ2

o = (16πGN )−1 . In this way one recovers the Einstein-Hilbert
action from the last term of eq-(1.7).

Weyl’s geometry main feature is that the norm of vectors under paral-
lel infinitesimal displacement going from xµ to xµ + dxµ change as follows
δ||V || ∼ ||V ||Aµdxµ where Aµ is the Weyl gauge field of scale calibrations
that behaves as a connection under Weyl transformations :

A′µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (1.8)

involving the Weyl scaling parameter Ω(xµ) . The Weyl covariant derivative
operator acting on a tensor T is defined by DµT = ( ∇µ + ω(T ) Aµ ) T;
where ω(T) is the Weyl weight of the tensor T and the derivative operator
∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary
Christoffel symbols {ρµν} plus the Aµ terms

Γρµν = {ρµν} + δρµ Aν + δρν Aµ − gµν g
ρσ Aσ (1.9)

The Weyl gauge covariant operator ∂µ + Γµ + w(T)Aµ obeys the condition

Dµ (gνρ) = ∇µ (gνρ) + 2 Aµ gνρ = 0. (1.10)

where ∇µ(gνρ) = − 2 Aµ gνρ = Qµνρ is the non-metricity tensor. Torsion
can be added [29] if one wishes but for the time being we refrain from doing so.
The connection Γρµν is Weyl invariant so that the geodesic equation in Weyl
spacetimes is Weyl-covariant under Weyl gauge transformations (scalings)

ds→ eΩ ds;
dxµ

ds
→ e−Ω dxµ

ds
;
d2xµ

ds2
→ e−2Ω [

d2xµ

ds2
− dxµ

ds

dxν

ds
∂νΩ ].
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gµν → e2Ω gµν ; Aµ → Aµ−∂µΩ; Aµ → e−2Ω (Aµ−∂µΩ); Γρµν → Γρµν . (1.11)

The Weyl connection and curvatures scale as

Γρµν → Γρµν , Rρµνσ → Rρµνσ, Rµν → Rµν , R → e−2Ω R (1.12)

Thus, the Weyl covariant geodesic equation transforms under Weyl scalings as

d2xρ

ds2
+ Γρµν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
= 0 →

e−2Ω [
d2xρ

ds2
+ Γρµν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
] = 0. (1.13)

The Weyl weight of the metric gνρ is 2. The meaning of Dµ(gνρ) = 0 is
that the angle formed by two vectors remains the same under parallel transport
despite that their lengths may change. This also occurs in conformal mappings
of the complex plane. The Weyl covariant derivative acting on a scalar φ of
Weyl weight ω(φ) = −1 is defined by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (1.14)

The Weyl scalar curvature in D dimensions and signature (−,+,+,+....) is 1

RWeyl = RRiemann − (d− 1)(d− 2)AµA
µ − 2(d− 1)∇µAµ. (1.15)

Having review very briefly the basics of Weyl geometry we shall embark with
the crux of this work.

2 Weyl Cosmology and Asymptotic Safety

Having introduced the basics of Weyl geometry our starting action is the Weyl-
invariant Jordan-Brans-Dicke-like action involving the scalar φ field and the
scalar Weyl curvature RWeyl

S[gµν , Aµ, φ] = S[g′µν , A
′
µ, φ
′] ⇒∫

d4x
√
|g| [ φ2 RWeyl(gµν , Aµ) − 1

2
gµν (Dµφ)(Dνφ) − V (φ) ] =∫

d4x
√
|g′| [ (φ′)2 RWeyl(g

′
µν , A

′
µ) − 1

2
g′µν (D′µφ

′)(D′νφ
′) − V (φ′) ] (2.1)

where under Wey scalings one has

1Some authors define their Aµ field with the opposite sign as −Aµ which changes the sign
in the last term of the Weyl scalar curvature (1.15)
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φ′ = e−Ω φ; g′µν = e2Ω gµν ; RWeyl(g
′
µν , A

′
µ) = e−2Ω RWeyl(gµν , Aµ)

V (φ′) = e−4Ω V (φ),
√
|g′| = e4Ω

√
|g|; D′µφ

′ = e−Ω Dµφ; A′µ = Aµ −∂µΩ.
(2.2)

One could complicate matters by adding more terms to the most simple
action (2.1) like ∫

d4x
√
|g|
(
R2
Weyl + Fµν F

µν + · · ·
)

(2.3)

see [3], [2], [4]. However, it won’t be necessary to modify the action (2.1) to
recover fundamental results.

The effective Newtonian coupling G is related to φ as follows (16πG)−1 ≡ φ2,
and it is spacetime dependent in general and has a Weyl weight equal to 2.
Despite that one has not introduced any explicit dynamics to the Aµ field (there
are no FµνF

µν terms in the action (2.1)) one still has the equation obtained from
the variation of the action in d = 4 w.r.t to the Aµ field and which leads to the
pure-gauge configurations provided φ 6= 0

δS

δAµ
= 0 ⇒ φ2 δRWeyl

δAµ
+

δ(Dµφ)

δAµ

δSmatter
δ(Dµφ)

= 0 ⇒

gµνDνφ
2 = 0 ⇒ Dµφ = 0 ⇒ Aµ = ∂µ ln (φ). (2.4)

Hence, a variation of the action w.r.t the Aµ field leads to the pure gauge solu-
tions (2.4) which is tantamount to saying that the scalar φ is Weyl-covariantly
constant Dµφ = 0 in any gauge Dµφ = 0 → e−ΩDµφ = D′µφ

′ = 0 (for non-
singular gauge functions Ω 6= ±∞).

Therefore, the scalar φ does not have true local dynamical degrees of freedom
from the Weyl spacetime perspective. Since the gauge field is a total derivative,
under a local gauge transformation with a gauge function Ω = ln(φ/φo), one
can gauge away (locally) the gauge field Aµ and have A′µ = 0 in the new gauge.
Globally, however, this may not be the case because there may be topological
obstructions. Therefore, the gauge A′µ = 0, implies that φ′ = φo = constant.
Consequently 16πG′ = φ′−2 can be fixed to a constant, and one may set G′ =
GN where GN is the observed Newtonian gravitational coupling.

The pure-gauge configurations leads to the Weyl integrability condition Fµν =
∂µAν − ∂νAµ = 0 when Aµ = ∂µΩ, and means physically that if we parallel
transport a vector under a closed loop in a flat spacetime, as we come back
to the starting point, the norm of the vector has not changed; i.e, the rate at
which a clock ticks does not change after being transported along a closed loop
back to the initial point; and if we transport a clock from A to B along different
paths, the clocks will tick at the same rate upon arrival at the same point B.
This will ensure, for example, that the observed spectral lines of identical atoms
will not change when the atoms arrive at the laboratory after taking different
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paths ( histories ) from their coincident starting point. In this way on can by-
pass Einstein’s objections to Weyl. If Fµν 6= 0 the Weyl geometry is no longer
integrable. This can occur if one adds explicit FµνF

µν terms to the action which
may lead to true dynamical degrees of freedom for the gauge field Aµ.

This result Dµφ = 0 also follows in other dimensions. Substituting

Aµ =
2

d− 2
∂µlnφ (2.5)

into

RWeyl = RRiemann − (d− 1)(d− 2)AµA
µ − 2(d− 1)∇µAµ (2.6)

gives

RWeyl = RRiemann − 4
d− 1

d− 2

∇µ∇µφ
φ

(2.7)

The last term in (2.7) has a similar functional form as Bohm’s quantum potential
[17], [18]. From now we shall denote R for the Riemannian scalar curvature
RRiemann. The covariant derivative ∇µ appearing in (2.7) is the one defined in
terms of the Christoffel conection {}, and not based on the Weyl connection Γ.

Given an action (2.1) in d = 4 the field equations are obtained after the
variations of the action with respect to the 3 fields gµν , Aµ, φ, respectively

φ2

(
RWeyl
µν − 1

2
gµν RWeyl

)
+ DµDνφ

2 + gµν g
αβ DαDβφ

2 =

1

2
(Dµφ)(Dνφ) − 1

4
gµν g

αβ(Dαφ)(Dβφ) − 1

2
gµνV (φ) (2.8)

Dµφ
2 = 2 Dµφ = 0 ⇒ Aµ = ∂µln(φ) (2.9)

2φ RWeyl −
∂V (φ)

∂φ
+ DµD

µφ = 0 (2.10)

As stated earlier, the field equationDµφ = 0 just states the φ is Weyl-covariantly
constant. This result when followed by taking the trace of (2.8) gives φ2RWeyl =
2V (φ) which allows to eliminate RWeyl = 2φ−2V (φ), and inserting it in eq-
(2.10) yields 4φ−1V (φ)− V ′(φ) = 0, singling out the quartic potential V (φ) =
κφ4 in d = 4, out of an infinity of possible choices for the potential. For example,
one could have potentials of the form V =

∑
n cnM

4−nφn where M is mass-like
parameter (a scalar moduli parameter) which scales as M → e−ΩM in order to
render the action Weyl invariant. To sum up, in this Weyl geometric approach
the choice for the potential V = κφ4 is not ad hoc but can be inferred from the
field equations themselves.
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Eq-(2.10) in d = 4 can be rewritten in terms of the Riemannian scalar
curvature, after using Dµφ = 0, as

2 R φ − 12√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− ∂V (φ)

∂φ
= 0 (2.11)

Upon inserting the derived expression for V (φ) = κφ4 above, it gives

R φ − 6√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− 2 κ φ3 = 0 (2.12)

It remains now to solve eq-(2.8) given Dµφ = 0 and V (φ) = κφ4. After
factoring out φ2 and substituting RWeyl = 2κφ2 leads to

RWeyl
µν =

1

2
gµν κφ

2 (2.13)

with

RWeyl
µν = Rµν −2∇µAν − gµν gαβ ∇αAβ −2 Aµ Aν +2 gµν g

αβ AαAβ (2.14)

Since the Weyl weight of RWeyl
µν is 0, after some straightforward lengthy algebra,

one can infer the transformation law of the Riemannian Ricci tensor Rµν in d = 4
under scalings gµν → e2Ωgµν

R′µν =

Rµν −2∇µ∇νΩ − gµν gαβ (∇α∇βΩ) +2 (∇µΩ)(∇νΩ) −2 gµν g
αβ(∇αΩ)(∇βΩ)

(2.15)
From eq-(2.13) one arrives at the Weyl invariant field equation

RWeyl
µν (g,A) = RWeyl

µν (g′,A′) =
1

2
gµν κ φ

2 =
1

2
g′µν κ φ

′2 (2.16)

with g = gµν ,A = Aµ, · · ·. The dimensionless parameter κ is inert under
scalings.

The zero gauge choice A′µ = 0 leads to

A′µ = ∂µ[ln(
φ′

φo
)] = Aµ − ∂µΩ = ∂µ[ln(

φ

φo
)]− ∂µΩ = 0 ⇒

φ′ = φo; eΩ =
φ

φo
(2.17)

which resulted from D′µφ
′ = Dµφ = 0.

Consequently, one arrives at

RWeyl
µν (g′,A′ = 0) = R′µν =

1

2
g′µν κ φ

2
o ⇒ R′ = 2κ φ2

o (2.18)

leading to a family of spacetime backgrounds which are all conformally equiva-
lent to backgrounds of constant Riemannian scalar curvature : (Anti) de Sitter
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spaces. The solutions to the scalar φ field equation (2.12) defined in spacetime
backgrounds which are conformally equivalent to a (Anti) de Sitter background

gµν = e2 Ω′(x) g′(A)dS
µν = e−2 Ω(x) g′(A)dS

µν , Ω = − Ω′ (2.19)

are of the form φ = e−Ω′(x)φo = eΩ(x)φo; φo = (16πGN )−1/2 is the constant
directly related to the observed Newtonian coupling GN .

Under Weyl scalings the constant Riemannian scalar curvature of (Anti) de
Sitter space in d = 4 transforms as

gµν = e2 Ω′(x) g′(A)dS
µν = e−2 Ω(x) g′(A)dS

µν , ⇒

R = e2Ω(x)
(
R′(A)dS + 6 (∇µ∇µΩ) − 6 (∇µΩ) (∇µΩ)

)
(2.20)

such that

R φ − 6√
|g|
∂µ

(√
|g| gµν ∂νφ

)
− 2 κ φ3 =

e3Ω(x)
(
R′(A)dS φo − 2 κ φ3

o

)
= 0 (2.21)

as expected.
To sum up, starting with a scalar-tensor theory within the context of Weyl’s

geometry, permits to derive the expression for the potential V (φ) = κφ4, instead
of being introduced by hand, and find the solutions gµν , Aµ to the field equations
(2.8, 2.9, 2.10)

gµν [φ] = e−2Ω g′(A)dS
µν [φo] = (

φo
φ

)2 g′(A)dS
µν [φo], Aµ[φ] = ∂µ[ln(

φ

φo
)] (2.22)

The (Anti) de Sitter metric g
′(A)dS
µν [φo] has an explicit dependence on φo via the

cosmological constant Λ : R′ = 4Λ = 2κφ2
o. κ < 0 for Anti de Sitter space;

κ > 0 for de Sitter space. The solutions with κ = 0 lead, for example, to
the Schwarzschild (R′µν = R′ = 0) and Reisnner-Nordstrom (R′ = 0) metrics
corresponding to static spherically symmetric backgrounds.

The prime example of a de Sitter background of constant Riemannian scalar
curvature is the observed accelerated-expanding universe R′ = 12H2

o = 12
R2
H

whereRH is the present day Hubble radius. Substituting φ′2 = φ2
o = (16πGN )−1

and R′ = 12H2
o into eq-(2.21) yields the numerical coefficient κ of the potential

V (φ′) = κφ′4,

12H2
o = 2κ φ2

o ⇒ κ =
6

φ2
oR

2
H

(2.23)

therefore, by evaluating the potential at φ′ = φo

V (φo) = κ φ4
o =

6

φ2
oR

2
H

φ4
o = 6

φ2
o

R2
H

=
6

16πGNR2
H

=
3

8πGNR2
H

= ρcr

(2.24)
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one recovers, in a straightforward fashion, the Universe’s observed critical mass
density with the precise numerical factor, and which agrees also with the ob-
served vacuum energy density ρvac.

The boundary conditions at t → ∞ for φ are φ → φo, and (dφ/dt) →
0. Because there are an infinite number of choices for the scaling factor Ω(t)
the physics and experimental evidence should dictate what are the suitable
expressions one should have for Ω(t). In other words, by choosing the specific
gauge A′µ = 0 ⇒ Aµ = (At = ∂tΩ(t), 0, 0, 0) one will break the Weyl scale

invariance by fixing φ′ = φo = (16πGN )−1/2 to a constant. In order to find Ω(t)
we shall be guided by the results of the Asymptotic Safety program in quantum
gravity [9] that there is a (nontrivial) interacting ultraviolet fixed point G∗ for
the dimensionless running gravitational coupling in the k →∞ (infinite energy)
limit (short distance limit) defined as : G∗ = limk→∞ Gk(r)k2(r) = 0×∞ 6= 0.

The limiting value of the running gravitational coupling Gk=∞(r) obtained
in the dynamical renormalization of black-hole spacetimes turned out to be [11]

G∞(r) = GN (1− e−r
3/rsl

2
cr ) (2.25)

rs is the classical Schwarzschild radius 2GNM , and lcr ∼ LP (Planck scale)
represents a critical length scale below which the modifications by the running
Newtonian coupling become important [11]. The end result of this running grav-
itational coupling is a “renormalized” black hole spacetime of the Dymnikova-
type which is free from singularities [13] and given by the metric

(ds)2 = − (1− 2G∞(r)Mo

r
)(dt)2 + (1− 2G∞(r)Mo

r
)−1(dr)2 + r2(dΩ2)2

(2.26)
The r → 0 limit of G∞(r)/r is Gor

2/rsl
2
cr leading to a repulsive de Sitter core

at very short distances. Similar repulsive de Sitter core were found later on in
[12] by using a Gaussian profile mass density function, and in infinite derivative
gravity [15].

We shall borrow the physical implications of these results, giving the short
distance G∞(r = 0) = 0, and large distance G∞(r → ∞) → GN behavior,
and apply them to the temporal flow of G(t) ∼ φ−1/2(t), as t runs from 0 to
∞; i.e. as the Universe expands from the big-bang singularity (point) to the
present size and beyond. In this fashion we will be able to find a judicious choice
for the Weyl scaling function Ω(t) and which is tantamount of determining the
expression for Aµ, since the gauge field does not have any true dynamics (it is
pure gauge).

There are many different expressions to describe the de Sitter metric de-
pending on the coordinates being used. A flat slicing of the four-dim de Sitter
space is
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(ds)2
dS = − (dt)2 + e2Hot

3∑
i=1

(dyi)
2 = e2Hot

(
−e−2Hot (dt)2 +

3∑
i=1

(dyi)
2

)
(2.27)

After performing the change of coordinates

∫ ξ

ξ∞

dξ =

∫ t

∞
e−Ht dt ⇒ ξ∞ − ξ = RH e−Hot, RH ≡ H−1

o (2.28)

yields a conformally flat metric

(ds)2
dS =

R2
H

(ξ∞ − ξ)2

(
− (dξ)2 +

3∑
i=1

(dyi)
2

)
(2.29)

The next step is to select the appropriate conformal scaling factor of the above
metric as indicated by eq-(2.22). Inspired by the functional form of G∞(r)
in eq-(2.25), we can deduce the temporal dependence G(t) from the following
correspondence (c = 1)

r ↔ t, lcr = LP ↔ tP , rs = 2GNM ↔ RH (2.30)

where the Schwarzschild radius rs (black hole horizon) corresponds now to the
cosmological horizon (Hubble radius), and the Planck scale LP corresponds to
the Planck time tP . At the end of this work we will say more about the above
correspondence within the framework of black hole Cosmology [16].

Therefore, the choice of the scaling factor Ω(t) which follows from the cor-
respondence (2.30) associated to G∞(r) (2.25) is given by

e2Ω(t) = (
φ

φo
)2 ≡ 1

1 − e−t
3/RHt2P

⇒ Ω(t) = − 1

2
ln(1−e−t

3/RHt
2
P ) (2.31)

from the latter expression one can deduce the temporal flow of the Weyl’s gauge
field

At[φ(t)] = ∂t[ln(
φ(t)

φo
)] = ∂tΩ(t) = − 3

2

(t2/RHt
2
P ) e−t

3/RHt
2
P

1− e−t3/RHt2P
, (2.32)

and Ai = 0(i = 1, 2, 3), giving At(t) → 0, as t → ∞, and At → −3/2t → −∞,
as t→ 0. By construction, the flow of the gravitational coupling is

G(t) = GN (1− e−t
3/RHt

2
P ), G(t = 0) = 0, G(t→∞)→ GN (2.33)

which is compatible with the results [11] in the ultraviolet and infrared regimes.
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An important remark is in order. One should not view the end net result of
the temporal-dependent Weyl scaling factor in (2.31) as the introduction of an
effective Hubble function H(t) of the form

H(t) = Ho +
3

2

(t2/RHt
2
P ) e−t

3/RHt
2
P

1− e−t3/RHt2P
(2.34)

because the integral

2

∫ t

0

H(t′) dt′ = 2Hot + ln[1− e−t
3/RHt

2
P ] − ln[0] = ∞ (2.35)

diverges. Therefore, the Weyl scaling factor of the de Sitter metric is roughly
speaking given by the regularized version of the expression exp{2

∫ t
0
[H(t′) −

Ho]dt
′} corresponding to an effective Hubble function H(t).

Finally, from eqs-(2.23, 2.31) one obtains

V (φ(t)) = κ φ4(t) =
6

φ2
oR

2
H

φ4
o

(1− e−t3/RHt2P )2
(2.36)

and one finds that as t→∞, V (φ)→ V (φo) = (3/8πGNR
2
H) = ρvac, recovering

the observed vacuum energy density. Whereas at Planck’s time t = tP , one finds
after a Taylor expansion of the exponential, in c = 1 units, the expected very
large result

V (φ(tP )) =
6

φ2
oR

2
H

φ4
o

(1− e−tP /RH )2
' 6

φ2
oR

2
H

φ4
o

(tP /RH)2
=

3

8π
M4
P (2.37)

simply by substituting 16πφ2
o = G−1

N = M2
P (h̄ = c = 1). As the bubble

expands it borrows energy from the vacuum, thus depleting its energy density
to the extremely low value currently observed.

Note that other choices for Ω(t) like

e−2Ω(t) = (
φo
φ

)2 = 1 − e−(t3/RHt
2
P )β , β > 1 (2.38)

would lead to a huge vacuum energy at the Planck scale (Planck time)

ρ =
3

8π
(
RH
LP

)β−1 M4
P >> M4

P (2.39)

Therefore, β = 1 is the right value consistent with ρ ∼ M4
P , and the G∞(r) ↔

G(t) correspondence.
The scalar curvature R ∼ e2Ω(4Λ)+ · · · blows up at t = 0 because e2Ω (2.31)

diverges at t = 0, and which is consistent with the Big-Bang singularity. The
fact that the universe emerges from a “point” is also consistent with the fact
that the metric gµν = e−2Ωg′dSµν degenerates/pinches-off to zero at t = 0. In the

late time period t → ∞, the scaling factor e−2Ω → 1, such that one recovers
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the observed de Sitter metric, with R = 4Λ = 12H2
o = 12(RH)−2, and the

Newtonian gravitational coupling GN .
Concluding, the most salient feature of all these results is that they relied

solely on Weyl’s geometry and the short/large distance behavior of the running
gravitational coupling in the Asymptotic Safety program of quantum gravity.

The Renormalization group flow of the cosmological constant in Asymptotic
Safety was studied by [10] The scale dependence of λ(k) in the de Sitter case
was found to be [10]

Λ(k) = Λ0 +
b G(k)

4
k4, Λ0 > 0 (2.40)

where b is positive numerical constant. In d = 4, the dimensionless gravitational
coupling has a nontrivial fixed point g = G(k)k2 → g∗ in the k →∞ limit, and
the dimensionless variable λ = Λ(k)k−2 has also a nontrivial ultraviolet fixed
point λ∗ 6= 0 [10]. The infrared limits are Λ(k → 0) = Λ0 > 0, G(k → 0) = GN .
Where the ultraviolet limit are Λ(k =∞) =∞;G(k =∞) = 0.

In this work the temporal flow of the potential V (φ(t)) recaptures the same
effects as the above Renormalization group flow of the cosmological constant
and leads to the flow of the vacuum energy density, from the large value of
M4
Planck to the extremely small present value 10−122M4

Planck, and which could
provide important clues to the resolution of the cosmological constant problem.

2.1 Static Spherically Symmetric Solutions and Black Hole
Cosmology

Having analyzed the deep cosmological implications of the temporal behavior of
the solutions to the field equations associated with the simplest Weyl invariant
action, and corresponding to a Jordan-Brans-like scalar field φ, a metric gµν
and Weyl’s field Aµ, in this section we shall focus on the spatial behavior of the
solutions, in the static spherically symmetric case.

Let us start with the renormalization-group improved black-hole metric [10]

(ds)2 = − (1− 2G(r)Mo

r
)(dt)2 + (1− 2G(r)Mo

r
)−1(dr)2 + r2(dΩ2)2 (2.41)

based on the Renormalization group flow of G(r) in the Asymptotic Safety
program [9],

The Einstein field equations corresponding to the above metric are Gµν =
8πG(r)Tµν , where Tµν is in this case the effective stress energy tensor associated
to the graviton quantum-self energy resulting from vacuum polarizations effects
[14]. Note the presence of the running Newtonian coupling G(r) in the right
hand side. A small variation of Newton’s constant triggers a ripple effect of
successive back reactions of the semiclassical background spacetime [11].
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The limiting value of the running gravitational coupling Gk=∞(r) obtained
in the dynamical renormalization of the black-hole spacetime represented by the
metric (2.41) turned out to be [11]

G∞(r) = Go (1− e−r
3/rsl

2
cr ) (2.42)

It is this value of G∞(r) ∼ φ−2(r) that provides the radial dependence of the
scalar field φ(r), which in turn, will select the expression for the Weyl scaling
as follows

e−2Ω(r) = (
φo
φ(r)

)2 =
G∞(r)

Go
= 1 − e−r

3/rsl
2
cri (2.42)

Given the de Sitter metric in static coordinates

(ds)2 = − (1 − Λ

3
r2)(dt)2 + (1 − Λ

3
r2)−1(dr)2 + r2 (dΩ2)2 (2.43)

the rescaled de Sitter metric metric is gµν = e−2Ω(r)g′dSµν . And by construction,
eq-(2.21) will be satisfied for the scalar field φ(r) whose functional dependence
can can be read directly from eq-(2.42), and where the de Sitter metric is dis-
played in eq-(2.43).

As r → 0, G∞(r) → 0. As r → ∞, G∞(r) → Go = GN . The scaling
factor vanishes at r = 0, so the rescaled de Sitter metric pinches off to zero,
to a “point”, and the scalar curvature blows up, like in the Big-Bang at t =
0. At r = ∞ one recovers the de Sitter metric (2.43) with a constant scalar
Riemannian curvature R = 4Λ. In this fashion one obtains similar results as in
section 2.1.

In passing, we deem it important to point out that the metric (2.43) is not
the only one which furnishes a constant scalar curvature. To proceed let us
focus on the following spacetime background (in natural c = 1 units)

(ds)2 = − (1− 2GoM(r)

r
)(dt)2 + (1− 2GoM(r)

r
)−1(dr)2 + r2(dΩ2)2 (2.44)

related to an anisotropic self gravitating fluid droplet [12].
The energy-momentum tensor corresponding to the Einstein equations Gµν =

8πGoT
µ
ν , and associated to the metric (2.44) is given by

Tµν ≡ diag (−ρ(r), pr(r), pθ(r), pϕ(r)) (2.45)

physically it represents a self-gravitating anisotropic fluid (bubble) whose mass
density and pressure components are

ρ = − pr =
1

4πr2

dM
dr

, pθ = pϕ = − 1

8πr

d2M
dr2

(2.46)

From eqs-(2.44,2.45) one learns that
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pθ = pϕ = − ρ − r

2

dρ

dr
(2.47)

and which is consistent with the local conservation law ∇µTµν = 0
In the case of a point mass Mo the above equations lead to

ρ =
Moδ(r)

4πr2
= − pr, pθ = pϕ = − Mo

8πr
δ′(r) =

Moδ(r)

8πr2
(2.48)

after using the relation rδ′(r) = −δ(r). The scalar curvature is

R = − 2Go

(
(d2M/dr2)

r
+ 2

(dM/dr)

r2

)
(2.49)

consistent with taking the trace of the field equations R = −8πGoT .
When the metric background is provided by (2.44), the scalar curvature is

R[M(r)] = − 2Go

(
(d2M(r)/dr2)

r
+ 2

(dM(r)/dr)

r2

)
(2.50)

and the differential equation to solve for M(r) is the following Euler-Cauchy
equation

(d2M(r)/dr2)

r
+ 2

(dM(r)/dr)

r2
= C = − 4Λ

2Go
(2.51)

after setting the scalar curvature to a constant equal to 4Λ.
The solution to (2.51) is

M(r) =
C

12
r3 +

A

r
+ B (2.52)

and the metric (2.44) ends up by having the same functional form as the
Schwarzschild-(Anti )de Sitter-Reisnner-Nordstrom metric, whose temporal gtt
and radial components grr are

gtt = − (1− 2GoMo

r
+

Q2Go
r2

± Λ

3
r2), grr = −g−1

tt (2.53)

after the following identification among the parameters is made

B = Mo, −
GoC

2
= ± Λ, − 2A = Q2 (2.54)

Since there is no mass nor charge in the real scalar-tensor field action (2.1), by
setting Mo = 0, Q2 = 0 one recovers the (Anti) de Sitter metric. The existence
of a cosmological de Sitter horizon at the Hubble scale 1− Λ

3R
2
H = 0 fixes then

the value of Λ = 3
R2
H

. Had Mo 6= 0, and/or Q2 6= 0, the value of Λ would have

been different from 3
R2
H

if RH still remained as the cosmological horizon.
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To finalize, we will discuss the connection that the Dymnikova-type of metric
[13] has with black hole cosmology. Although there is a mathematical equiv-
alence in writing G∞(r)Mo ↔ GoM(r), when the mass function is M(r) =
Mo(1− exp(−r3/rsL

2
P )), there is a clear physical difference. In the former, one

has a point mass Mo at r = 0 and a running gravitational coupling [11]. In the
latter [13] one has the Newtonian coupling Go = GN and a mass profile distri-
bution as if the point mass Mo were smeared all over space. The importance of
the Dymnikova solution is that one can rewrite

2GoM(r)

r
=

Λ(r)

3
r2 (2.55)

in terms of a running cosmological “constant” Λ(r). At the Planck scale, one
has a de Sitter core with a Planck size throat size and a with a very large value
of Λ(LP ) ∼ 1

L2
P

. Whereas at the Hubble scale, one may rewrite the asymptotic

Schwarzschild behavior of the metric in the form

2GoMo

RH
=

2GoMo

RH

1

R2
H

R2
H =

Λ(RH)

3
R2
H (2.56)

with Λ(RH) = 3
R2
H

, if, and only if, Mo obeys 2GoMo

RH
= 1, and which is tanta-

mount to viewing the Universe as a black hole whose mass MU = Mo is enclosed
inside the cosmological horizon RH , that matches also its Schwarzschild radius
rs = 2GoMo = RH . When this occurs, the uniform density over a spherical ball
of radius RH given by Mo/(4π/3)R3

H = 3
8πGoR2

H

coincides precisely with the

critical density (also vacuum density). For more details of black hole cosmology
see [16].

Concluding, although the numerical findings of Asymptotic safety have been
confined to d = 4, in principle we should expect the results of this work to admit
an extension to other dimensions. If not this would signal four dimensions d = 4
as special. In a few words, the study of a Jordan-Brans-Dicke-like action (2.1)
within the context of Weyl geometry, combined with the findings of Asymptotic
Safety in quantum gravity, leads to a plethora of nice numerical results : (i) like
singling out the quartic potential from all others; (ii) having (Anti) de Sitter
space as the most natural solution; (iii) furnishing the value of the observed
vacuum energy density at the Hubble scale 10−122M4

P ; (iv) a M4
P vacuum energy

density at the Planck scale; (v) allowing the possibility that our universe is a
black hole whose horizon coincides with the cosmological Hubble horizon.

Since (Anti) de Sitter space was an instrumental solution to the field equa-
tions (2.8-2.10), it is warranted to explore deeper the interplay among Weyl
geometry, Asymptotic safety and the AdS/CFT correspondence (holographic
renormalization group flow). Also relevant is the work by [31] on the role of
dilatation symmetry in higher dimensions and the vanishing of the cosmologi-
cal constant. Last, but not least, we should also consider the implications of
Conformal Cyclic Cosmology [28] and Scale Relativity Theory [22] with the key
findings of this work.
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