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The present research contribution is devoted to solving the integrability problem
of Liénard type differential equations. It is shown that such a problem may be
solved by nonlocal transformation for some classes of equations. By doing so, it
is observed that the integrability of a class of restricted Duffing type equations
with integral power or fractional power nonlinearity may be secured by that of
a general class of quadratic Liénard type differential equation, and vice versa.
Such a restricted Duffing type equation is also shown to be closely related to a
quadratic Liénard type equation for which exact and explicit general solution
may be computed. In this context it has been shown that exact and general
periodic solutions may be computed for these two classes of restricted Duffing
equations and quadratic Liénard type equations. The comparison of obtained
solutions with some well-known results is carried out in some cases.

1 Introduction

The periodic solutions constitute an important class of solutions of nonlinear differential
equations since many phenomena in physics and engineering applications are nonlinear
and periodic. Such solutions are often computed by means of approximate methods as
one can see in the literature due to the difficulty to solve exactly the nonlinear differential
equations. Therefore the problem of finding exact and general periodic solutions to non-
linear differential equations is very less investigated in the literature. In this situation the
integrability of nonlinear differential equations in terms of exact and general periodic solu-
tions remains an interesting mathematical problem to be solved. For instance, analytical
properties of the Liénard type differential equations

ẍ+ g(x)ẋ2 + h(x) = 0 (1.1)

and
ü+ f(u) = 0, (1.2)
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which include some celebrated nonlinear differential equations like the Duffing and Bratu
equations, and the Mathew-Lakshamanan equation, are not well understood exactly [1–3].
This is a shortcoming in the theory of nonlinear differential equations as no one can answer
the following question: Can we secure the integrability of (1.1) from that of (1.2) in terms
of exact and general periodic solutions, vice versa?

The current work assumes such a prediction. To demonstrate, it is first shown that
equation (1.1) is mathematically equivalent to equation (1.2) for a certain definition of
functions f(x), g(x), and h(x) (section 2). Secondly it is shown that one may compute
exact and general periodic solutions to equation (1.2) using a variable transformations
(section 3). The work ends with illustrative examples (section 4) and a general conclusion.

2 Mathematical equivalence

With g(x) = b
x
, and h(x) = axs, equations (1.1) becomes

ẍ+ b
ẋ2

x
+ axs = 0 (2.1)

For b = −γ, a = ω2, and s = 2γ + 1, (2.1) takes the form [4]

ẍ+−γ
ẋ2

x
+ ω2x2γ+1 = 0 (2.2)

On the other hand for f(u) = puq, (1.2) becomes

ü+ puq = 0 (2.3)

The problem is now to show that equation (2.2) may be mapped under appropriate variable
change to (2.3). In this way the following theorem may be considered

Theorem 1

Consider (2.2). Then by the application of variable change

u = x1−γ (2.4)

(2.2) reduces to (2.3) where

p = (1− γ)ω2, q =
1 + γ

1− γ
(2.5)

Proof

From u = x1−γ, one may compute

x = u
1

1−γ , (2.6)

ẋ =
1

1− γ
u̇u

γ
1−γ (2.7)
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and

ẍ =
1

1− γ
üu

γ
1−γ +

γ

(1− γ)2
u̇2u

2γ−1
1−γ (2.8)

Substituting equations (2.6), (2.7) and (2.8) into equation (2.2) leads immediately
to [4]

ü+ (1− γ)ω2u
1+γ
1−γ = 0 (2.9)

which is nothing but equation (2.3) when (2.5) is taken into account. Thus the theorem
1 is proved. In such a situation equation (2.9) may be viewed as a Duffing type equation
and the problem is then to prove that equation (2.9) may be solved in terms of exact and
general periodic solutions.

3 Exact and general periodic solutions

The purpose of this section is to show that exact and general periodic solutions may be
established for the Duffing type equation (2.9). To that end it is suitable to consider the
nonlocal transformation

y(τ) = u(t) , dτ = u
γ

1−γ dt (3.1)

Therefore the following theorem may be formulated.

Theorem 2

Consider the nonlocal transformation (3.1). Then by application of (3.1), equation (2.9)
may be mapped into

y′′ +

(
1

1− γ
− 1

)
y

′2

y
+ (1− γ)ω2y = 0 (3.2)

where prime denotes the differentiation with respect to argument.

Proof

From (3.1) one may obtain
du

dt
= y′(τ)y

γ
1−γ (3.3)

so that the second derivative d2u
dt2

may take the form

d2u

dt2
= y′′(τ)y(τ)

2γ
1−γ +

γ

1− γ
y′2(τ)y(τ)

3γ−1
1−γ (3.4)

Also from equation (3.1), one may notice that

u
1+γ
1−γ = y

1+γ
1−γ (3.5)
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Then the substitution of equations (3.4) and (3.5) into (2.9) yields precisely equation (3.2).
Therefore theorem 2 is demonstrated. According to [4] the exact and explicit general
solution to (3.2) may be written as

y(τ) = [A0 sin(ωτ + α]1−γ (3.6)

Therefore, using (3.5) one may obtain the exact and general solution to (2.9) in the form

u(t) = (A0 sinϕ(t))
1−γ (3.7)

where
ϕ(t) = ωτ + α (3.8)

is given by quadrature ∫
dϕ

sinγ(ϕ)
= ωAγ

0(t+ C) (3.9)

The parameter C is a constant of integration. In this context the exact and general solution
to (2.2) may take the form

x(t) = A0 sinϕ(t) (3.10)

So with that some examples may be given to illustrate the usefulness of the developed
theory.

4 Examples

In this section the exact and general periodic solutions to some generalized equations of
well known equations and to other equations are computed as illustration. Exact solutions
under specific initial conditions as well as approximate solutions are deduced in view of
comparison.

4.1 Generalized inverse cube-root oscillator equation

For γ = −2, equation (2.9) reduces to the generalized truly nonlinear oscillator equation

ü(t) + 3ω2u−1/3(t) = 0 (4.1)

The equation (4.1) is investigated in [6] for the specific value 3ω2 = 1. Using equation
(3.7), the exact and general periodic solution to equation (4.1) may take the form

u(t) = A3
0 sin

3 ϕ(t) (4.2)

where the function ϕ satisfies

1

2
ϕ− 1

4
sin 2ϕ = ωA−2

0 (t+ C)

that is

ϕ− 1

2
sin 2ϕ = 2ωA−2

0 (t+ C) (4.3)
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Now, an approximate closed form solution to (4.1) may be deduced by neglecting the term
1
2
sin 2ϕ in equation (4.3) so that one may obtain

ϕ(t) = 2ωA−2
0 (t+ C) (4.4)

In this context the approximate closed-form solution takes the form

u(t) = A3
0 sin

3[2ωA−2
0 (t+ C)] (4.5)

The solution (4.5) can be applied to a variety of initial conditions. Under the initial
conditions [6]

u(t = 0) = u0 , u̇(t = 0) = 0 (4.6)

the approximate solution (4.5) becomes

u(t) =
3

4
u0 cos

(
2ω

u
2
3
0

t

)
+

1

4
u0 cos

(
3

(
2ω

u
2
3
0

)
t

)
(4.7)

The angular frequency

Ω =
2ω

u
2
3
0

(4.8)

for 3ω2 = 1, that is ω = 1√
3
, becomes

Ω =
2√
3

1

u
2/3
0

(4.9)

which is equal to the exact angular frequency given in [6].

Figure 1 shows the comparison of the exact and general periodic solution (4.2) with
the approximate analytical solution (4.7) for u0 = 1, and ω = 0.45.

On the other hand, for γ = −2, equation (2.2) becomes

ẍ+ 2
ẋ2

x
+ ω2x−3 = 0 (4.10)

The exact and general periodic solution of (4.10) is secured by that of the truly nonlinear
equation (4.1) so that one may obtain

x(t) = A0sinϕ(t) (4.11)

where (4.3) holds. Using the approximate solution (4.5) and the initial conditions x(t =
0) = x0 and ẋ(t = 0) = 0, the approximate closed-form solution to equation (4.10) may be
written as

x(t) = x0 cos

(
2ω

x2
0

t

)
(4.12)

Figure 2 shows the comparison of the exact and general periodic solution (4.11) with the
approximate solution (4.12) for x0 = 1 and ω = 0.45.
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4.2 Generalized quadratic oscillator equation

According to [6] the quadratic truly nonlinear oscillator equation reads

ü+ |u|u = 0 (4.13)

which is equivalent to the set of equations

ü+ u2 = 0 (4.14)

and
ü− u2 = 0 (4.15)

when u > 0, and u < 0, respectively. Substituting γ = 1
3
, into (2.9) yields the generalized

quadratic oscillator equation

ü(t) +
2

3
ω2u2(t) = 0 (4.16)

which includes equations (4.14) and (4.15) as special cases when 2
3
ω2 = 1, and 2

3
ω2 = −1,

respectively. Now the problem is to compute the exact and general periodic solution to
equation (4.16). In this way the exact and general solution to (4.16) may, using (3.7),
become

u(t) = A
2
3
0 sin

2
3 ϕ(t) (4.17)

where ϕ(t) is given by quadrature∫
dϕ

sin
1
3 (ϕ)

= ωA
1
3
0 t+ C1 (4.18)

C1 is a constant of integration. By a suitable change of variable the indefinite integral∫
dϕ

sin
1
3 (ϕ)

(4.19)

reduces to
3

2
ε

∫
dv√
1− v3

(4.20)

where
v = sin

2
3ϕ (4.21)

and ε = ±1.

Using an appropriate choice of initial conditions

u(t = 0) = u0 = A
2/3
0 , u̇(t = 0) = 0 (4.22)

one may compute t as

ωA1/3t =
3

2
ε

∫ 1

v

dv√
1− v3

(4.23)

that is [7]

ωA
1/3
0 t =

3

2
ε

[
1

31/4
F (β,m)

]
(4.24)
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where F (β,m) is the elliptic integral of first kind, m = k2 = 2+
√
3

4
, and β = arccos

√
3−1+v√
3+1−v

.

From (4.24) one may find

cosβ =

√
3− 1 + v√
3 + 1− v

= cn

(
2

3
(3)1/4ωA

1/3
0 t,m

)
(4.25)

from which

v =
1 + cn(2

3
(3)1/4ωA

1/3
0 t,m)−

√
3(1− cn(2

3
(3)1/4ωA

1/3
0 t,m))

1 + cn(2
3
(3)1/4ωA

1/3
0 t,m)

(4.26)

Knowing v, one may compute sinϕ using the relation (4.21) so that the solution (4.17)
takes the form

u(t) = A
2/3
0 − A

2/3
0

√
3
1− cn(2

3
(3)1/4ωA

1/3
0 t,m)

1 + cn(2
3
(3)1/4ωA

1/3
0 t,m)

(4.27)

or

u(t) = u0

[
(1−

√
3) + (1 +

√
3)cn(2

3
(3)1/4ωu

1/2
0 t,m)

1 + cn(2
3
(3)1/4ωu

1/2
0 t,m)

]
(4.28)

In such a situation the oscillation period T may be computed as

ωA
1/3
0

T

4
=

3

2

∫ 1

0

dv√
1− v3

(4.29)

so that one may obtain

T =
3(Γ(1

3
))3

21/3π
√
3ωA

1/3
0

(4.30)

that is

T =
3(Γ(1

3
))3

π
√
3u021/3ω

(4.31)

The period (4.31) is the exact period found by [6] when 2
3
ω2 = 1. Under the initial condition

u(t = 0) = 0 (4.32)

the time t may read

ωA
1/3
0 t =

3

2
ε

∫ v

0

dv√
1− v3

(4.33)

The evaluation of (4.33) leads to obtain

ωA
1/3
0 t = ε

{
ωA

1/3
0

T

4
− 3

2

1

31/4
F (β,m)

}
(4.34)

so that

cosβ =
√
3−1+v√
3+1−v

= cn[2
3
(3)1/4ωA

1/3
0 (t− T

4
),m] which may give

v = 1−
√
3
1− cn[2

3
(3)1/4ωA

1/3
0 (t− T

4
),m]

1 + cn[2
3
(3)1/4ωA

1/3
0 (t− T

4
),m]

(4.35)
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Using (4.21), one may find

u(t) = A
2/3
0 − A

2/3
0

√
3
1− cn[2

3
(3)1/4ωA

1/3
0 (t− T

4
),m]

1 + cn[2
3
(3)1/4ωA

1/3
0 (t− T

4
),m]

(4.36)

or

u(t) = A
2/3
0

[
(1−

√
3) + (1 +

√
3)cn(2

3
(3)1/4ωA

1/3
0 (t− T

4
),m)

1 + cn(2
3
(3)1/4ωA

1/3
0 (t− T

4
),m)

]
(4.37)

On the other hand, for γ = 1
3
, equation (2.5) leads to the quadratic Liénard type equation

ẍ− 1

3

ẋ2

x
+ ω2x5/3 = 0 (4.38)

for which the exact and general solution, according to (3.9) and (4.28) becomes

x(t) = u0

[
1−

√
3
1− cn(2

3
(3)1/4ωA

1/3
0 t,m)

1 + cn(2
3
(3)1/4ωA

1/3
0 t,m)

]3/2
(4.39)

which may read

x(t) = x
2/3
0

[
(1−

√
3) + (1 +

√
3)cn(2

3
(3)1/4ωx

3/4
0 t,m)

1 + cn(2
3
(3)1/4ωx

3/4
0 t,m)

]3/2
(4.40)

under the initial conditions (4.22) that is

x(t = 0) = x0 = u
3/2
0 , ẋ(t = 0) = 0 (4.41)

According to (3.10) and (4.37), one may write also the exact solution of (4.38) as

x(t) = x
2/3
0

[
(1−

√
3) + (1 +

√
3)cn(2

3
(3)1/4ωx

3/4
0 (t− T

4
),m)

1 + cn(2
3
(3)1/4ωx

3/4
0 (t− T

4
),m)

]3/2
(4.42)

4.3 Restricted quintic Duffing equation

Letting γ = 2
3
, into (2.9), yields the restricted quintic Duffing oscillateur equation

ü(t) +
ω2

3
u5(t) = 0 (4.43)

The exact and general solution to (4.43) may, according to the above, read

u(t) = (A0sinϕ(t))
1/3 (4.44)

where ϕ(t) is given by ∫
dϕ

sin
2
3 (ϕ)

= ωA
2
3
0 t+ C2 (4.45)
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C2 is an integration constant. The change of variable

v3/2 = sinϕ (4.46)

leads to obtain

I =

∫
dϕ

sin
2
3 (ϕ)

=
3

2
ε

∫
dv√

v(1− v3)
(4.47)

For an appropriate choice of the initial condition

u(t = 0) = 0 (4.48)

equation (4.45) may be rearranged, using (4.47), in the form

ωA
2/3
0 t =

3

2
ε

∫ v

0

dv√
v(1− v3)

(4.49)

which leads to obtain

ωA
1/3
0 t =

3

2
ε

(
1

(3)1/4
F (β,m)

)
(4.50)

where m = k2 = 2−
√
3

4
, and

cosβ =
1− (

√
3 + 1)v

1 + (
√
3− 1)v

= cn

(
2

3
(3)1/4(A0)

2/3ωt,m

)
(4.51)

so that one may find

v =
1− cn

(
2
3
(3)1/4(A0)

2/3ωt,m
)

√
3 + 1 + (

√
3− 1)cn

(
2
3
(3)1/4(A0)2/3ωt,m

) (4.52)

In this context, the solution (4.44) becomes

u(t) = A
1/3
0

√
1− cn

(
2
3
(3)1/4(A0)2/3ωt,m

)
√
3 + 1 + (

√
3− 1)cn

(
2
3
(3)1/4(A0)2/3ωt,m

) (4.53)

In such a situation the period T may be found as

ωA
2/3
0

T

4
=

1

2

∫ 1

0

r1/6−1(1− r)1/2−1dr (4.54)

that is [7]

T =
2Γ(1/6)Γ(1/2)

ωA
2/3
0 Γ(2/3)

(4.55)

with the change of variable
r1/2 = sinϕ (4.56)

Using u0 = A
1/3
0 , the period T may take the form

T =
2Γ(1/6)Γ(1/2)

ωu2
0Γ(2/3)

(4.57)
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For ω2

3
= 1, the period (4.57) reduces to the exact period found in [8]. However in [8] the

exact closed-form periodic solution to the quintic truly nonlinear oscillator equation (4.43)
is not given when ω2

3
= 1. Figure 3 shows the periodic behavior of the solution (4.53) for

A0 = 2, ω = 0.5. Knowing the solution (4.53) one may easily compute the solution to the
quadratic Liénard type equation

ẍ− 2

3

ẋ2

x
+ ω2x7/3 = 0 (4.58)

obtained from (2.2) for γ = 2
3
. Thus using (4.53) the solution of (4.58) may be expressed

in the form

x(t) = A0

[√
1− cn

(
2
3
(3)1/4(A0)2/3ωt,m

)
√
3 + 1 + (

√
3− 1)cn

(
2
3
(3)1/4(A0)2/3ωt,m

)]3 (4.59)

Figure 4 shows the periodic behavior of (4.59) obtained for A = 2, ω = 0.5

4.4 Generalized restricted cubic Duffing equation

The generalized restricted cubic Duffing equation

ü+
ω2

2
u3 = 0 (4.60)

is obtained from (2.9) using γ = 1/2. For ω2

2
= 1, equation (4.60) becomes the restricted

cubic Duffing equation investigated in [6]. Using (3.7) the solution of (4.60) may take
immediately the form

u(t) = A
1/2
0 sin1/2 ϕ(t) (4.61)

where

ωA
1/2
0 (t+ C3) =

∫
dϕ

sin
1
2 ϕ

(4.62)

Therefore, (4.62) may reduce to [7]

ωA
1/2
0 (t+ C3) = −

√
2F (β,m) (4.63)

where m = k2 = 1/2, and β =
√
1− sinϕ = −sn

(
ωA

1/2
0√
2
(t+ C3),m

)
. In this way, one

may find sinϕ = 1−sn2

(
ωA

1/2
0√
2
(t+ C3),m

)
so that the exact and explicit general solution

(4.61) becomes

u(t) = A
1/2
0 cn

(
ω

√
A0

2
(t+ C3), 1/2

)
(4.64)

Under the initial conditions [6]

u(t = 0) = u0 = A
1/2
0 , u̇(t = 0) = 0 (4.65)
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one may find C3 = 0, such that (4.64) may read

u(t) = u0cn

(
ω
u0√
2
t, 1/2

)
(4.66)

It is interesting to notice that the solution (4.66) becomes the solution obtained by [6] when
ω2

2
= 1. Figure 5 shows the periodic behavior of the solution (4.66) for ω = 1, u0 = 0.5

On the other hand, the exact and explicit general solution to the quadratic Liénard type
equation

ẍ− 1

2

ẋ2

x
+ ω2x2 = 0 (4.67)

obtained from (2.2) by letting γ = 1/2, may be immediately, using (2.6), computed as

x(t) = A0cn
2

(
ω

√
A0

2
(t+ C3),

1√
2

)
(4.68)

Under the initial conditions x(t = 0) = A0 , ẋ(t = 0) = 0, the constant C3 = 0, so that
(4.68) gives

x(t) = A0cn
2

(
ω

√
A0

2
t,

1√
2

)
(4.69)

Setting x0 = A0, equation (4.69) may take the form

x(t) = x0cn
2

(
ω

√
x0

2
t,

1√
2

)
(4.70)

The periodic behavior of (4.70) is shown in Figure 6 under the conditions that x0 = 2,
ω = 0.5
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Figure 4: Typical behavior of the solution (4.59)
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Figure 5: Typical behavior of the solution (4.66)
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Figure 6: Typical behavior of the solution (4.70)
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