
A CONCISE PROOF FOR BEAL’S CONJECTURE

Abstract. In this paper, we show how ax−by can be expressed as a binomial

expansion (to an indeterminate power, z), and use it as the basis for a proof

for the Beal Conjecture.

Introduction
The Beal Conjecture states that for the equation ax−by = cz, where gcd(a, b, c) = 1,
integer solutions only exist for the values of x or y or z = 1, 2, but not for values of
x, y, z > 2.1

We restate the equation as ax − by = cz without loss of integrity, and demonstrate
how ax − by can be reconfigured as a binomial expansion, containing not only the
standard factors for a single power but also an additional non-standard factor. We
then give a simple proof for Beal’s Conjecture.

Theorem 0.1. To prove that, for the equation ax− by = cz, where gcd(a, b, c) = 1,
integer solutions only exist for the values of x or y or z = 1, 2, but not for values
of x, y, z > 2.

We first observe the following identity for ax−by as a binomial expansion (where
the upper index n is an indeterminate integer):

(0.1) ax − by =

n∑
k=0

(
n

k

)
(a + b)n−k(−ab)k(ax−n−k − by−n−k).

Regardless of the value of n, the right hand side always equals ax − by. So we fix
n as z, such that:

(0.2) ax − by =

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k(ax−z−k − by−z−k).

Proof. We now assume that a solution exists for the equation ax−by = cz for values
of x, y, z > 2. From (0.2) if ax − by = cz, it follows that:

(0.3)

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k(ax−z−k − by−z−k) = [(a + b)|s| − ab|t|]z.

for all s, t ∈ Q, where gcd(s, ab) = 1 (since a shared factor would mean that c would
no longer be coprime with ab), such that [(a + b)|s| − ab|t|] = c. This expands to:

(0.4)
z∑

k=0

(
z

k

)
(a + b)z−k(−ab)k(ax−z−k − by−z−k) =

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k|s|z−k|t|k.
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Comment : We know that the right hand side is a perfect power; we are assuming
the left hand side is but it may not be. In our proof we are hoping that it isn’t,
and that there can be no equality for z > 2.

Since the factors (a+b)z−k and (−ab)k are constant on both sides, and standard
in exponential form for a perfect power, we need only test whether the associated
factor on the left, i.e. (ax−z−k − by−z−k), is the same in exponential form as the
associated factors on the right, i.e. |s|z−k|t|k. For if it cannot even be represented
in the correct standard form for a binomial expansion of a perfect power, then there
can be no equality in value either (while remaining a perfect power).

It is pointless to test for inequality of value when the associated factors, |s|z−k

and |t|k, are variable (whose values depend on each other), for even when s 6= v
and t 6= w, the following equation holds true:

[(a + b)|s| − ab|t|]z = [(a + b)|v| − ab|w|]z

i.e. when a = 8, b = 5, s = 120, t = 26, v = 160 and w = 39. In the binomial
expansion of this equation, the exponential forms of each counterpart term may be
the same even while their values differ. So trying to prove inequality of counterpart
terms (in terms of value) will pose problems.

Therefore, we will seek to prove only inequality in form, and simplify the problem
as follows:

(0.5)

z∑
k=0

|s|z−k|t|k =

z∑
k=0

(ax−z−k − by−z−k)

For this equation to have solutions the associated factor, (ax−z−k − by−z−k),
must exactly correspond in form with |s|z−k|t|k in each counterpart (kth) term, for
any given value of z. If it does, then the whole of the left hand side of (0.4) will
be a power to z (as we know the right hand side is), and the Beal equation will
have solutions. But if just one term of the corresponding binomials exists where
(ax−z−k−by−z−k) does not equal |s|z−k|t|k in form, then not only will the integrity
of that particular kth term be compromised as a valid binomial term, but also the
whole expression as an expansion of a power to z.

To do this we can assume that all the counterpart (kth) terms in (0.5) are equal
and in particular the first and last terms. [Then we will show that when these are
equal there is inequality in the second and penultimate terms. This circumvents
the need to demonstrate inequality in any further terms however large z becomes.]

So, we can deduce the second term from the equation in (0.5). If the first term
is |s|z = ±(ax−z − by−z), and the last term is |t|z = ±(ax−2z − by−2z), we can raise
the powers accordingly and multiply together to get:

(0.6) |s|z−1|t| = ±(ax−z − by−z)(z−1)/z(ax−2z − by−2z)1/z.

We can also calculate the second term directly from the right hand side of (0.5).
So when k = 1, the second term is:

(0.7) ±(ax−z−1 − by−z−1).
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Putting (0.6) and (0.7) together, we get:

(0.8) ±(ax−z − by−z)(z−1)/z(ax−2z − by−2z)1/z = ±(ax−z−1 − by−z−1).

Now we raise both sides by z and divide both sides by (ax−z − by−z)(z−2) and
rearrange to get:

(0.9) ±(ax−z − by−z)(ax−2z − by−2z) = ± (ax−z−1 − by−z−1)z

(ax−z − by−z)(z−2)
.

The procedure for the penultimate term is exactly the same. So, again using
|s|z−k and |t|k as our point of reference, we raise the powers accordingly and mul-
tiplying together to get the penultimate term:

(0.10) |s||t|z−1 = ±(ax−z − by−z)1/z(ax−2z − by−2z)(z−1)/z.

And directly from the binomial formula, when k = z − 1, the penultimate term is:

(0.11) ±(ax−2z+1 − by−2z+1)

Putting (0.10) and (0.11) together, we get:

(0.12) ±(ax−z − by−z)1/z(ax−2z − by−2z)(z−1)/z = ±(ax−2z+1 − by−2z+1).

This time, we raise both sides by z and divide both sides of by (ax−2z− by−2z)(z−2)

and rearrange to get:

(0.13) ±(ax−z − by−z)(ax−2z − by−2z) = ± (ax−2z+1 − by−2z+1)z

(ax−2z − by−2z)(z−2)
.

At this point we can ignore the ± sign. This was introduced by the absolute
values of s and t, which are now no longer necessary. It is self-evident that inequality
exists when there is opposite polarity. The harder task is to prove inequality when
polarity is the same. So by ignoring the signs, we are not making the proof easier.
So we will remove the ± sign and focus on circumstances where polarity is the
same.

Now, we note that in (0.9) and (0.13) the left hand sides are exactly the same.
This means we can subtract (0.9) from (0.13) and rearrange to get:

(0.14)

(
ax−z−1 − by−z−1

ax−2z+1 − by−2z+1

)z

=

(
ax−z − by−z

ax−2z − by−2z

)(z−2)

Solutions will exist to this equation
a) either if the large bracketed fractions on each side of have a value of 1 (since the
outer exponents are not equal),
b) or if the numerators (to their respective powers) on both sides are equal, and
simultaneously if the denominators (to their respective powers) on both sides are
equal.

Taking these two options in turn (still when x, y, z > 2):

a) since (ax−z−1 − by−z−1) 6= (ax−2z+1 − by−2z+1), and (ax−2z − by−2z) 6=
(ax−z − by−z), neither side in (0.14) has a value of 1, eliminating this option;

b) even without their respective powers, the base value of the left hand numera-
tor (ax−2z+1− by−2z+1) is greater than its right hand counterpart, (ax−2z− by−2z);
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but when the power is greater, (i.e. z > (z−2)), then the inequality is even greater.
So it follows that: (ax−2z+1 − by−2z+1)z 6= (ax−2z − by−2z)(z−2). We do not even
need to bother with the denominators.

Having now eliminated both options it follows that, for all values of x, y, z > 2:

(0.15)

z∑
k=0

|s|z−k|t|k 6=
z∑

k=0

(ax−z−k − by−z−k).

However, this contradicts our equation in (0.4). Under these circumstances there
is no equality of form, let alone value. Therefore the left hand side of (0.4) cannot
be a perfect power (as we assumed it was). And so our initial assumption that for
any value of x, y, z > 2 solutions exist for the equation cz = ax − by is false.

�

What then happens for the case z = 1, 2? Well, from (0.14), when z = 1 it
follows that:

(0.16)

(
ax−2 − by−2

ax−1 − by−1

)1

=

(
ax−1 − by−1

ax−2 − by−2

)−1

,

(0.17) ⇒
(
ax−2 − by−2

ax−1 − by−1

)
=

(
ax−2 − by−2

ax−1 − by−1

)
.

No contradiction.

And again from (0.14), when z = 2, it follows that:

(0.18)

(
ax−3 − by−3

ax−3 − by−3

)2

=

(
ax−2 − by−2

ax−4 − by−4

)0

,

(0.19) ⇒ 1 = 1.

Again, no contradiction.

So in both cases, when z = 1 and when z = 2, the standard rules of binomial
expansion can be applied to our non-standard binomial expression without contra-
diction such that (ax−z−k − by−z−k) is equal to |s|z−k|t|k in these two cases, and
therefore that in these cases solutions to the original equation exist.

References

1. Peter Schorer, Is There a ”Simple” Proof of Fermat’s Last Theorem? Part (1) Introduction

and Several New Approaches, 2014, www.occampress.com/fermat.pdf last accessed 14.12.17.

2. Andrew Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Ann. of Math (2), Vol.
141, No.3 (May, 1995), 443-551.

3. www.bealconjecture.com. Last accessed 14.12.17.



A CONCISE PROOF FOR BEAL’S CONJECTURE 5

The Rectory, Village Road, Waverton, Chester Ch3 7QN, UK

E-mail address: julianbeauchamp47@gmail.com


