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Abstract 

The Zitterbewegung model of an electron offers a classical interpretation for interference and diffraction 

of electrons. The idea is very intuitive because it incorporates John Wheeler’s idea of mass without 

mass: we have an indivisible naked charge that has no properties but its charge and its size (the classical 

electron radius) and it is easy to understand that the electromagnetic oscillation that keeps this tiny 

circular current going – like a perpetual current ring in some superconducting material – cannot be 

separated from it. In contrast, we keep wondering: what keeps a photon together? Hence, the real 

challenge for any realist interpretation of quantum mechanics is to explain the quantization of light: 

what are these photons?  

In this paper, we offer a classical quantum theory for light. The intuition behind the model is the same as 

the one we developed for an electron: we think of the photon as a harmonic electromagnetic oscillator, 

and its elementary cycle determines its properties, including spin and its size (the effective area of 

interference). 
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Introduction 

Richard Feynman described the double-slit experiment with electrons – the interference of an electron 

with itself – as “a phenomenon which is impossible, absolutely impossible, to explain in any classical 

way, and which has in it the heart of quantum mechanics.” The italics are Feynman’s. He adds:  

“In reality, it contains the only mystery. We cannot make the mystery go away by ‘explaining’ 

how it works. We will just tell you how it works. In telling you how it works we will have told you 

about the basic peculiarities of all quantum mechanics.”  

This statement is an authoritative representation of the Copenhagen interpretation of quantum 

mechanics, which I might summarize as: “Don’t think. Just accept the rules and do the calculations.”1 My 

previous papers2 show that it is actually quite easy to develop a hybrid model of an electron – combining 

its wave and particle characteristics – which does the trick. This hybrid model goes back to a very trivial 

solution which Erwin Schrödinger discovered when exploring Dirac’s wave equation for an electron in 

free space. It is worth quoting Dirac’s summary of it: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

David Hestenes is to be credited with the revival of what is now referred to as the Zitterbewegung 

model of an electron and we believe it is a strong contender for a realist interpretation of quantum 

mechanics. The description involves the idea of a naked pointlike charge – a charge with zero rest mass 

– whizzing around some center at the speed of light. The energy in this oscillation gives the electron its 

rest mass: it is John Wheeler’s idea of ‘mass without mass’.3  

                                                           
1 I was told so much when doing the introductory online MIT course on quantum mechanics (edX course 8.01.1x): sophomore 
students should not ask too many questions, especially not if these questions cannot be answered and, therefore, start 
embarrassing the lecturers.   
2 See, for example: The Electron as a Harmonic Electromagnetic Oscillator, 31 May 2019 (http://vixra.org/abs/1905.0521). 
3 An easy-to-read reference to Wheeler’s concept of mass without mass is: https://cpb-us-
e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf. 

http://vixra.org/abs/1905.0521
https://cpb-us-e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf
https://cpb-us-e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf
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We have worked out the details in the mentioned papers so we won’t repeat ourselves here. The point 

is: electron interference can be explained classically.4 The difficulty is how to explain the quantization of 

light: what are these photons? We have an indivisible naked charge that has no properties but its charge 

and – we should add – its size5, and it is intuitively easy to grasp that the electromagnetic oscillation that 

keeps this tiny circular current going – like a perpetual current ring in some superconducting material – 

cannot be separated from it. In contrast, we should wonder: what keeps the photon together?  

This question is not easy to answer. It is, effectively, not a coincidence that Paul Dirac, in his introduction 

to his seminal Principles of Quantum Mechanics, focuses mainly on the wave-particle duality of light – as 

opposed to the wave-particle duality of matter-particles (fermions).6 Hence, if we would want to present 

a viable realist interpretation of quantum mechanics, then we need to come up with a classical quantum 

theory for light.  

We will try to do so in this paper. The intuition behind the model is the same as the one we developed 

for an electron: we will want to think of the photon as a harmonic electromagnetic oscillator. 

The photon as a harmonic electromagnetic oscillator 

Angular momentum comes in units of ħ. When analyzing the electron orbitals for the simplest of atoms 

(the one-proton hydrogen atom), this rule amounts to saying the electron orbitals are separated by a 

amount of physical action that is equal to h = 2π·ħ.  Hence, when an electron jumps from one level to 

the next – say from the second to the first – then the atom will lose one unit of h. The photon that is 

emitted or absorbed will have to pack that somehow. It will also have to pack the related energy, which 

is given by the Rydberg formula: 

E𝑛2
− E𝑛1

= −
1

𝑛2
2

E𝑅 +
1

𝑛1
2

E𝑅 = (
1

𝑛1
2

−
1

𝑛2
2

) ∙ E𝑅 = (
1

𝑛1
2

−
1

𝑛2
2

) ∙
α2m𝑐2

2
 

                                                           
4 See, for example, the interesting work of Stefano Frabboni, Reggio Emilia, Gian Carlo Gazzadi, and Giulio Pozzi, as reported on 
the phys.org site (https://phys.org/news/2011-01-which-way-detector-mystery-doubleslit.html). 
5 While the Zitterbewegung charge is considered to be pointlike, it is not dimensionless. We infer its radius from elastic photon 

scattering experiments: it is equal to the classical or Thomson electron radius (re), which is α  1/137 times the Compton radius 
of the electron (a), which we get from inelastic (Compton) scattering experiments. Inelastic scattering occurs when high-energy 
photons (the light is X- or gamma-rays, with high frequency and very small wavelength) hit the electron. Their energy is briefly 
absorbed before the electron comes back to its equilibrium situation by emitting another photon, that is less energetic. The 
difference in the energy of the incoming and the outgoing photon gives the electron some linear momentum: it accelerates or 
changes direction. It is because of the interference effect that Compton scattering is referred to as inelastic. In contrast, low-
energy photons scatter elastically: the photon seems to bounce off some hard core: there is no interference. In our 
interpretation of the Zitterbewegung model of an electron, we think of this hard core as the naked pointlike charge itself and, 
hence, we can now interpret the fine-structure constant as the radius of the pointlike charge expressed in a natural distance 
unit (a). Our paper on the anomalous magnetic moment – see: The Anomalous Magnetic Moment: Classical Calculations, 11 
June 2019 (http://vixra.org/abs/1906.0007) – shows this interpretation can explains the anomaly in a classical way: there is no 
need for quantum field theory. 
6 See: Dirac’s Philosophical Principles, 11 June 2019 (http://vixra.org/abs/1906.0160). 

https://phys.org/news/2011-01-which-way-detector-mystery-doubleslit.html
http://vixra.org/abs/1906.0007
http://vixra.org/abs/1906.0160
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To focus our thinking, let us consider the transition from the second to the first level, for which the 1/12 

– 1/22 is equal 0.75. Hence, the photon energy should be equal to (0.75)·ER ≈ 10.2 eV. Now, if the total 

action is equal to h, then the cycle time T can be calculated as: 

E ∙ T = ℎ ⇔ T =
ℎ

E
≈

4.135 × 10−15eV ∙ s

10.2 eV
≈ 0.4 × 10−15 s 

This corresponds to a wave train with a length of (3×108 m/s)·(0.4×10−15 s) = 122 nm. That is the size of a 

large molecule and it is, therefore, much more reasonable than the length of the wave trains we get 

when thinking of transients using the supposed Q of an atomic oscillator.7 In fact, this length is the 

wavelength of the light (λ = c/f = c·T = h·c/E) that we would associate with this photon energy.8  

Let us quickly insert another calculation, which you may find interesting⎯or not. If we think of an 

electromagnetic oscillation – as a beam or, what we are trying to do here, as some quantum – then its 

energy is going to be proportional to (a) the square of the amplitude of the oscillation – and we are not 

thinking of a quantum-mechanical amplitude here: we are talking the amplitude of a physical wave here 

– and (b) the square of the frequency. Hence, if we write the amplitude as a and the frequency as ω, 

then the energy should be equal to E = k·a2·ω2. The k is just a proportionality factor. 

However, relativity theory tells us the energy will have some equivalent mass, which is given by 

Einstein’s mass-equivalence relation: E = m·c2. Hence, the energy will also be proportional to this 

equivalent mass. It is, therefore, very tempting to equate k and m. We can only do this, of course, if c2 is 

equal to a2·ω2 or – what amounts to the same – if c = a·ω. You will recognize this as a tangential velocity 

formula, and so you should wonder: the tangential velocity of what? The a in the E = k·a2·ω2 formula 

that we started off with is an amplitude: why would we suddenly think of it as a radius now? I cannot 

give you a very convincing answer to that question but – intuitively – we will probably want to think of 

our photon as having a circular polarization. Why? Because it is a boson and it, therefore, has angular 

momentum. To be precise, its angular momentum is +ħ or −ħ. There is no zero-spin state.9 Hence, if we 

think of this classically, then we will associate it with circular polarization.  

                                                           
7 In one of his famous Lectures (I-32-3), Feynman thinks about a sodium atom, which emits and absorbs sodium light, of course. 
Based on various assumptions – assumption that make sense in the context of the blackbody radiation model but not in the 
context of the Bohr model – he gets a Q of about 5×107. Now, the frequency of sodium light is about 500 THz 

(500×1012 oscillations per second). Hence, the decay time of the radiation is of the order of 10−8 seconds. So that means that, 
after 5×107 oscillations, the amplitude will have died by a factor 1/e ≈ 0.37. That seems to be very short, but it still makes for 5 
million oscillations and, because the wavelength of sodium light is about 600 nm (600×10–9 meter), we get a wave train with a 
considerable length: (5×106)·(600×10–9 meter) = 3 meter. Surely you’re joking, Mr. Feynman! A photon with a length of 3 meter 
– or longer? While one might argue that relativity theory saves us here (relativistic length contraction should cause this length 
to reduce to zero as the wave train zips by at the speed of light), this just doesn’t feel right – especially when one takes a closer 
look at the assumptions behind. 
8 This is short-wave ultraviolet light (UV-C). It is the light that is used to purify water, food or even air. It kills or inactivate 
microorganisms by destroying nucleic acids and disrupting their DNA. It is, therefore, harmful. The ozone layer of our 
atmosphere blocks most of it. 
9 This is one of the things in mainstream quantum mechanics that bothers me. All courses in quantum mechanics spend like two 
or three  chapters on why bosons and fermions are different (spin-one versus spin-1/2) and, when it comes to the specifics, 
then the only boson we actually know (the photon) turns out to not be a typical boson because it can’t have zero spin. Feynman 
gives some haywire explanation for this is section 4 of Lecture III-17. I will let you look it up (Feynman’s Lectures are online) but, 
as far as I am concerned, I think it’s really one of those things which makes me think of Prof. Dr. Ralston’s criticism of his own 
profession: “Quantum mechanics is the only subject in physics where teachers traditionally present haywire axioms they don’t 
really believe, and regularly violate in research.” (John P. Ralston, How To Understand Quantum Mechanics, 2017, p. 1-10) 
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We are now ready for some calculations. If the energy E in the Planck-Einstein relation (E = ħ·ω) and the 

energy E in the energy equation for an oscillator (E = m·a2·ω2) are the same – and they should be 

because we are talking about some thing that has some energy – then we get the following formula for 

the amplitude or radius a: 

E = ℏ ∙ ω = m ∙ 𝑎2 ∙ ω2 ⟺ ℏ = m ∙ 𝑎2 ∙ ω ⟺ 𝑎 = √
ℏ

m ∙ ω
= √

ℏ

E
𝑐2 ∙

E
ℏ

= √
ℏ2

m2 ∙ 𝑐2
=

ℏ

m ∙ 𝑐
 

This is the formula for the Compton radius of an electron ! How can we explain this? What relation could 

there possibly be between our Zitterbewegung model of an electron and the quantum of light? We do 

not want to confuse the reader too much but things become somewhat more obvious when staring at 

the illustration below (Figure 1). We think of the Zitterbewegung of a free electron as a circular 

oscillation of a pointlike charge (with zero rest mass) moving about some center at the speed of light. 

However, as the electron starts moving along some linear trajectory at a relativistic velocity (i.e. a 

velocity that is a substantial fraction of c), then the radius of the oscillation will have to diminish – 

because the tangential velocity remains what it is: c. The geometry of the situation  shows the 

circumference – so that’s the Compton wavelength λC = 2π·a = 2πħ/mc – becomes a wavelength in this 

process.    

 

Figure 1: The Compton radius must decrease with increasing velocity 

Of course, we should remind ourselves that the m in the a = ħ/mc equation here is not the mass of the 

electron but the (equivalent) mass of the photon. The Compton radius of a photon is, therefore, 

different than the Compton radius of an electron. Let us quickly calculate it for our 10.2 eV photon. We 

should, of course, express the energy in SI units (10.2 eV  1.63410−18 J) to get what we should get: 

𝑎 =
ℏ

m ∙ 𝑐
=

ℏ

E/𝑐
=

(1.0545718 × 10−18 𝐽 ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

1.634 × 10−18 𝐽
≈ 19.4 × 10−9 m 

How does this compare to the Compton radius of an electron? The Compton radius of an electron is 

equal to about 38610−15 m, so that’s about 50,000 times smaller than the Compton radius of a photon. 

Unsurprisingly, that’s the ratio between the electron’s (rest) energy (about 8.18710−14 J) and the 

photon energy (about 1.63410−18 J). It is somewhat counterintuitive that the Compton radius is 

inversely proportional to the (rest) mass or energy, but that’s how it is. 
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A final intuition may be confirmed by calculating the Compton radius for highly energetic photons. For 

example, the X-ray photons in the original Compton scattering experiment had an energy of about 17 

keV = 17,000 eV and modern-day experiments will use gamma rays with even higher energies. One 

experiment, for example, uses a cesium-137 source emitting photons with an energy that is equal to 

0.662 MeV = 662,000 eV. We can see these high photon energies can easily bridge the gap with the rest 

energy of the electron they are targeting. 

[…] While we can see these calculations makes sense – the Compton radius is, obviously, some kind of 

effective radius of interference – it does not quite answer the question we started out with: the 

Compton wavelength becomes the wavelength of the photon but the question remains: what is that 

amplitude?  

We will try to give a more detailed answer but, before we do so, let us further explore this one-cycle 

photon model of ours. We can use the elementary wavefunction to represent the rotating field vector 

or, remembering the F = qeE equation, the force field (see Figure 2). 

Figure 2: The one-cycle photon 

 

It is a delightfully simple model: the photon is just one single cycle traveling through space and time, 

which packs one unit of angular momentum (ħ) or – which amounts to the same, one unit of physical 

action (h). This gives us an equally delightful interpretation of the Planck-Einstein relation (f = 1/T = E/h) 

and we can, of course, do what we did for the electron, which is to express h in two alternative ways: (1) 

the product of some momentum over a distance and (2) the product of energy over some time. We find, 

of course, that the distance and time correspond to the wavelength and the cycle time: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=

1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 

photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

Let us now try something more adventurous: let us try to calculate the strength of the electric field. How 

can we do that? Energy is some force over a distance and, hence, the force must equal the ratio of the 

energy and the distance. What distance should we use? The force will vary over the cycle and, hence, 
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this distance is a distance that we must be able to relate to this fundamental cycle. Is it the Compton 

radius (a) or the wavelength (λ)? They differ by a factor 2π only, so let us just try the radius and see if we 

get some kind of sensible result:  

F =
E

𝑎
=

2π ∙ E

λ
=

2π ∙ ℎ ∙ 𝑓

λ
=

2π ∙ ℎ ∙ 𝑐

λ2
 

Does this look weird? Not really. We get the E·λ = h·c equation from de Broglie’s h = p·λ = m·c·λ = E·λ/c  

equation and the equation above respects that equation: 

E

𝑎
=

2π ∙ ℎ ∙ 𝑐

λ2
⟺ E ∙ λ =

2π ∙ 𝑎 ∙ ℎ ∙ 𝑐

λ
= ℎ ∙ 𝑐 

Let’s try the next logical step. The electric field – which we will write as E10 – is  the force per unit charge 

which, we should remind the reader, is the coulomb – not the electron charge. Why? Because we use SI 

units. We, therefore, get a delightfully simple formula for the strength of the electric field vector for a 

photon11: 

𝐸 =

2πℎ𝑐
λ2

1
=

2πℎ𝑐

λ2
=

2πE

λ
=

E

𝑎
 

The electric field is the ratio of the energy and the Compton radius. Does this make sense? What about 

units? We divided by 1 coulomb and the physical dimension is, therefore, equal to [E] = [E/a] per 

coulomb. A joule is a newton·meter and [E/a] is, therefore, equal to N·m/m = N. We’re fine. Let us 

calculate its value for our 10.2 eV photon (using SI units once again, of course): 

𝐸 ≈
1.634 × 10−18 𝐽

19.4 × 10−9 𝑚 ∙ 𝐶
≈ 84 × 10−12

N

C
 

Let us return to our original question: what is that amplitude? It turns out to be a natural distance unit: 

if we use it as a divisor, then we get the field strength! Is this significant? We think it is. Significant 

enough for a small digression we would think. 

The meaning of the fine-structure constant 

The Compton radius – for a photon and, importantly, for an electron – appears as a natural distance 

unit. Is this significant? What’s the deeper meaning here? We find it very interesting because we can 

now relate this discussion to the meaning of the fine-structure constant. Indeed, I have written a lot 

about the fine-structure constant⎯God’s Number as it is often referred to, as a result of a quote that 

Ralph Leighton attributes to Richard Feynman in his transcription of the Alix Mautner lectures.12 We’ll 

                                                           
10 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of the photon. 
We hope the italics (E) – and the context of the formula, of course! – will be sufficient to help the reader distinguish the electric 
field vector (E) from the energy (E). We do not needlessly want to multiply the number of symbols we are using here. 
11 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of the photon. 
We hope the italics (E) – and the context of the formula, of course! – will be sufficient to distinguish the electric field vector (E) 
from the energy (E). 
12 These lectures were recorded and transcribed a few years before Feynman died and, hence, Feynman may not have re-read 
the transcription. For a discussion, see my blog article on it: https://readingfeynman.org/2015/01/22/the-strange-theory-of-
light-and-matter-iii/. 

https://readingfeynman.org/2015/01/22/the-strange-theory-of-light-and-matter-iii/
https://readingfeynman.org/2015/01/22/the-strange-theory-of-light-and-matter-iii/
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give the full quote, which is made in the context of a discussion on one of the many meanings of the 

fine-structure constant⎯which is that of it being a quantum-mechanical coupling constant:  

“There is a most profound and beautiful question associated with the observed coupling 

constant, i.e. the amplitude for a real electron to emit or absorb a real photon. It is a simple 

number that has been experimentally determined to be close to 0.08542455. My physicist 

friends won’t recognize this number, because they like to remember it as the inverse of its 

square: about 137.03597 with about an uncertainty of about 2 in the last decimal place.  

It has been a mystery ever since it was discovered more than fifty years ago, and all good 

theoretical physicists put this number up on their wall and worry about it. Immediately you 

would like to know where this number for a coupling comes from: is it related to π or perhaps to 

the base of natural logarithms?  Nobody knows. It’s one of the greatest damn mysteries of 

physics: a magic number that comes to us with no understanding by man. You might say the 

“hand of God” wrote that number, and “we don’t know how He pushed his pencil.” We know 

what kind of a dance to do experimentally to measure this number very accurately, but we don’t 

know what kind of dance to do on the computer to make this number come out, without putting 

it in secretly!” 

In my writings on it13, I have always to demystify this number by showing how and why exactly it pops us 

in this or that formula (e.g. Rydberg’s energy formula, the ratio of the various radii of an electron 

(Thomson, Compton and Bohr radius), the coupling constant, the anomalous magnetic moment, 

etcetera), as opposed to what most seem to try to do, and that is to further confuse the amateur 

physicist. However, I must admit that – till now – I wasn’t quite able to answer this very simple question: 

what is that fine-structure constant? Why exactly does it appear as a scaling constant or a coupling 

constant in almost any equation you can think of but not in, say, Einstein’s mass-energy equivalence 

relation, or the de Broglie relations? 

I finally have a final answer (pun intended) to the question, and it’s surprisingly easy: it is the radius of 

the naked charge in the electron expressed in terms of the natural distance unit that comes out of our 

Zitterbewegung interpretation of what an electron actually is. That’s it. That’s all. All the other 

calculations follow from it.  

Why? I have to refer to my classical calculations of the anomalous magnetic moment here14 because re-

explaining would take up too much space. However, we do want to show why it pops up in the context 

of electron-photon coupling. As a coupling constant, the fine-structure constant will be written as the 

ratio between (1) k·qe
2 and (2) E·λ. We can interpret this as follows: 

1. The k·qe
2 in this ratio is just the product of the electric potential between two elementary charges (we 

should think of the proton and the electron in our hydrogen atom here) and the distance between them: 

U(𝑟) =
𝑘 · qe

2 

𝑟
=

qe
2 

4πε0𝑟
⟺ 𝑘 · qe

2 = U(𝑟) · 𝑟 

                                                           
13 See: Layered Motions: The Meaning of the Fine-Structure Constant, 23 December 2018 (http://vixra.org/abs/1812.0273). 
14 See: The Anomalous Magnetic Moment: Classical Calculations, 11 June 2019 (http://vixra.org/abs/1906.0007). 

http://vixra.org/abs/1812.0273
http://vixra.org/abs/1906.0007
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2. The fine-structure constant can then effectively be written as: 

α =
𝑘 · qe

2

ℏ ∙ 𝑐
=

𝑘 · qe
2

ℏ ∙ 𝑐
=

U(𝑟) · 𝑟

E𝑝ℎ𝑜𝑡𝑜𝑛 ∙ 𝑟𝑝ℎ𝑜𝑡𝑜𝑛
 

We can also write this in terms of forces times the squared distance: 

α =
𝑘 · qe

2

ℏ ∙ 𝑐
=

FB · 𝑟B
2

Fγ ∙ 𝑟γ ∙ 𝑟γ
=

FB · 𝑟B
2

Fγ ∙ 𝑟γ
2

=
EB · 𝑟B

Eγ ∙ 𝑟γ
 

This doesn’t look too bad. We use B (from Bohr) and γ (gamma) as a subscript in the numerator and 

denominator respectively to remind ourselves we are talking about the energies and radii of the Bohr 

orbitals and the photon respectively. Let us write it all out to demonstrate the consistency of this 

formula, using the generalized formulas (n = 1, 2,…) for these energies (EB) and radii (rB)15: 

α =
EB · 𝑟B

Eγ ∙ 𝑟γ
=

1

𝑛2 α2m𝑐2 ∙
𝑛2

α
ℏ

m𝑐

Eγ ∙
ℏ ∙ 𝑐
Eγ

= α 

Sometimes physics can just be nice: our simple photon model does a lot of tricks!  

Let us make a final check on the logical consistency of this model. We are in a good position to re-visit 

that E = k·a2·ω2 formula here, so let us quickly do that. We said it would be wonderful if we could 

interpret the proportionality coefficient k as the mass m. Why? Because we have used the E = m·a2·ω2 

equation before: it gave us this wonderful interpretation of the Zitterbewegung as what we referred to 

as the rest matter oscillation. Hence, it is really nice we can repeat that trick here using a Compton 

radius for the photon: 

E = k𝑎2ω2 = k
ħ2𝑐2

E2

E2

ħ2
= k𝑐2 ⟺ k = m 

Before we move on, we need to answer an obvious question: what happens when an electron jumps 

several Bohr orbitals? The angular momentum between the orbitals will then differ by several units of ħ. 

What happens to the photon picture in that case? It will pack the energy difference, but should it also 

pack several units of ħ? In other words, should we still think of the photon as a one-cycle oscillation, or 

will the energy be spread over several cycles? 

We will let the reader think about this, but our intuitive answer is: the photon is a spin-one particle and, 

hence, its energy should, therefore, be packed in one cycle only. This is also necessary for the 

consistency of the interpretation here: when everything is said and done, we do interpret the 

wavelength as a physical distance. To put it differently, the equation below needs to make sense:  

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

All of the above were merely some starters. We are now going to start the main course. 

                                                           
15 These formulas can be found in many classical texts but, if in doubt and if you’d want to see how we get these, see Chapter 
VII of my manuscript http://vixra.org/abs/1901.0105. 

http://vixra.org/abs/1901.0105
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The interference of a photon with itself 

Circular and linear polarization states 
We mentioned that we think of our photon being circularly polarized⎯always. Why? Because it is a 

boson and it, therefore, has angular momentum. To be precise, its angular momentum is +ħ or −ħ. There 

is no zero-spin state. Hence, if we think of this classically, then we will associate it with circular 

polarization. In a footnote, I mentioned this is one of the many things that bothers me. All courses in 

quantum mechanics spend like two or three  chapters on why bosons and fermions are different (spin-

one versus spin-1/2) and, when it comes to the specifics, then the only boson we actually know (the 

photon) turns out to not be a typical boson because it can’t have zero spin.  

Of course, it is what it is, and we can work with it. In fact, we think it’s the key to solving the mystery of 

Mach-Zehnder interference: how could a photon possibly follow two paths simultaneous, somehow, and 

then interfere with itself? 

The Mach-Zehnder experiment 
The Mach-Zehnder interferometer consists of two beam splitters (BS1 and BS2) and two perfect mirrors 

(M1 and M2). An incident beam coming from the left is split at BS1 and recombines at BS2, which sends 

two outgoing beams to the photon detectors D0 and D1. More importantly, the interferometer can be 

set up to produce a precise interference effect which ensures all the light goes into D0, as shown below. 

Alternatively, the setup may be altered to ensure all the light goes into D1. 

Figure 3: The Mach-Zehnder interferometer 

 

If we have a proper beam of light, then we have an easy explanation, which goes like this: 

• The first beam splitter (BS1) splits the beam into two beams.  

• These two beams arrive in phase or, alternatively, out of phase and we, therefore, have 

constructive or destructive interference that recombines the original beam and makes it go 

towards D0 or, alternatively, towards D1.  

However, when we analyze this in terms of a single photon – we now think of the photons going one-by-

one through the apparatus – then this classical picture becomes quite complicated. Complicated but – as 

we argue – not impossible. An alternative theory of what happens in the Mach-Zehnder interferometer 

might be the following one: 

1. The incoming photon is circularly polarized (left- or right-handed). 
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2. The first beam splitter splits our photon into two linearly polarized waves. 

3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 

4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

We will detail this in the next section, because what happens in a Mach-Zehnder interferometer is not 

all that straightforward. We should note, for example, that there are phase shifts along both paths: 

classical physics tells us that, on transmission, a wave does not pick up any phase shift, but it does so on 

reflection. To be precise, it will pick up a phase shift of π on reflection. We will refer to the standard 

textbook explanations of these subtleties and just integrate them in our more detailed explanation in 

the next section.16 Before we do so, we will show the assumption that the two linear waves are 

orthogonal to each other is quite crucial. If they weren’t, we would be in trouble with the energy 

conservation law. Let us show that before we proceed. Why? Because Dirac also mentions it as an 

argument against any classical explanation of the interference phenomenon. 

The energy conservation law 
Suppose the beams would be polarized along the same direction. If x is the direction of propagation of 

the wave, then it may be the y- or z-direction of anything in-between. The magnitude of the electric field 

vector will then be given by a sinusoid. Now, we assume we have two linearly polarized beams, of 

course, which we will refer to as beam a and b respectively. These waves are likely to arrive with a phase 

difference – unless the apparatus has been set up to ensure the distances along both paths are exactly 

the same. Hence, the general case is that we would describe a by cos(ω·t − k·x) = cos() and b by cos( + 

Δ) respectively. In the classical analysis, the difference in phase (Δ) will be there because of a difference 

of the path lengths17 and the recombined wavefunction will be equal to the same cosine function, but 

with argument  + Δ/2, multiplied by an envelope equal to 2·cos(Δ/2). We write18: 

cos() + cos( + Δ) = 2·cos( + Δ/2)·cos(Δ/2) 

We always get a recombined beam with the same frequency, but when the phase difference between 

the two incoming beams is small, its amplitude is going to be much larger. To be precise, it is going to be 

twice the amplitude of the incoming beams for Δ = 0. In contrast, if the two beams are out of phase, the 

amplitude is going to be much smaller, and it’s going to be zero if the two waves are 180 degrees out of 

phase (Δ = π), as shown below. That does not make sense because twice the amplitude means four 

times the energy, and zero amplitude means zero energy. The energy conservation law is being violated: 

photons are being multiplied or, conversely, are being destroyed.  

                                                           
16 For a good classical explanation of the Mach-Zehnder interferometer, see: K.P. Zetie, S.F. Adams and R.M. Tocknell, January 
2000, How does a Mach–Zehnder interferometer work? 
(https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf, accessed on 5 
November 2018). 
For a good quantum-mechanical explanation (interference of single photons), see – for example – the Mach-Zehnder tutorial 
from the PhysPort website (https://www.physport.org/curricula/QuILTs/, accessed on 5 November 2018).  
17 Feynman’s path integral approach to quantum mechanics allows photons (or probability amplitudes, we should say) to travel 
somewhat slower or faster than c, but that should not bother us here. 
18 We are just applying the formula for the sum of two cosines here. If we would add sines, we would get sin() + sin( + Δ) = 

2·sin( + Δ/2)·cos(Δ/2). Hence, we get the same envelope: 2·cos(Δ/2). 

https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf
https://www.physport.org/curricula/QuILTs/
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Figure 4: Constructive and destructive interference for linearly polarized beams 

 

Let us be explicit about the energy calculation. We assumed that, when the incoming beam splits up at 

BS1, that the energy of the a and b beam will be split in half too. We know the energy is given by (or, to 

be precise, proportional to) the square of the amplitude (let us denote this amplitude by A).19 Hence, if 

we want the energy of the two individual beams to add up to A2 = 12 = 1, then the (maximum) amplitude 

of the a and b beams must be 1/√2 of the amplitude of the original beam, and our formula becomes: 

(1/√2)·cos() + (1/√2)·cos( + Δ) = (2/√2)·cos( + Δ/2)·cos(Δ/2) 

This reduces to (2/√2)·cos() for Δ = 0. Hence, we still get twice the energy – (2/√2)2 equals 2 – when the 

beams are in phase and zero energy when the two beams are 180 degrees out of phase. This doesn’t 

make sense.  

Of course, the mistake in the argument is obvious. This is why our assumption that the two linear waves 

are orthogonal to each other comes in: we cannot just add the amplitudes of the a and b beams because 

they have different directions. If the a and b beams – after being split from the original beam – are 

linearly polarized, then the angle between the axes of polarization should be equal to 90 degrees to 

ensure that the two oscillations are independent. We can then add them like we would add the two 

parts of a complex number. Remembering the geometric interpretation of the imaginary unit as a 

counterclockwise rotation, we can then write the sum of our a and b beams as: 

(1/√2)·cos() + i·(1/√2)·cos( + Δ) = (1/√2)·[cos() + i·cos( + Δ)] 

What can we do with this? Not all that much, except noting that we can write the cos( + Δ) as a sine for 

Δ = ± π/2. To be precise, we get: 

(1/√2)·cos() + i·(1/√2)·cos( + π/2) = (1/√2)·(cos − i·sin) = (1/√2)·e−i·   

(1/√2)·cos() + i·(1/√2)·cos( − π/2) = (1/√2)·(cos + i·cos) = (1/√2)·ei·  

This gives us the classical explanation we were looking for: 

1. The incoming photon is circularly polarized (left- or right-handed). 

2. The first beam splitter splits our photon into two linearly polarized waves. 

                                                           
19 If we would reason in terms of average energies, we would have to apply a 1/2 factor because the average of the sin2 and 

cos2 over a cycle is equal to 1/2. 
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3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 

4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

What about the 1/√2 factor? If the e−i· and ei· wavefunctions can, effectively, be interpreted 

geometrically as a physical oscillation in two dimensions – which is, effectively, our interpretation of the 

wavefunction20 – then   then each of the two (independent) oscillations will pack one half of the energy 

of the wave. Hence, if such circularly polarized wave splits into two linearly polarized waves, then the 

two linearly polarized waves will effectively, pack half of the energy without any need for us to think 

their (maximum) amplitude should be adjusted. If we now think of the x-direction as the direction of the 

incident beam in the Mach-Zehnder experiment, and we would want to also think of rotations in the xz-

plane, then we need to need to introduce some new convention here. Let us introduce another 

imaginary unit, which we’ll denote by j, and which will represent a 90-degree counterclockwise rotation 

in the xz-plane.21  

The circularly polarized photon and the reality of the linear polarization states 
Our photon model is consistent with the assumption they will – altogether – make for a beam that is 

circularly polarized. The spin direction may, of course, be left-handed or right-handed, as shown below 

(Figure 5). 

Figure 5: Left- and right-handed polarization22 

 

We are now coming to the crux of the matter: we will think of these photons as the sum of two linearly 

polarized oscillations. We write:  

cos + i·sin = ei· (RHC) 

cos(−) + i·sin(−) = cos − i·sin = e−i· (LHC) 

What is the geometry here? It is quite simple but let us spell it out so we have no issues of 

interpretation. If x is the direction of propagation of the wave, then the z-direction will be pointing 

                                                           
20 We can assign the physical dimension of the electric field (force per unit charge, N/C) to the two perpendicular oscillations. 
21 This convention may make the reader think of the quaternion theory but we are thinking more of simple Euler angles here: i 
is a (counterclockwise) rotation around the x-axis, and j is a rotation around the y-axis.  
22 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 

https://commons.wikimedia.org/wiki/User:Dave3457


13 
 

upwards, and we get the y-direction from the righthand rule for a Cartesian reference frame.23 We may 

now think of the oscillation along the y-axis as the cosine, and the oscillation along the z-axis as the sine. 

If we then think of the imaginary unit i as a 90-degree counterclockwise rotation in the yz-plane (and 

remembering the convention that angles (including the phase angle ) are measured counterclockwise), 

then the right- and left-handed waves can effectively be represented by the wavefunctions above. 

It was, in fact, easy visualizations like this that encouraged us to think of a geometric representation of 

the wavefunction. For example, we may adopt the convention that the imaginary unit should be 

interpreted as a unit vector pointing in a direction that is perpendicular to the direction of propagation 

of the wave and one may then write the magnetic field vector as B = −i·E/c.24 The minus sign in the B = 

−i·E/c. It is there because of consistency: we must combine a classical physical right-hand rule  for E and 

B here as well as the mathematical convention that multiplication with the imaginary unit amounts to a 

counterclockwise rotation by 90 degrees. This allows us to re-write Maxwell’s equations using complex 

numbers. We have done that in other papers, so if the reader is interested he can check there. 25 The 

point to note is that, while we will often sort of forget to show the magnetic field vector, the reader 

should always think of it – because it is an integral part of the electromagnetic wave: when we think of 

E, we should also think of B. Both oscillations carry energy. 

The mention of energy brings me to another important point. As mentioned above, we think of a 

circularly polarized beam – and a photon – as a superposition of two linear waves. Now, these two 

linearly polarized waves will each pack half of the energy of the combined wave. It is a very important 

point to make because any classical explanation of interference – like the one we will offer in the next 

section – will need to respect the energy conservation law. Note that, while each wave packs half of the 

energy of the combined wave, their (maximum) amplitude is the same: there is no change there. We can 

now offer the following classical explanation of the Mach-Zehnder experiment for one photon only.26 

  

                                                           
23 Note the reference frame in the illustrations of the LHC and RHC wave – which we took from Wikipedia – is left-handed. Our 
argument will use a regular right-handed reference frame. 
24 As usual, we use boldface letters to represent geometric vectors – the electric (E) and magnetic field vectors (B), in this case. 
There is a risk of confusion between the energy E and the electric field E because we use the same symbols, but the context 
should make clear what is what. 
25 See, for example, Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  
26 We have written about this topic before (see: Jean Louis Van Belle, Linear and circular polarization states in the Mach-
Zehnder interference experiment, 5 November 2018,  http://vixra.org/pdf/1811.0056v1.pdf). Hence, we will only offer a 
summary of what we wrote there. 

http://vixra.org/pdf/1812.0202v1.pdf
http://vixra.org/pdf/1811.0056v1.pdf
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A classical explanation for the interference of a photon with itself 
We may now advance the following classical explanation for the results of the one-photon Mach-

Zehnder experiment: 

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 

i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 

oscillation) = j·sin 
Lower beam 
(horizontal oscillation) 

= cos 
 

The vertical oscillation 
gets rotated clockwise 

and becomes −j·j·sin 

= −j2·sin = sin 
The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 

becomes j·sin. The 
lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (e−i· = cos − 

i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 

oscillation) = −j·sin 
Lower beam 
(horizontal oscillation) 

= cos 
 

The vertical oscillation 
gets rotated clockwise 
and becomes 

(−j)·(−j)·sin = = 

j2·sin = −sin 
The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 

becomes −j·sin. The 
lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos − j·sin = e−j·.  
This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

Of course, we may also set up the apparatus with different path lengths, in which case the two linearly 

polarized beams will be out of phase when arriving at BS1. Let us assume the phase shift is equal to Δ = 

180° = π. This amounts to putting a minus sign in front of either the sine or the cosine function. Why? 

Because of the cos( ± π) = −cos and sin( ± π) = −sin identities. Let us assume the distance along the 

upper path is longer and, hence, that the phase shift affects the sine function.27 In that case, the 

sequence of events might be like this: 

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 

i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 

oscillation) = j·sin 
Lower beam 
(horizontal oscillation) 

= cos 
 

The vertical oscillation 
gets rotated clockwise 

and becomes −j·j·sin 

= −j2·sin = sin 
The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 

j·sin( + π) = −j·sin. 
The lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos − j·sin = e−j·.  
This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

                                                           
27 The reader can easily work out the math for the opposite case (longer length of the lower path). 
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LHC Photon (e−i· = cos − 

i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 

oscillation) = −j·sin 
Lower beam 
(horizontal oscillation) 

= cos 

The vertical oscillation 
gets rotated clockwise 
and becomes 

(−j)·(−j)·sin = = 

j2·sin = −sin 
The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 

−j·sin( + π) = +j·sin. 
The lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

What happens when the difference between the phases of the two beams is not equal to 0 or 180 

degrees? What if it is some random value in-between? Do we get an elliptically polarized wave or some 

other nice result? Denoting the phase shift as Δ, we can write: 

cos + j·sin( + Δ) = cos + j·(sin·cosΔ + cos·sinΔ) 

However, this is also just a circularly polarized wave, but with a random phase shift between the 

horizontal and vertical component of the wave, as shown below. Of course, for the special values Δ = 0 

and Δ = π, we get cos + j·sin and cos − j·sin once more.   

Figure 6: Random phase shift between two waves 

 

Are we done? For the purposes of this paper, yes. We think we have shown that we can interpret the 

linear polarization states as something real: the linear polarization state carries half the energy of the 

photon – after it leaves the beam splitter. It carries no angular momentum and these linearly polarized 

half-photons can, therefore, not be absorbed by an electron. Why not? Here, we should remind 

ourselves of the classical picture of how an electromagnetic wave interferes with an electron orbital. 

Photon-electron interactions and conservation of angular momentum  
The one-cycle photon model we developed presents the photon as an oscillating electromagnetic field 

and, hence, we will want to think of the classical picture of an interaction. The illustration below (Figure 

7) shows what happens if a linearly polarized light beam hits a charged particle (think of an electron). 

The electric field will cause the charge to move upwards and, as it acquires some velocity, the magnetic 

field comes into play too. The magnetic force on the particle is given by the F = qvB, and it gives us the 

classical explanation for the momentum of light, which is also referred to as referred to as radiation or 

light pressure.    
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Figure 7: The pushing momentum of light 

 

The magnetic force – which is just denoted as F in the diagram above – will be equal to F = qvB, and the 

right-hand rule for a vector cross-product tells us the direction of that force is going to be in the 

direction of the beam. Furthermore, because the magnitude of the magnetic field (B) is 1/c times that of 

the electric field E, one can also show that the pushing momentum of light will be equal to the 1/c times 

the energy that is being absorbed. That explains the simplest of simple equations for a photon that – 

without any doubt – you have seen many times already, but for which you might not have a mental 

picture:  

p = m · 𝑐 =
E

𝑐2
· 𝑐 =

E

𝑐
 

The 1/c factor may feel like the momentum – or the magnetic field itself – are not very important, but 

we would like to remind the reader we could choose to use equivalent distance and time units, so c = 1 

and the whole things looks very different.28 Hence, you should not think the magnetic force is, 

somehow, less real or not so important. The magnetic force becomes very important when velocities 

become relativistic. Indeed, if we just think magnitudes, then we can write this29: 

𝐹magnetic = q · 𝑣 · 𝐵 = q · 𝑣 ·
𝐸

𝑐
= q · β · 𝐸 

This shows the magnitude of the magnetic force approaches that of the electrostatic force when the 

velocity approaches that of light. It is, therefore, rather strange most textbooks in physics will only focus 

on the electric field vector when discussing light. Big mistake! We tend to focus on the electric force 

only and forget the magnetic force is always there, too! 

However, in this initial exploration, we will follow the convention and that is to think of the electric 

vector as the primary one. Think, for example, of how an electric field might give a jolt to an electron in 

an atomic orbital, as shown below (Figure 8). 

                                                           
28 It is quite interesting to think this through. Using equivalent units will, of course, also change the way we measure 
acceleration. Hence, Newton’s force law will only make sense if we also use natural units for mass (or, what amounts to the 
same, for force). 
29 As usual, there is a risk of confusing the reader because we use the same symbol (E and E) for energy and electric field, but 
the context should make clear what is what. 
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Figure 8: How the electric field of a photon might drive an orbital electron 

 

We think the illustration – as simple as it is – bridges classical mechanics with quantum mechanics 

because it shows we’re not only transferring energy: we’re also transferring angular momentum. Now, 

the quantum in quantum mechanics tells us that angular momentum comes in discrete units: Planck’s 

unit (ħ). To be precise, we interpret the reality of Planck’s quantum of action – which, in its reduced 

form (ħ = h/2π), is, effectively, a unit of angular momentum – as implying that photon absorption and 

emission by an atom (think of the electron orbitals here) should respect the integrity of a cycle. You may 

criticize and say: what is this rule? Some new random interpretation of quantum mechanics? Our 

answer is: yes. That’s what’s on offer here. Something new, but it is not random.  

We should now re-consider the question we had asked you to explore previously: what happens when 

an electron jumps several Bohr orbitals? The angular momentum between the orbitals will then differ by 

several units of ħ. What happens to the photon picture in that case? It will pack the energy difference, 

but will it also pack several units of ħ? The answer is negative: we should still think of the photon as a 

one-cycle oscillation. Its energy will not be spread over several cycles. In other words, the two equations 

below need to make sense for all transitions: 

𝑝ℎ𝑜𝑡𝑜𝑛: S = ℎ = pγ ∙ λγ =
Eγ

𝑐
λγ =

Eγ

𝑓γ
= Eγ ∙ Tγ 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛: S = 𝑛 · ℎ = p𝑛 ∙ λ𝑛 = m𝑒𝑣𝑛λ𝑛 = E𝑛 ∙ T𝑛 

Hence, the law of conservation of angular momentum needs to be re-interpreted: the idea of an 

elementary cycle needs to be added, and an elementary cycle is different for a zbw charge, an electron 

orbital or – in this case – a photon.  

How beam splitters actually work 
You may say my solution is artificial: why would a beam splitter changes the polarization of the incoming 

light? As a matter of fact, that is what many beam splitters actually do. We already hinted at the fact 

that the physics of polaroids or beam splitters can be very complicated. The chemical formula for a 

tourmaline crystal, for example, is the following one: XY3Z6(T6O18)(BO3)3V3W.30 While being crystalline, it 

is a very complicated structure and it is, therefore, rather remarkable that its optical properties are 

remarkably simple: tourmaline is a polaroid material, which means that it has an optic axis: a polaroid 

will transmit light that is linearly polarized parallel to the axis of the polaroid, with very little or no 

                                                           
30 There are some placeholder symbols in this formula. The formula can be further explained by noting the following:  
X = Ca, Na, K, ▢ = vacancy; Y = Li, Mg, Fe2+, Mn2+, Zn, Al, Cr3+, V3+, Fe3+, Ti4+, vacancy; Z = Mg, Al, Fe3+, Cr3+, V3+; T = Si, Al, B; B = B, 
vacancy; V = OH, O; W = OH, F, O. 
 



18 
 

absorption, but light that is polarized in a direction that is perpendicular to the axis of the polaroid will 

be very strongly absorbed. 

Beam splitters are even more remarkable devices. There are many types of beam splitters but classical 

beam splitters will use birefringent material. Birefringence involves double refraction: a beam of light, 

when incident upon a birefringent material, will be split into two beams taking slightly different paths 

and – importantly – the polarization of the two outgoing beams will differ from that of the incident 

beam. The illustration below (Figure 9) shows the case for incoming circularly polarized light and 

outgoing linearly polarized light.31 

Figure 9: How circularly polarized lights splits into linearly polarized beams 

 

 

Conclusions 

Mystery solved? We think so. The explanation of the interference of a photon with itself in a Mach-

Zehnder interferometer experiment may come across as somewhat artificial but it is surely consistent 

with the way beam splitters actually work – physically, that is. However, even if the reader might feel 

our explanation could be ad hoc – which we don’t think it is – such sentiment is not to the point here: 

what we wanted to do here is to show that an alternative explanation – using classical concepts and 

hypotheses – is, in fact, possible. We are not saying our alternative theory is the explanation. 

What we are saying is that the mainstream view that the ‘mystery’ in quantum mechanics will, forever, 

remain a mystery is not based on any reasonable assumption. A common-sense or realist interpretation 

of quantum mechanics is, therefore, an idea whose time has come. Bell’s No-Go Theorem should not 

prevent us from trying to go everywhere: all that it takes is – as Bell himself pointed out – some kind of 

‘radical conceptual renewal’.  

                                                           
31 The illustration is taken from Wikipedia’s article on birefringence (https://en.wikipedia.org/wiki/Birefringence) and was made 
by Mikael Häggström. He is doctor specialized in imaging for medical purposes. Hence, we assume this illustration is basically 
correct although we could not trace its origin to this or that textbook. 

https://en.wikipedia.org/wiki/Birefringence
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We hope our papers show how that ‘radical conceptual renewal’ might look like. It is, in fact, not all that 

radical: one just need to apply the basic conservation laws (energy, linear and angular momentum) 

consistently while, at the same time, accepting angular momentum comes in discrete units: Planck’s 

unit. What we are saying, basically, is that quantum electrodynamics – as a theory, and in its current 

shape and form – is incomplete: it is all about electrons and photons – and the interactions between the 

two – but the theory lacks a good description of what electrons and photons actually are. All of the 

weirdness of Nature is, therefore, in this weird description of the fields: perturbation theory, gauge 

theories, Feynman diagrams, quantum field theory, etcetera. This complexity in the mathematical 

framework does not match the intuition that, if the theory has a simple circle group structure32, one 

should not be calculating a zillion integrals all over space over 891 4-loop Feynman diagrams to explain 

the magnetic moment of an electron in a Penning trap.33 This is what motivated our search for a 

geometric model of both the electron as well as the photon, which we think have offered here. 

A final note should be made on Uncertainty. All of our formulas look pretty certain, so what about 

Uncertainty, then? Here, we would refer the interested reader to our remarks on that in our 

manuscript.34  We suggest Planck’s quantum of action might have to be interpreted as a vector⎯just like 

the angular momentum vector. The uncertainty – or the probabilistic nature of Nature, so to speak – 

might, therefore, not be in its magnitude, but in its direction. Many quantum-mechanical equations – 

such as Schrödinger’s equation, for example – should probably also be written as vector equations.35 

Jean Louis Van Belle, 13 June 2019 

 

  

                                                           
32 QED is an Abelian gauge theory with the symmetry group U(1). This sounds extremely complicated but you can interpret this 
rather simply: it means its mathematical structure is basically the same as that of classical electromagnetics. 
33 We refer to the latest theoretical explanation of the anomalous magnetic moment here: Stefano Laporta, High-precision 
calculation of the 4-loop contribution to the electron g-2 in QED, 10 July 2017, https://arxiv.org/abs/1704.06996. As for our 
classical explanation, see: The Anomalous Magnetic Moment: Classical Calculations, 11 June 2019 
(http://vixra.org/abs/1906.0007). 
34 The Emperor Has No Clothes: A Realist Interpretation of Quantum Mechanics, 21 April 2019 (http://vixra.org/abs/1901.0105). 
35 We made a start with this in a previous paper: Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  

https://arxiv.org/abs/1704.06996
http://vixra.org/abs/1906.0007
http://vixra.org/abs/1901.0105
http://vixra.org/pdf/1812.0202v1.pdf
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References 

Academics will usually add a long list of books and articles here, but I don’t want to do that. I would also 

advice interested readers to not trust too much in the latest update of this or that textbook. I 

recommend reading originals such as Dirac’s Principles of Quantum Mechanics, which is the topic of this 

paper!  

There are several advantages of reading original work. The most obvious advantage is that they are 

often available online. More importantly, however, they are also widely referenced in various discussion 

fora. Hence, if you have an issue with this or that interpretation, or some formula, in an original book of 

one of the founding fathers of quantum mechanics, then you will be able to google for help very easily. 

Feynman’s Lectures is and remains a classic for me (http://www.feynmanlectures.caltech.edu/). Some of 

his Lectures on quantum mechanics – such as chapter 4, on identical particles – suffer from excessive 

and speculative generalization (see my paper on Philosophy and Physics in this regard: 

http://vixra.org/abs/1906.0082), but even this chapter makes you think for yourself. That is very 

valuable, in my humble view, because I find more modern textbooks often too confident in their 

approach: they emphasize what we know, as opposed to what we don’t know. Feynman’s Lectures also 

have the advantage that you get the math you need with the physics you study.  

However, in case you’d want a good mathematical introduction, Mathews and Walker’s Mathematical 

Methods of Physics, is a reference that stands out for me. 

http://www.feynmanlectures.caltech.edu/
http://vixra.org/abs/1906.0082

