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Abstract

In this brief note, we propose a set of operations for the affinely extended real
number called infinity. Under the terms of the proposition, we show that the Riemann
zeta function has infinitely many non-trivial zeros on the complex plane and off the
critical line.

§1 Definitions

Definition 1.1 The number infinity, which like the imaginary number is not
a real number, is defined as

lim
x→0±

1

x
= ±∞ .

Definition 1.2 The real number line is a 1D space extending infinitely far in
both directions. It is represented in set and interval notations respectively as

R = {x | −∞ < x <∞} , and R ≡ (−∞,∞) .

Definition 1.3 A number x is a real number if and only if it is a cut in the
real number line

(−∞,∞) = (−∞, x) ∪ [x,∞) .

Definition 1.4 The affinely extended real numbers are constructed as R =
R∪{±∞}. They are represented in set and interval notations respectively as

R = {x | −∞ ≤ x ≤ ∞} , and R ≡ [−∞,∞] .

R is called the affinely extended real number line.

Definition 1.5 A number x is an affinely extended real number x ∈ R if and
only if x = ±∞ or it is a cut in the affinely extended real number line

[∞,∞] = [−∞, x) ∪ [x,∞] .
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Theorem 1.6 If x ∈ R and x 6= ±∞, then x ∈ R.

Proof. Proof follows from Definition 1.4. l

Definition 1.7 Infinity has the properties of additive and multiplicative ab-
sorption:

x ∈ R , x > 0 =⇒

{
±x+∞ =∞
±x×∞ = ±∞

.

Proposition 1.8 Suppose the additive absorptive property of ±∞ is taken
away when it appears as ±∞̂. Further suppose that ||∞̂|| = ∞ and that the
ordering is such that

n < ∞̂ − b < ∞̂ − a <∞
−∞ < −∞̂+ a < −∞̂+ b < −n ,

for any positive a, b ∈ R, a < b < n, and any natural number n ∈ N.

Theorem 1.9 ∞̂ is

±∞̂ = lim
x→0±

1

x
.

Proof. Proof follows from the ||∞̂|| =∞ condition given in Propositon 1.8. l

Theorem 1.10 If x = ±(∞̂ − b) and 0 < b < n for some n ∈ N, then x ∈ R.

Proof. By the ordering given in Proposition 1.8, we have

[∞,∞] = [−∞, x) ∪ [x,∞] .

It follows from Definition 1.5 that x ∈ R. Since ∞̂ does not have additive
absorption and the theorem states that b > 0, it follows from the ordering
that

x 6= ±∞̂ , and x 6= ±∞ .

It follows from Theorem 1.6 that x ∈ R. l

Theorem 1.11 If a, b are positive numbers less than some natural number
n ∈ N, then

(∞̂ − a)− (∞̂ − b) = b− a .

Proof. Observe that

(∞̂ − a)− (∞̂ − b) = lim
x→0

(
1

x
− a− 1

x
+ b

)
= b− a . l
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Theorem 1.12 If a, b ∈ R are positive numbers less than some natural num-
ber n ∈ N, then the quotient (∞̂ − b)/(∞̂ − a) is identically one.

Proof. Observe that

∞̂ − b
∞̂ − a

= lim
x→0

(
1
x
− b

1
x
− a

)
= lim

x→0

(
1
x
− b

1
x
− a
· x
x

)
= lim

x→0

1− bx
1− ax

= 1 . l

Definition 1.13 A number is a complex number z ∈ C if and only if

z = x+ iy , and x, y ∈ R .

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 If b, y0 ∈ R, if 0 < b < n for some n ∈ N, if z0 = (∞̂−b)+ iy0,
and if ζ(z) is the Riemann ζ function, then ζ(z0) = 1.

Proof. Observe that the Dirichlet sum form of ζ [1] takes z0 as

ζ(z0) =
∑
n=1

1

n(∞̂−b)+iy0

=
∑
n=1

nb

n∞̂

(
cos(y0 lnn)− i sin(y0 lnn)

)
= 1 +

∑
n=2

0

(
cos(y0 lnn)− i sin(y0 lnn)

)
= 1 . l

Theorem 2.2 The Riemann ζ function has non-trivial zeros at certain z ∈ C
outside of the critical strip.

Proof. Riemann’s functional form of ζ [1] is

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) .

Theorem 2.1 gives ζ(∞̂ − b) when we set y0 = 0 so we will use Riemann’s
equation to prove this theorem by solving for z = −(∞̂ − b) + 1. (This value
for z follows from 1− z = ∞̂ − b.) We have

ζ
[
−(∞̂ − b) + 1

]
= lim

z→−(∞̂−b)+1

(
(2π)z

π
sin
(πz

2

))
lim

z→(∞̂−b)

(
Γ(z)ζ(z)

)
= lim

z→−(∞̂−b)+1

(
2 sin (πz/2)

)
lim

z→(∞̂−b)

(
(2π)−zΓ(z)ζ(z)

)
.
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For the limit involving Γ, we will compute the limit as a product of two limits.
We separate terms as

lim
z→(∞̂−b)

(
(2π)−zΓ(z)ζ(z)

)
= lim

z→(∞̂−b)

(
(2π)−zΓ(z)

)
lim

z→(∞̂−b)
ζ(z) .

From Theorem 2.1, we know the limit involving ζ is equal to one. For the
remaining limit, we will insert the identity and again compute it as the product
of two limits. If z approaches (∞̂ − b) along the real axis, it follows from
Theorem 1.12 that

1 =
z − (∞̂ − b)
z − (∞̂ − b)

.

Inserting the identity yields

lim
z→(∞̂−b)

(
(2π)−zΓ(z)

)
= lim

z→(∞̂−b)

(
(2π)−zΓ(z)

z − (∞̂ − b)
z − (∞̂ − b)

)
.

Let

A = Γ(z)

(
z − (∞̂ − b)

)
, and B =

(2π)−z

z − (∞̂ − b)
.

To get the limit of A into workable form we will use the property Γ(z) =
z−1Γ(z + 1) to derive an expression for Γ[z − (∞̂ − b) + 1]. If we can write
Γ(z) in terms of Γ[z − (∞̂ − b) + 1], then the limit as z approaches (∞̂ − b)
will be very easy to compute. Observe that

Γ
[
z − (∞̂ − b) + 1

]
= Γ

[
z − (∞̂ − b) + 2

](
z − (∞̂ − b) + 1

)−1
.

By recursion we obtain

Γ
[
z − (∞̂ − b) + 1

]
= Γ(z) lim

n→(∞̂−b)

n∏
k=1

(
z − (∞̂ − b) + k

)−1
.

Rearrangement yields

Γ(z) = Γ
[
z − (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=1

(
z − (∞̂ − b) + k

)
.

It follows that

A = Γ
[
z − (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=0

(
z − (∞̂ − b) + k

)
.

The limit of A is

lim
z→(∞̂−b)

A = Γ
[
(∞̂ − b)− (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=0

(
(∞̂ − b)− (∞̂ − b) + k

)
.
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Theorem 1.11 gives (∞̂ − b)− (∞̂ − b) = 0 so

lim
z→(∞̂−b)

A = Γ(1) lim
n→(∞̂−b)

n∏
k=0

k = 0 .

Direct evaluation of the limit of B gives 0/0 so we need to use L’Hôpital’s rule
which gives

lim
z→(∞̂−b)

B
∗
= lim

z→(∞̂−b)


d

dz
(2π)−z

d

dz

(
z − (∞̂ − b)

)


= lim
z→(∞̂−b)

d

dz
e−z ln(2π)

= − ln(2π) e−(∞̂−b) ln(2π) =
−1

e∞̂
ln(2π) eb ln(2π) = 0

Therefore, we find that the limit of AB is 0. It follows that

ζ
[
−(∞̂ − b) + 1

]
= lim

z→−(∞̂−b)+1
2 sin

(πz
2

)
× 0 = 0 . l

Definition 2.3 The Riemann hypothesis as defined by the Clay Mathematics
Institute [2] is

The non-trivial zeros of the Riemann ζ function have real parts
equal to one half.

Definition 2.4 According to the Clay Mathematics Institute [2], the trivial
zeros of ζ are the even negative integers.

Remark 2.5 The zeros demonstrated in Theorem 2.2 are neither on the crit-
ical line Re(z) = 1/2 nor are they the negative even integers. Theorem 2.2,
therefore, is the negation of the Riemann hypothesis.
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