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The integrability of a general class of Liénard type equations is investigated
through equation transformation theory. In this way it is shown that such a
class of Liénard equations can generate a generalization of some interesting truly
nonlinear oscillator equations like the cube and fifth root differential equations.
It has then become possible to compute the exact and general solution to the
generalized truly nonlinear oscillator equation. Under an appropriate choice
of initial conditions, exact and explicit solution has been obtained in terms of
Jacobi elliptic functions.

1 Introduction

The Liénard equation

ẍ(t) + f(x) = 0 (1.1)

where f(x) is a nonlinear function of x has received a high importance in the theory
of differential equations since it may exhibit periodic solutions which constitute a highly
desired class of differential equation solutions in physics, when the independent variable
t is time. The class of equations (1.1) includes as illustrative examples several celebrated
equations like the Bratu differential equation, the polynomial differential equations such
as the cubic, cubic-quintic and quintic Duffing oscillator equations. The equations of
type (1.1) are also of great interest as they appear in traveling wave solution reduction
of nonlinear partial differential equations [1, 2]. Although the equations of type (1.1) are
widely studied, the integrability of (1.1) in terms of exact and explicit general periodic
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solutions remains to be solved when f(x) is a function of fractional power of x. A well
known special case of such equations, that is

ẍ(t) + x1/3 = 0 (1.2)

called cube-root oscillator equation has been studied in several mathematical works [3].
Equation (1.2) belongs to the class of truly nonlinear oscillator equations intensively in-
vestigated by [3]. One may also consider the truly nonlinear equation [3]

ẍ(t) + x5/3 = 0 (1.3)

However the generalization

ẍ(t) + bx1/3 + dx5/3 = 0 (1.4)

is not investigated in the literature to our best knowledge, that is its integrability analysis in
terms of exact and general periodic solution is to be established. To that end an extension
of the theory of nonlinear differential equations introduced by [4] is carried out (section
2). So that it becomes possible to show that equation (1.4) belongs to a general class of
Liénard type equations with fractional power nonlinearities for which exact and general
periodic solutions can be computed (section 3). Finally a conclusion is given for the work.

2 Extended Theory

Let us consider the following general second order linear differential equation

y′′(τ) + a2y(τ) = c (2.1)

where, prime means differentiation with respect to τ , a and c are arbitrary parameters.
Let us consider also the generalized Sundman transformation.

ym(τ) = F (t, x), dτ = G(t, x)dt, G(t, x)
∂F (t, x)

∂x
̸= 0 (2.2)

with

F (t, x) =

∫
g(x)ldx, G(t, x) = g(x)l

[∫
g(x)ldx

] 1
m
−1

dt

where l, and m ̸= 0 are arbitrary parameters, g(x) ̸= 0 is arbitrary function of x. It is
important to notice that, taking m = 1, we obtain the theory proposed by [5]. Thus, intro-
ducing equation (2.2) into equation (2.1) and performing some mathematical operations,
we get

ẍ+ a2mg(x)l
(∫

g(x)ldx

) 2
m
−1

− cmg(x)l
(∫

g(x)ldx

) 1
m
−1

= 0 (2.3)

Introducing g(x) = x, into equation(2.3), yields

ẍ+
ma2

(l + 1)
2−m
m

x
2l+2
m

−1 − mc

(l + 1)
1
m
−1

x
l+1
m

−1 = 0 (2.4)
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Let l = m. Then equation (2.4) reduces to

ẍ+
la2

(l + 1)
2−l
l

x
l+2
l − lc

(l + 1)
1−l
l

x
1
l = 0 (2.5)

Equation (2.5) represents the general class of Liénard equations with fractional power
nonlinearities for an integer l, l ̸= 2 or l ̸= 1. We investigate in the following, the exact and
explicit general solution of this class of Liénard equations and that of the truly nonlinear
oscillator equation (1.4). Now, the general solution of equation (2.5) may be explicitly and
exactly computed under the nonlocal transformation (2.2), such that one may deduce the
exact solution to the truly nonlinear oscillator equations (1.4). The use of equations (2.2)
leads to

y(τ) =

(
1

l + 1
xl+1

) 1
l

, dτ =

(
1

(l + 1)(1−l)/l
x1/l

)
dt, l ̸= −1 (2.6)

such that the desired exact and explicit general solution to (2.5) takes the form

x(t) = (l + 1)
1

l+1

(
A0 cos(aϕ(t) + α) +

c

a2

) l
l+1

(2.7)

where, α is an arbitrary constant and the function τ = ϕ(t) obeys∫
dϕ(t)

(A0 cos(aϕ(t) + α) + c
a2
)

1
l+1

=
a

2
(l + 1)

l
l+1 (t+K) (2.8)

K is an integration constant and

y(τ) =
c

a2
+ A0 cos(aτ + α) (2.9)

is the solution to (2.1).

Imposing A0 =
c
a2
, equation (2.8) becomes

dϕ(t)

(1 + cos(aϕ(t) + α))
1

l+1

= A
1

l+1

0 (l + 1)
l

l+1dt (2.10)

that is
dϕ(t)

(cos2(aϕ(t)+α
2

))
1

l+1

= (2A0)
1

l+1 (l + 1)
l

l+1dt (2.11)

such that ∫
dθ

(cos2(θ))
1

l+1

= (2A0)
1

l+1
a

2
(l + 1)

l
l+1 (t+K) (2.12)

In this context the general solution (2.7) may take the form

x(t) = (l + 1)
1

l+1 (2A0)
l

l+1 cos
2l
l+1 (θ) (2.13)

where θ = aϕ(t)+α
2

satisfies (2.12)



3 Exact solution to equation (1.4)

Setting l = 3 into (2.5) yields equation (1.4) when b = 3(2)4/3c and d = 3(2)2/3a2. Using
now (2.13), an exact and general solution to equation (1.4) may be obtained as

x(t) = 25/4A
3/4
0 cos3/2(

aϕ(t) + α

2
) (3.1)

such that ϕ(t) satisfies

dϕ(t)√
cos(aϕ(t)+α

2
)
= (2A0)

1/4a

2
23/2dt (3.2)

The integration of the left hand side of equation (3.2) may be evaluated as

J =

∫
dϕ(t)√

cos(aϕ(t)+α
2

)
(3.3)

which is also

J =
a

2

∫
dθ√

cos(2θ)
(3.4)

where θ = aϕ(t)+α
2

. According to [6]

J =
a

2
√
2
F

(
α,

1√
2

)
(3.5)

where α = arcsin(
√
2sin(θ)) and F (z, k), is the Jacobi elliptic integral of the first kind.

Thus, one may find aϕ(t)+α
2

such that

sin(θ) =

√
2

2
sn(

4
√
2ca2(t+K),

√
2

2
) (3.6)

In this context one may rewrite the solution of (1.4) in the form

x(t) = 2
4
√
2(c/a2)3/4cn3(

4
√
2ca2(t+K),

√
2

2
) (3.7)

Using the initial conditions x(0) = x0, and ẋ(0) = 0, we find K = 0, x0 = 2 4
√
2( c

a2
)3/4.

Thus, the exact solution takes the form

x(t) = x0cn
3

((
4

x0

) 1
3 √

ct,

√
2

2

)
(3.8)

In Figure 1, the periodic behavior of solution (3.8) is plotted with c = 2, a = 0.5 and
x0 = 11.31
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Figure 1: A typical periodic solution (3.8) with a = 0.5, c = 2 and x0 = 11.31.
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