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Abstract

We prove the Lonely Runner Conjecture (LRC) is equivalent to a set
of Diophantine approximation problems.

1 Introduction and Lemmas

The Lonely Runner Conjecture (LRC) asks the following question: Suppose
that k runners with speeds s1 < s2 < . . . < sk begin running down a circular
track from the same starting line. Does each runner become lonely at some
time, i.e., seperated by a distance of at least 1

k from each of the other k − 1
runners? This conjecture is intriguing because it can be simply stated, yet
is surprisingly difficult to prove and has rich connections to several branches
of mathematics including graph theory, Diophantine approximations and view-
obstruction problems. The LRC has continued to challenge mathematicians
since it was first proposed in 1967 by J.M. Willis and has both delighted and
puzzled the many mathematicians who have attacked the problem. We’ll start
by proving a few needed lemmas. These lemmas will allow us to show that the
LRC is equivalent to a set of Diophantine approximation problems

Lemma 1. Assume s1 < s2 < s3 < . . . sk. Then runner 1 becomes lonely if
and only if there exists n1, n2, . . . nk−1 ∈ N such that

k⋂
i=2

[
ni−1 + 1

k

si − s1
,
ni−1 + k−1

k

si − s1

]
6= ∅ (1)

Proof. (⇒). Assume that runner 1 becomes lonely at some time T. Then
each of the runners i are between a distance 1

k and k−1
k ahead of runner 1 at

time T. This means that each have been running between a time
ni−1+

1
k

si−sj and

ni−1+
k−1
k

si−sj where ni−1 ∈ N. Hence the intersection
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k⋂
i=2

[
ni−1 + 1

k

si − s1
,
ni−1 + k−1

k

si − s1

]
(2)

is non-null. The integers n1, n2, . . . nk−1 ∈ N are the number of times that
runners 2, 3, . . . k have crossed runner 1.

(⇐). Assume the intersection is non-null. Then there exists a time T such
that T is contained in the intersection. Each of the runners i, 2 ≤ i ≤ k are
at least a distance 1

k from runner 1 at this time. This follows because each of

the runners i have been running between times
ni−1+

1
k

si−s1 and
ni−1+

k−1
k

si−s1 and hence

must be between a distance of 1
k and k−1

k ahead of runner 1. Hence runner 1
becomes lonely at time T. �

Lemma 2. Let ai, bi ∈ R and ai < bi. Then

k⋂
i=1

[ai, bi] 6= ∅. (3)

if and only if bi ≥ aj for all 1 ≤ i, j ≤ k, j 6= i.

Proof. (⇒). Suppose that

k⋂
i=1

[ai, bi] 6= ∅. (4)

Suppose that bj < ai for some 1 ≤ i, j ≤ k, j 6= i. Then there must be some
intervals [aj , bj ] and [ai, bi] such that [aj , bj ] ∩ [ai, bi] = ∅. But this means that

k⋂
i=1

[ai, bi] = ∅ (5)

a contradiction.

(⇐). We prove the contrapositive. Suppose that

k⋂
i=1

[ai, bi] = ∅. (6)

Then there must exist some intervals [am, bm], [an, bn] such that [am, bm] ∩
[an, bn] = ∅ for 1 ≤ n,m ≤ k, n 6= m. This implies that bm < an or bn < am
and hence bi < aj for some 1 ≤ i, j ≤ k, j 6= i. Hence, if bi ≥ aj for all
1 ≤ i, j ≤ k, j 6= i, then

k⋂
i=1

[ai, bi] 6= ∅. (7)
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Lemma 3. Let s1 < s2 < . . . < si−1 < sj < si+1 < . . . < sk for 2 ≤ i ≤
k−1. Then runner j becomes lonely if and only if there exists q1, q2, . . . qk−1 ∈ N
such that

j−1⋂
i=1

[
qi + 1

k

sj − si
,
qi + k−1

k

sj − si

]⋂ k⋂
i=j+1

[
qi + 1

k

si − sj
,
qi + k−1

k

si − sj

]
6= ∅ (8)

Proof. (⇒). Suppose runner j becomes lonely. Then j becomes lonely
from runners i for 1 ≤ i ≤ j − 1 and from runners i for j + 1 ≤ i ≤ k. If j
becomes lonely from i for 1 ≤ i ≤ j−1, then since j is the fastest runner among
these runners, j travels between a distance of 1

k and k−1
k ahead of each of these

runners. This required a time between
qi+

1
k

sj−si and
qi+

k−1
k

sj−si where qi ∈ N. Hence

at some time T such that

T ∈
j−1⋂
i=1

[
qi + 1

k

sj − si
,
qi + k−1

k

sj − si

]
(9)

runner j becomes lonely from each runner i with 1 ≤ i ≤ j − 1. Likewise,
if j becomes lonely from runners i where j + 1 ≤ i ≤ k, then since j is the
slowest among these runners, it follows that each of the runners i have travelled

a distance between 1
k and k−1

k ahead of j. This required a time between
qi+

1
k

si−sj

and
qi+

k−1
k

si−sj . Hence, runner j becoming lonely from runners i implies that there

exists some time T such that

T ∈
k⋂

i=j+1

[
qi + 1

k

si − sj
,
qi + k−1

k

si − sj

]
(10)

.
If runner j becomes lonely from runners i for 1 ≤ i ≤ j−1 and from runners

i for j + 1 ≤ i ≤ k, then there must exist some time T such that

T ∈
j−1⋂
i=1

[
qi + 1

k

sj − si
,
qi + k−1

k

sj − si

]⋂ k⋂
i=j+1

[
qi + 1

k

si − sj
,
qi + k−1

k

si − sj

]
. (11)

Hence the intersection must be non-null.

(⇐). Suppose the intersection is non-null. Then there exists some time T
such that

T ∈
j−1⋂
i=1

[
qi + 1

k

sj − si
,
qi + k−1

k

sj − si

]
(12)
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and

T ∈
k⋂

i=j+1

[
qi + 1

k

si − sj
,
qi + k−1

k

si − sj

]
. (13)

Consider intersection (12). Since runner j is the fastest runner among the
first i runners for 1 ≤ i ≤ j − 1, if there exists some time T in intersection (12),
then there must be a time T such that runner j has travelled between a distance
of 1

k and k−1
k ahead of the first i runners. Hence, there must be a time T such

that j becomes lonely from the first i runners. Likewise, if intersection (13) is
non-null, then there exists some time T such that runner j becomes lonely from
the fastest runners i where j + 1 ≤ i ≤ k. This follows because at time T, each
of the fastest runners i have travelled between a distance of 1

k and k−1
k ahead

of runner j. Hence if there exists some time T contained in both intersection
(12) and (13), then runner j becomes lonely from both the slowest runners i for
1 ≤ i ≤ j − 1 and from the fastest runners i for j + 1 ≤ i ≤ k and thus becomes
lonely. �

Lemma 4. Assume s1 < s2 < . . . < sk−1 < sk with k ≥ 3. Then runner k
becomes lonely if and only if there exist r1, r2, . . . rk−1 ∈ N such that

k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
6= ∅. (14)

Proof. (⇒). Suppose runner k becomes lonely. Then runner k is at least a
distance 1

k from runner i at some time T. This occurs when runner k has run

between a distance of 1
k and k−1

k ahead of runner i, requiring a time between
ri+

1
k

sk−si and
ri+

k−1
k

sk−si . Hence, k becomes lonely from i during some time T ∈[ ri+
1
k

sk−si ,
ri+

k−1
k

sk−si

]
. Therefore, k becomes lonely from i for 1 ≤ i ≤ k − 1 if there

exists some T such that

T ∈
k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
. (15)

This implies that runner k becomes lonely if

k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
6= ∅. (16)

(⇐). Suppose that
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k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
6= ∅. (17)

Then there exists some T in the intersection. At this time T, each runner

i has been running for some time between
[ ri+

1
k

sk−si ,
ri+

k−1
k

sk−si

]
. This implies that

runner k has travelled between a distance of 1
k and k−1

k ahead of each runner i
at time T. Hence, runner k becomes lonely from each runner i at time T. �

2 The Diophantine Approximation Problems

The LRC is equivalent to the following Diophantine approximation problems.

Theorem 1. Let k ≥ 5. The LRC is equivalent to the following Diophantine
approximation problems:

Slowest runner. Let s1 < s2 < s3 < . . . < sk. Then there exists n1, n2, . . . nk−1 ∈
N such that

knm−1 + k − 1

kni−1 + 1
≥ sm − s1

si − s1
≥ knm−1 + 1

kni−1 + k − 1
(18)

for all 2 ≤ i,m ≤ k, m > i.

Intermediate runner j = 2. There exists mj2,m21 ∈ N such that

kmj2 + k − 1

kmi2 + 1
≥ sj − s2

si − s2
≥ kmj2 + 1

kmi2 + k − 1
(19)

for 3 ≤ j, i ≤ k and j > i and

kmi2 + k − 1

km21 + 1
≥ si − s2

s2 − s1
≥ kmi2 + 1

km21 + k − 1
(20)

for 3 ≤ i ≤ k.

Intermediate runner 3 ≤ j ≤ k − 2. There exists qjm, qji, qmj , qij and
q′bj , q

′
ja ∈ N such that
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kqjm + k − 1

kqji + 1
≥ sj − sm

sj − si
≥ kqjm + 1

kqji + k − 1
for all 1 ≤ i,m ≤ j − 1, i < m, (21)

kqmj + k − 1

kqij + 1
≥ sm − sj

si − sj
≥ kqmj + 1

kqij + k − 1
for all j + 1 ≤ i,m ≤ k − 1, i < m,

(22)

kq′bj + k − 1

kq′ja + 1
≥ sb − sj

sj − sa
≥

kq′bj + 1

kq′ja + k − 1
for all 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k

(23)

Intermediate runner j = k − 1. There exists m′k−1j ,m
′
kk−1 ∈ N such that

km′k−1j + k − 1

km′k−1i + 1
≥ sk−1 − sj

sk−1 − si
≥

km′k−1i + 1

km′k−1i + k − 1
(24)

for 3 ≤ j, i ≤ k and j > i and

kmkk−1 + k − 1

kmk−1a + 1
≥ sk − sk−1

sk−1 − sa
≥ kmkk−1 + 1

kmk−1a + k − 1
(25)

for 1 ≤ a ≤ k − 2.

Fastest runner. There exists r1, r2, . . . rk−1 ∈ N such that

krm + k − 1

kri + 1
≥ sk − sm

sk − si
≥ krm + 1

kri + k − 1
(26)

for all 1 ≤ i,m ≤ k − 1,m > i.

In the next section we prove this equivalency.

3 Proof of Equivalency

To prove that the LRC is equivalent to these Diophantine approximation prob-
lems, we will consider three cases; the case in which a runner has the slowest
speed, the case in which the runner has an intermediate speed and the case in
which a runner has the fastest speed. Since the cases j = 2 and j = k − 1 are
similar to the slowest and fastest cases, we will omit these cases for brevity’s
sake.

Theorem 1. The LRC is equivalent to the set of Diophantine approximation
problems in section 2.

Proof. (LRC ⇒ Diophantine). Slowest runner. Suppose the LRC is true
for runners with speeds s1 < s2 < s3 < . . . < sk, k ≥ 5. Then the slowest runner
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must become lonely. By Lemma 1 this means that there exists n1, n2, . . . nk−1 ∈
N such that

k⋂
i=2

[
ni−1 + 1

k

si − s1
,
ni−1 + k−1

k

si − s1

]
6= ∅. (27)

By Lemma 2 the above intersection is non-null if and only if

ni−1 + k−1
k

si − s1
≥

nm−1 + 1
k

sm − s1
. (28)

for all 2 ≤ i,m ≤ k, m 6= i. The above inequality implies that

sm − s1
si − s1

≥ knm−1 + 1

kni−1 + k − 1
(29)

for all 2 ≤ i,m ≤ k, m 6= i. Hence

knm−1 + k − 1

kni−1 + 1
≥ sm − s1

si − s1
≥ knm−1 + 1

kni−1 + k − 1
(30)

for all 2 ≤ i,m ≤ k, m > i.

Intermediate runner j = 2. Similar to the slowest case.

Intermediate runner 3 ≤ j ≤ k − 2.. The runner with intermediate speed
must become lonely as well. Let the runner with intermediate speed have speed
sj where s1 < s2 < . . . < si−1 < sj < si+1 < . . . < sk for 2 ≤ i ≤ k − 1. Then
by Lemma 3 this implies that there exists qji, qij ∈ N such that

j−1⋂
i=1

[
qji + 1

k

sj − si
,
qji + k−1

k

sj − si

]⋂ k⋂
i=j+1

[
qij + 1

k

si − sj
,
qij + k−1

k

si − sj

]
6= ∅. (31)

This implies that

j−1⋂
i=1

[
qji + 1

k

sj − si
,
qji + k−1

k

sj − si

]
6= ∅, (32)

k⋂
i=j+1

[
qij + 1

k

si − sj
,
qij + k−1

k

si − sj

]
6= ∅. (33)

By Lemma 2, the above intersections imply that

qjm + k−1
k

sj − sm
≥

qji + 1
k

sj − si
(34)

7



for 1 ≤ i,m ≤ j − 1,m 6= i and

qmj + k−1
k

sm − sj
≥

qij + 1
k

si − sj
(35)

for j + 1 ≤ i,m ≤ k,m 6= i. Hence it follows that

sj − si
sj − sm

≥ kqji + 1

kqjm + k − 1
(36)

for 1 ≤ i,m ≤ j − 1,m 6= i and

si − sj
sm − sj

≥ kqij + 1

kqmj + k − 1
(37)

for j + 1 ≤ i,m ≤ k,m 6= i. Since intersection (27) is non-null, there must
exist some sets such that[

qja + 1
k

sj − sa
,
qja + k−1

k

sj − sa

]⋂[
qbj + 1

k

sb − sj
,
qbj + k−1

k

sb − sj

]
6= ∅ (38)

for all 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1. By Lemma 2, this implies that

sj − sa
sb − sj

≥ kqja + 1

kqbj + k − 1
for all 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1, (39)

sb − sj
sj − sa

≥ kqbj + 1

kqja + k − 1
for all 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1. (40)

Hence it follows that there exists qji, qij ∈ N such that

kqjm + k − 1

kqji + 1
≥ sj − sm

sj − si
≥ kqjm + 1

kqji + k − 1
for all 1 ≤ i,m ≤ j − 1, i < m, (41)

kqmj + k − 1

kqij + 1
≥ sm − sj

si − sj
≥ kqmj + 1

kqij + k − 1
for all j + 1 ≤ i,m ≤ k − 1, i < m,

(42)

kq′bj + k − 1

kq′ja + 1
≥ sb − sj

sj − sa
≥

kq′bj + 1

kq′ja + k − 1
for all 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k

(43)

Intermediate runner j = k − 1. Similar to the fastest runner covered next.

Fastest runner. The fastest runner must also become lonely. By Lemma 4,
this implies that there exists r1, r2, . . . rk−1 ∈ N such that
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k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
6= ∅. (44)

By Lemma 2, this implies that

ri + k−1
k

sk − si
≥

rm + 1
k

sk − sm
(45)

for 1 ≤ i,m ≤ k, i 6= m. Hence,

sk − sm
sk − si

≥ krm + 1

kri + k − 1
(46)

for 1 ≤ i,m ≤ k, i 6= m. Thus

krm + k − 1

kri + 1
≥ sk − sm

sk − si
≥ krm + 1

kri + k − 1
(47)

for all 1 ≤ i,m ≤ k − 1,m > i.

(Diophantine⇒ LRC). Slowest runner. Let s1 < s2 < . . . < sk where k ≥ 5.
Since there exists n1, n2, . . . nk−1 ∈ N such that

sm − s1
si − s1

≥ knm−1 + 1

kni−1 + k − 1
(48)

for 2 ≤ i,m ≤ k, m 6= i it follows that there exists n1, n2, . . . nk−1 ∈ N such
that

ni−1 + k−1
k

si − s1
≥

nm−1 + 1
k

sm − s1
(49)

for 2 ≤ i,m ≤ k, m 6= i. By Lemma 2, it follows that

k⋂
i=2

[
ni−1 + 1

k

si − s1
,
ni−1 + k−1

k

si − s1

]
6= ∅. (50)

By Lemma 1, it follows that the slowest runner becomes lonely.

Intermediate runner. Let runner j have some intermediate speed where
s1 < s2 < . . . < si−1 < sj < si+1 < . . . < sk for 2 ≤ i ≤ k − 1. Then there
exists q1, q2, . . . qk−1 ∈ N such that
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sj − sm
sj − si

≥ kqm + 1

kqi + k − 1
for 1 ≤ i,m ≤ j − 1, i 6= m, (51)

sm − sj
si − sj

≥ kqm + 1

kqi + k − 1
for j + 1 ≤ i,m ≤ k − 1, i 6= m, (52)

sj − sa
sb − sj

≥ kqa + 1

kqb + k − 1
for some 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1, (53)

sb − sj
sj − sa

≥ kqb + 1

kqa + k − 1
for some 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1. (54)

Consider inequality (43). This implies that

qi + k−1
k

sj − si
≥

qm + 1
k

sj − sm
(55)

for 1 ≤ i,m ≤ j − 1, i 6= m. Hence, by Lemma 2, it follows that

j−1⋂
i=1

[
qi + 1

k

sj − si
,
qi + k−1

k

sj − si

]
6= ∅ (56)

for 1 ≤ i,m ≤ j − 1, i 6= m. By Lemma 4, runner j becomes lonely from the
slowest j − 1 runners 1, 2, . . . j − 1.

Fastest runner. Let s1 < s2 < . . . < sk where k ≥ 3. Then there exists
r1, r2, . . . rk−1 ∈ N such that

sk − sm
sk − si

≥ krm + 1

kri + k − 1
(57)

for all 1 ≤ i,m ≤ k − 1, i 6= m. Hence there exists r1, r2, . . . rk−1 ∈ N such
that

ri + k−1
k

sk − si
≥

rm + 1
k

sk − sm
. (58)

By Lemma 2, it follows that

k−1⋂
i=1

[
ri + 1

k

sk − si
,
ri + k−1

k

sk − si

]
6= ∅. (59)

By Lemma 4, it follows that the fastest runner becomes lonely. Hence this
set of Diophantine approximation problems is equivalent to the LRC. �
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