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Abstract

In this brief note, we propose a set of operations for the affinely extended real
number called infinity. Under the terms of the proposition, we show that the Riemann
zeta function has infinitely many non-trivial zeros on the complex plane and off the
critical line.

§1 Definitions

Definition 1.1 The number infinity, which like the imaginary number is not
a real number, is defined as

Definition 1.2 The real number line is a 1D space extending infinitely far in
both directions. It is represented in set and interval notations respectively as

R={z]| —co<z <00} , and R =(—00,00)

Definition 1.3 A number x is a real number if and only if it is a cut in the
real number line
(_007 OO) = (-OO, LL’) U [.Z', OO)

Definition 1.4 The affinely extended real numbers are constructed as R =
RU{£o00}. They are represented in set and interval notations respectively as

R={z| —c0<2 <00} , and R = [—o0, ]

R is called the affinely extended real number line.

Definition 1.5 A number z is an affinely extended real number z € R if and
only if x = £o0o or it is a cut in the affinely extended real number line

[00, 00| = [—00,x) U [z, 0]
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Theorem 1.6 Ifz € R and x # +oo, then v € R.
Proof. Proof follows from Definition 1.4. &

Definition 1.7 Infinity has the properties of additive and multiplicative ab-
sorption:

—+ —
ze€R , >0 { T 00 =00

+xr X oo =t

Proposition 1.8 Suppose the additive absorptive property of oo is taken
away when it appears as +00. Further suppose that |00 = oo and that the
ordering is such that

nN<oo—b< o —a< oo
—0< —0+a<—-0+b<—n

for any positive a,b € R, a < b < n, and any natural number n € N.

Theorem 1.9 o0 is

+00 = lim —
x—=0t T

Proof. Proof follows from the |50| = oo condition given in Propositon 1.8. &7
Theorem 1.10 If z = +(c0 —b) and 0 < b < n for some n € N, then x € R.

Proof. By the ordering given in Proposition 1.8, we have
[007 OO] = [—OO,[E) U [‘I7 OO]

It follows from Definition 1.5 that € R. Since 50 does not have additive
absorption and the theorem states that b > 0, it follows from the ordering
that

T # +0 and  x # too .

It follows from Theorem 1.6 that x € R. =

Theorem 1.11 If a,b are positive numbers less than some natural number
n € N, then
(c0—a)—(c0—=b)=b—a .

Proof. Observe that

z—0 \ x

(é.a_a)_@_b):1im<l—a—l+b>:b_a. @
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Theorem 1.12 Ifa,b € R are positive numbers less than some natural num-
ber n € N, then the quotient (50 — b) /(00 — a) is identically one.

Proof. Observe that

X —b L_p L_p 1-5

O g (=) =t (=2 ) i o1 @
00 — a x—0 l_a x—0 l_a x z—=01 — qx

Definition 1.13 A number is a complex number z € C if and only if

z=x+y and z,ye R .

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 Ifb,yo € R, if 0 < b < n for somen € N, if zg = (0 —b) +iyo,
and if ((z) is the Riemann ¢ function, then ((z9) = 1.

Proof. Observe that the Dirichlet sum form of ¢ [1] takes zy as
1
C(ZO) - Z n,(85=b)+iyo
= Z (COS Yolnn) — isin(yo In n))

—1—1—2 (cos Yo lnn) —zsm(yolnn)) =1 . &

Theorem 2.2 The Riemann C function has non-trivial zeros at certain z € C
outside of the critical strip.

Proof. Riemann’s functional form of ¢ [1] is

((z) = (2r)” sin <E) L1 —2)¢(1-2) .

7r 2
Theorem 2.1 gives ((00 — b) when we set yo = 0 so we will use Riemann’s
equation to prove this theorem by solving for z = —(o0 — b) + 1. (This value

for z follows from 1 — z =50 — b.) We have

d-@-n+1 - (Ca(F) ) (reoe)

z——(30—b)+1 ™ z—(55—b)

= lm (281n<m/2)> lim ((27?)_ZF(Z)C(2))

z——(30—b z—(c0—b)
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For the limit involving I', we will compute the limit as a product of two limits.
We separate terms as

li 2m) T = i 2m) li .
i (07T ) =t (@07 m o
From Theorem 2.1, we know the limit involving ( is equal to one. For the
remaining limit, we will insert the identity and again compute it as the product
of two limits. If z approaches (o0 — b) along the real axis, it follows from
Theorem 1.12 that .

LA (00 — b)

z— (00 —10)

Inserting the identity yields

lim ((2@@@)): lim ((QW)_ZF(Z)

z2—(30—b) 2—+(30—b)

z— (00— b))
z— (00 —0)
Let

(2m) "~
z— (30 —b)
To get the limit of A into workable form we will use the property I'(z) =
27T'(2 + 1) to derive an expression for I'[z — (60 — b) + 1]. If we can write
['(z) in terms of I'[z — (60 — b) + 1], then the limit as z approaches (50 — b)
will be very easy to compute. Observe that

A:F(z)(z—(&?—b)), and B =

[z~ (& —b)+1] =T+ — (55— b) +2] (z—(aa—b)H) |

By recursion we obtain

n—(co—b)

n -1
I[z— (¢ —-b)+1] =0(z) lim (z—(&?—b)—i—k)
Rearrangement yields

n

I'(z) =T[z— (30 —b) + 1] njgﬁgfb)k 1 (z—(&?—b)—i-k)

It follows that

A=T[z— (3 —b)+1] lim <z—(65—b)+k>
n—(c0—b) o
The limit of A is
lim A:F[(@—b)—(&?—b)—i—l} lim ((@—b)—(&?—b)—i—k).
k=0

z—(50—b) n—(c0—b)
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Theorem 1.11 gives (60 — b) — (60 — b) = 0 so

lim A=T0(1) lim k=0 .

z—+(30—b) n—(c5—b)

Direct evaluation of the limit of B gives 0/0 so we need to use L’Hopital’s rule
which gives

_(27T)_Z
lim B= lim dz
z—(50—b) z—(35—b) d e
7 (z — (00 — b))
— Lim e—zln(27r)
z—(c0—b) Az

= ~1
= — 1I1(27T) 6—(00—17) In(27) = 111(27'(’) ebln(27r) —0

eOO

Therefore, we find that the limit of AB is 0. It follows that
([-(®@-b)+1]= lim )HQSin(%)xO:O . &

z——(50—b

Definition 2.3 The Riemann hypothesis as defined by the Clay Mathematics
Institute [2] is

The non-trivial zeros of the Riemann ( function have real parts
equal to one half.

Definition 2.4 According to the Clay Mathematics Institute [2], the trivial
zeros of ( are the even negative integers.

Remark 2.5 The zeros demonstrated in Theorem 2.2 are neither on the crit-
ical line Re(z) = 1/2 nor are they the negative even integers. Theorem 2.2,
therefore, is the negation of the Riemann hypothesis.
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