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Abstract: From a theoretical point of view, it is appropriate and necessary to distinguish science and (fantastical) pseudoscience for both 
practical and theoretical reasons. One specific nature of pseudoscience in relation to science and other categories of human reasoning is 
the resistance to the facts. In this paper, several methods are analyzed which may be of use to prevent that personal belief can be 
masqueraded genuinely as scientific knowledge. In particular, modus ponens, modus tollens and modus conversus are reanalyzed. Modus 
sine, logically equivalent to modus ponens, is developed and modus inversus and modus juris are described in detail. In point of fact, in 
our striving for knowledge, there is still much more scientific work to be done on the demarcation line between science and pseudoscience. 

Keywords: non strict inequality, science, pseudoscience 
 

1. Introduction 
Acquiring long lasting and possibly generally valid scientific 
knowledge is concerned with problems which are closely related 
to central problems of science as such. At first blush, different 
scientific methods like inductive and deductive reasoning, 
systematic observation and experimentation and other methods of 
inquiry does not guarantee automatically the discovery and 
justification of new truths. Clear and sometimes formal standards 
or normative criteria for identifying advances and improvements 
in science with respect to mathematics are necessary too. In 
contrast to natural sciences, there is a widespread view that 
investigating fundamental questions concerning mathematics is to 
some extent problematic since the status of mathematical 
knowledge appears to be ultimate and therefore less open to 
revision than natural sciences. Narrowly speaking, even if the 
methods of investigation of natural sciences (more or less 
induction) may differ markedly from the methods of investigation 
in the mathematics (more or less deduction) there is usually a lot 
of overlap between them. both have at least on point in common, 
the (to many times possibly fruitless) hunt for the truth. The 
problem of course is, what is the truth and, in a way, easy to state, 
is there an absolute truth at all? The origins of the problems closely 
connected to the truth are traceable to ancient times and this simple 
statement masks a great deal of controversy. Is there at least one 
single knowledge, statement or axiom et cetera, which can or 
which must be accepted as being true by all scientist, since the 
axiomatic method is one of the crucial tools for mathematics? In 
an attempt to find a logically consistent answer to problems like 
this it is necessary to consider a number of distinct ways of 
answering questions about the nature of truth and the preservation 
of truth?  

 
 
Strategically, proceeding axiomatically has as one of many 
advantages to develop a theorem or a theory in a rigorous way from 
some fundamental principles. This fundamental insight underpins 
the possibility of an axiomatic system [1] to serve, for later 
investigations, as a tool for discovery of errors inside a theory. As 
a matter of fact, Hilbert's demand to find a complete and consistent 
set of axioms for all mathematics was counteracted to some extent 
by Gödel's incompleteness theorems [2]. But one way to handle 
these difficulties is to reject the possibility for the premises to be 
true but conclusion false. 

 

2. Material and Methods 
Inequalities are widely used in many branches of physics and 
mathematics. In general, an inequality is a relation that holds 
between two values which are not equal, which are different. In 
mathematics, analytic number theory often operates with 
inequalities. Usually, an inequality is denoted by the symbols < or 
> or by the symbols < or >. Furthermore, the author assumes that 
the readers of the present article is familiar with basic concepts 
connected with first-order logic and formal proof methods.  
Otherwise, for introduction as well as for deeper knowledge of the 
topic, secondary literature [3]–[5] is recommended. 
  

2.1. Definitions 

To date, mathematics is more or less a product of human thought 
and mere human imagination and belongs more to the world of 
human thought and mere human imagination then to 
experimentally determined sciences. In the following, it is of 
principal use to ground mathematics on nature grounded entities to 
disable the possibility to regard mathematics as a religion whose 
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language are numbers, definitions et cetera than as science. In the 
current article, some first-order logic language symbols are used: 
logical constants +0 (logical false), +1 (logical true); logical 
connectives ¬,  Ç,	È,	¬,	¬,	®	 ;  different predicate symbols; 
individual constants; variables et cetera. 
 
 
2.1.1. Definition (Number +1) 

Let c denote the speed of light in vacuum, let e0 denote the electric 
constant and let µ0 the magnetic constant. Let i denote the 
imaginary number [6]. The number +1 is defined as the expression 
 

+(𝑐' × 𝜀* × 𝜇*) ≡ +1 + 0 ≡ −𝑖' = +1 (1) 

 
while  “=” denotes the equals sign [7] or equality sign [8] used to 
indicate equality and “-” [9], [10] denotes minus signs used to 
represent the operations of subtraction and the notions of negative 
as well and “+” denotes the plus [7] signs used to represent the 
operations of addition and the notions of positive as well. 

 
2.1.2. Definition (Number +0) 

Let c denote the speed of light in vacuum, let e0 denote the electric 
constant and let µ0 the magnetic constant. Let i denote the 
imaginary number [6]. Let the arithmetic operation subtraction be 
signified by the minus sign (−). The number +0 is defined as the 
expression  
 

+(𝑐' × 𝜀* × 𝜇*) − (𝑐' × 𝜀* × 𝜇*) ≡ +1 − 1 ≡ +1 (2) 

 
2.1.3. Definition (The sample space) 

The sample space of quantum mechanical entity, a physical object, 
a mathematical object, an experiment, a random variable, a random 
trial et cetera is the set of all possible outcomes or results of that 
experiment or random variable or trial (principle of superposition 
of all possible outcomes or states et cetera) at a certain (period of) 
time t. Let At denote the sample space of a (Bernoulli distributed) 
random variable A which can take the values either +1 or +0 at a 
Bernoulli trial (period of time) t. Let Bt denote the sample space of 
another (Bernoulli distributed) random variable B which can take 
the values either +1 or +0 at the same Bernoulli trial (period of 
time) t. Let Pt denote the sample space of the premise, a (Bernoulli 
distributed) random variable P which can take the values either +1 
or +0 at a Bernoulli trial (period of time) t. Let Ct denote the sample 
space of the conclusion, another (Bernoulli distributed) random 
variable C which can take the values either +1 or +0 at the same 
Bernoulli trial (period of time) t. In general, the truth value of a 
true statement is true and the truth value of a false statement is 
false.  W e define the sample space A at a Bernoulli trial/period of 
time t as  

 

𝐴4 ≡ 5+04 , +14 6                                                      (3) 

 
We define the sample space of B at a Bernoulli trial/period of time 
t as 
 

 

𝐵4 ≡ 5+04 , +14 6                                                     (4) 

 
We define the sample space of a premise P at a Bernoulli 
trial/period of time t as  
 
 

𝑃4 ≡ 5+04 , +14 6                                                      (5) 

 
 
We define the sample space of a conclusion C at a Bernoulli 
trial/period of time t as  
 

𝐶4 ≡ 5+04 , +14 6                                                     (6) 

 
2.1.4. Definition (Strict inequalities) 

A strict inequality [11] is an inequality where the inequality 
symbol is either < (strictly less than) or > (strictly greater than). 
Consequently, a strict inequality has no equality conditions. In 
terms of algebra, we obtain 
  

𝐴4 < 𝐵4                                                                (7) 

 
The notation At is < Bt means that “At is strictly less than Bt”. The 
following table (Table 1) may illustrate this relationship under the 
conditions above. 

 
Table 1. The strict inequality At < Bt. 

At < Bt 
Conditioned Bt  

Total Bt = +1 Bt = +0 

Condition At 
At = +1 0 0  
At = +0 1 0  

Total   1 
 
The strict inequality At < Bt describes the complementary part of 
the conditio sine qua non relationship without At no Bt. In other 
words, it is p(At < Bt) + p(At > Bt) = 1. Equally there may exist 
conditions where   

 

𝐴4 > 𝐵4                                                                (8) 

 
The notation At > Bt means that “At is strictly greater than Bt”. The 
following table (Table 2) may illustrate this relationship under the 
conditions above. 

 
Table 2. The strict inequality At > Bt. 

At > Bt 
Conditioned Bt  

Total Bt = +1 Bt = +0 

Condition At 
At = +1 0 1  
At = +0 0 0  

Total   1 
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As can be seen, the strict inequality At > Bt describes the 
complementary part of the material implication or conditio per 
quam relationship if At then Bt. In other words, in general is 
necessary to point out that it is p(At > Bt) + p(At < Bt) = 1. 
 
 
 
2.1.5. Definition (Non strict inequalities) 

In contrast to strict inequalities, a non-strict inequality is an 
inequality where the inequality symbol is > (either greater than or 
equal to) or < (either less than or equal to). Consequently, a non-
strict inequality is an inequality which has an equality condition 
too. In terms of algebra, we obtain                                  
 

𝐴4 ≤ 𝐵4                                                                (9) 

 
The notation a < b means that “either At is less than Bt or At is 
equal to Bt”.  The following table (Table 3) may illustrate this 
relationship under the conditions above. 
 
 
Table 3. The non strict inequality At < Bt. 

At < Bt 
Conditioned Bt  

Total Bt = +1 Bt = +0 

Condition At 
At = +1 1 0  
At = +0 1 1  

Total   1 
 
 
 
As can be seen, the non-strict inequality At < Bt describes the 
conditio per quam relationship if At then Bt. In other words, it is 
p(At < Bt) = 1 - p(At > Bt). The notation  

 

𝐴4 ≥ 𝐵4                                                              (10) 

 
means that “either At is greater than Bt or At is equal to Bt”. The 
logical content of the non-strict inequality At > Bt is clearly 
demonstrated by the following table (Table 4). 
 
 
 
 
Table 4. The non strict inequality At > Bt. 

At > Bt 
Conditioned Bt  

Total Bt = +1 Bt = +0 

Condition At 
At = +1 1 1  
At = +0 0 1  

Total   1 
 
 
As can be seen, the non-strict inequality At > Bt describes the 
conditio sine qua non relationship without At no Bt. In other words, 
it is p(At > Bt) = 1 - p(At < Bt). 

 
 

 
2.1.6. Definition (Russell’s paradox) 

Considering Cantor's power class theorem, Russell was the first to 
discuss a contradiction arising in the logic of sets or classes at 
length in his published works [12], [13]. There are sets or classes 
which are members of themselves, while some other sets or classes 
are not members of themselves. A null or empty set or class must 
not be a member of itself. Thus far, according to Russell’s paradox 
[12], [13], let R denote the class of all classes, which itself is a set 
or class (with certain properties). The class of all classes R itself 
can be an empty set or class too and like the like the null class, 
must not be included in itself. In other words, either R is a member 
of itself or R is not a member of itself. Furthermore, either R 
contain itself or R does not contain itself. The following table may 
provide a preliminary overview (Table 5). 
 
Table 5. Russell’s paradox I. 

R is the set of all sets. 
R contains itself  

Total Yes No 
R is member  
of itself 

Yes a b U 
No c d U 

                           Total W W 1 
 
 
Disproof of Russell’s paradox. 
Russell's paradox (also known as Russell's antinomy), discovered 
by Bertrand Russell in 1901, demands that if R is not a member of 
itself (case U), then R’s definition dictates that it must contain itself 
(case c), and if R contains itself (case W), then R contradicts its 
own definition as the set of all sets that are not members of 
themselves.  
Claim. 
Russell’s conclusion is not justified and incorrect.  
Proof. 
First of all, Russell is mismatching being member of itself and 
containing itself, both notions are due to Russell understanding not 
identical. In particular, if containing itself and being member of 
itself are two different and not identical or equivalent notions, then 
it is possible for the set of all set R to contain itself while being a 
member of itself or not being a member of itself (i. e. empty set). 
In the same respect, if containing itself and being member of itself 
are two different notions then it is possible for the set of all sets not 
being member of itself (case U) while containing itself (case c) or 
not containing itself (case d). But even in the case if R just contains 
itself, Russell’s conclusion is incorrect. In this case we obtain the 
following situation (Table 6). 
 
Table 6. Russell’s paradox II. 

R is the set of all sets. 
R contains itself  

Total Yes No 
R is member  
of itself 

Yes    
No c  U 

                           Total W  1 
 
Even if R contains itself, according to Russel, R must not be a 
member of itself otherwise being member of itself and containing 
itself would mean the same. Q. e. d. 
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2.1.7. Definition (Basic principles of scientific engagement) 

  
 

I) The axiom principium identitatis (i. e. +1=+1) is the 
only principle you must respect. You shall not 
respect any other axioms before principium 
identitatis. 

II) You shall not tolerate any individual unscientific 
behavior or any other errors in science. 

III) You shall not misuse principium identitatis. 

IV) You shall make sure that at least every seventh of 
your publications must start with or must be 
devoted to principium identitatis. 

V) You shall honor your former scientific predecessors 
since the beginning of time and your present 
scientific competitor too. Without those, you would 
not be there, where you are today. 

VI) You shall not put into question the reputation or the 
integrity of your scientific colleagues. 

VII) You shall not work on two different scientific 
projects, articles et cetera at the same time. 

VIII) You shall not forget to give credit or reference to 
another scientist.  

IX) You shall not bear false witness against your former 
scientific predecessors, your scientific competitor 
or yourself. 

X) You shall be devoted only to the discovery of the 
truth. 

 
2.1.8. Definition (Theorem) 

Let a theory or a theorem denote something, a (mathematical, 
physical et cetera) equation, a statement et cetera which can be 
shown to be true while using some basic axioms (statements, 
equations et cetera which are given as true), definitions, other 
theorems or some rules of inference. A less important theorem may 
be denoted as a proposition too. 
 
2.1.9. Definition (Conjecture) 

Let conjecture indicate a statement which is being proposed to be 
true. As soon, as a valid proof of a conjecture is found, the 
conjecture becomes a theorem. Still, it may turn out to be that a 
conjecture is false. 
 
2.1.10. Definition (Lemma) 

Let lemma denote something like a ‘helping theorem’ or a result 
which is needed to prove a theorem. 
 
2.1.11. Definition (Corollary) 

Let corollary denote a result which follows directly from a 
theorem. 
 

2.2. Proof methods 

Detecting inconsistencies and inadequacies in scientific theories 
and resolving contradictions is of particular importance within 
science itself. Experiments or experience can help us many times 

to decide upon the truth or falsity of natural laws but do not provide 
any help to trace these inconsistencies and inadequacies back to 
the fundamental axioms from which they spring. Unfortunately, 
even peer-reviewed published or proposed theorems or statements 
of science and mathematics are not automatically correct. 
Whenever we find that a system has been questioned somehow, we 
shall test the same again and reject it if possible, as circumstances 
may require. It is necessary to prove these theorems while using 
rigorous proof methods of science and mathematics which are 
acceptable beyond any shadow of doubt. In order to formulate 
methodological rules which, prevent us to adopt inconsistencies 
and inadequacies in scientific theories it necessary to consider that 
the results of (thought) experiments are either to be rejected, or to 
be accepted. 
 
2.2.1. Direct proof 

A direct (mathematical) proof demonstrates the truth or falsehood 
of a given equation, statement by a straightforward combination of 
established facts. In other words, assume that something is true (i.e. 
axiom 1). In the following, rules of inference, axioms, and logical 
equivalences et cetera are used to show that a certain conclusion is 
also true. 
 
2.2.2. Proof by modus ponens  

Modus ponens is a basic rule of inference. It is a strikingly simple, 
if (Pt implies Ct) is true and Pt is true, then we may infer that Ct is 
true. The first premise of a modus ponens (MP) argument is a 
conditional Pt → Ct or “If Pt is true, then Ct is true” (Table 7). 
The second premise of MP is Pt is true. Under these circumstances, 
the conclusion of MP is Ct is true. Explicitly, modus ponens 
demands that (Pt  ® Ct) = +1 and that Pt = +1 is true. Only if these 
two premises are given, we may infer Ct is true, otherwise not. 
 
Table 7. Modus ponens (if Pt then Ct; Pt; therefore Ct) 

Pt  ® Ct 
Ct  

Total Ct = +1 Ct = +0 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

                           Total   1 
 
The modus ponens demands that Pt = +1 (Table 7). In this case, 
the conclusion is that Ct = +1 too. Modus ponens demands that a 
deductive argument with true premises (Pt = +1) and a false 
conclusion (Ct = +0) is invalid. Modus ponens in the form “If Pt is 
true, then Ct is true” tells the researcher what can be expected 
when Pt is true but is equally quiet and doesn’t tell anything at all 
if Pt is not given or if Pt is not true. In this case, modus ponens 
allows that either Ct is true or Ct is false. 
 
Table 8. Modus ponens (if Pt then Ct) is true; Pt is true; ergo Ct is true. 

Pt  ® Ct 
Ct  

Total Ct = +1 Ct = +0 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

                           Total   1 
 
 
The proof by modus ponens in classical two-valued logic can be 
clearly demonstrated by the use of the following overview. 
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Proof by modus ponens.   
Claim.   
  (Premise 1)  Pt → Ct is true. 
Proof.   
  (Premise 2)  Pt is true. 
  Additional arguments. 
Decision.   
  (Conclusion)  Ct is true. 
Quod erat demonstrandum.   
 
 
Scholium. 
However, it is not enough to assume that the rule of inference 
called modus ponens or Pt → Ct is true, it must be for sure true 
that Pt → Ct is true. Modus ponens or implication “must give a 
guarantee that truth is preserved ...” [14] . Modus ponens even if 
grounded on the preservation of truth has been criticized [15] too. 
Many times, modus ponens is used to proof the validity of time 
depended processes where an antecedent is prior in time to a 
consequent. An inappropriate use of modus pones under these and 
similar conditions can lead to contradictions. It is necessary to 
apply modus ponens especially on events which occur together, at 
the same (period of time) t. The following example may formalize 
modus ponens in more detail. For the sake of simplicity, we define 
P1 = (+1=+1), we define P2 = (+2=+2) and we define C1 = (+3=+3). 
The proof by modus ponens is as follows. 

 
Proof by modus ponens I.   
Claim.   
Premise 1: P1 → C2: if the premise P1 = (+1=+1) is true then the 
conclusion C1 = (+3=+3) is true. 
Proof.   
Premise 2: P1 : +1 = +1 is true. 
Adding +2 we obtain +2 +1 = +1 +2  or +3=+3. 
Decision. (Conclusion)  
C1 = (+3=+3) is true. 
Quod erat demonstrandum. 
 

According to modus ponens, if a certain premise is true then the 
conclusion must be true. Modus ponens relies on a certain premise. 
But this does not exclude, that it is possible to reach at the same 
and true conclusion from other premises, which itself are true. 

 
Proof by modus ponens II.   
Claim.   
Premise 1: P2 → C1: if the premise P2 = (+2=+2) is true then the 
conclusion C1 = (+3=+3) is true. 
Proof.   
Premise 2: P2 : +2 = +2 is true. 
Adding +1 we obtain +2 +1 = +1 +2 or +3=+3. 
Decision. (Conclusion)  
C1 = (+3=+3) is true. 
Quod erat demonstrandum. 
 
Modus ponens allows that one and the same conclusion C1 = 
(+3=+3) is true and can be deduced from different points of view, 
from different premisses. In the case of the premisse P1 it is true 
that +1=+1. The premise P2 is because of premise P1 not incorrect, 
because P2 : +2 = +2 is also true, the premise P2 is just not used for 
the proof performed. However, as can be seen in the second proof, 
the premise P2 can used for the proof too without any restriction. 

Thus far, modus ponens cannot be misused for claims that from 
something incorrect or non-existent (P1 = +0) something correct 
(C1 = +0) follows. This would provide evidence of creatio ex 
nihilio. Modus ponens is based on the assumption that there are 
many premises which can lead to the same and true conclusion.  

Another example may be the following one. Define: Pt = +1=+1 is 
true. Define: Ct = It is raining. Proofing this relationship by modus 
ponens, we obtain: “If (+1 = +1 is true) then (it is raining is true)”. 
Such a proof is without any sense. Theoretically, it is possible that 
it is not raining while (+1 = +1 is true). Thus far, the first premise 
of modus ponens ((if Pt then Ct) is true) is not given and therefore, 
modus ponens cannot be used to proof this relationship. Modus 
ponens can be used only if some certain conditions are assured and 
not in general and independently of any conditions. In this context, 
some properties of implication, which are always true, should be 
considered. 

 
Totality. 

>?𝐴4 → 𝐵4 A ∪ ?𝐵4 → 𝐴4 AC = +1 (11) 

 
Transitivity. 

>?𝐴4 → 𝐵4 A → ?𝐵4 → 𝐶4 AC → ?𝐴4 → 𝐶4 A (12) 

 
Distributivity. 

>𝐶4 → ?𝐴4 → 𝐵4 AC → >?𝐶4 → 𝐴4 A → ?𝐶4 → 𝐵4 AC (13) 

 
2.2.3. Proof by modus secus (anti modus ponens) 

In point of fact, modus ponens demands that “if Pt is true then Ct 
is true” or Pt → Ct. Thus far, if the negation of modus ponens is 
true i. e. ¬(Pt → Ct) = true, then the original modus ponens 
proposition is false. The following table (Table 9) shows the case, 
when modus ponens is false. 

 
Table 9. Modus secus – negation of modus ponens 

¬(Pt ® Ct)   
Ct  

Total Ct = +1 Ct = +0 

Pt 
Pt = +1 0 1  
Pt = +0 0 0  

                           Total   1 
 
The proof by modus secus: premise Pt is true and conclusion Ct 
is false ¬(Pt ® Ct)  in classical two-valued logic can be 
demonstrated in the following way. 
 
Proof by modus secus.   
Claim.   
  (Premise 1)  ¬(Pt ® Ct)   
Proof.   
  (Premise 2)  Pt. 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Ct   
Quod erat demonstrandum.   
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Modus ponens guarantee a true conclusion when the premises are 
true but offers no guarantee when the premises are false. In general, 
either modus ponens (Pt → Ct) is true or modus secus (¬(Pt → Ct)) 
is true but not both. Thus far, under conditions under which 
technical or other errors are absent, it is not possible to reach at a 
false conclusion Ct as long as the premise Pt is true. More 
specifically, since a conclusion is either true or not true, modus 
ponens demands that from a true premise a true conclusion must 
follow. In a slightly different way, even if this focus on modus 
ponens might seem myopic, modus ponens is merely preserving 
the truth. 
2.2.4. Proof by modus sine 

Modus ponens or if Pt then Ct, even if generally valid, is able to 
generate only a limited set of facts. Despite modus ponens’ 
capacities to render some exceedingly clear and well-verified 
central truth, its broader uses endorse competing views. The 
preservation of the truth is one but not the only side of modus 
ponens. Modus ponens and modus sine are more than only closely 
related, both are logically equivalent. The logical equivalence 
between modus ponens and modus sine means that they are true 
together or false together. In other words, if a statement is true 
according to modus ponens, then the same statement is true 
according to modus sine (Table 10), and vice versa.  
 
Table 10. Modus sine – Without premisse Pt is false no conclusion Ct is 
false (¬Pt ¬ ¬Ct). Pt = +0. Ergo: Ct = +0. 

¬Pt ¬ ¬Ct 
Ct  

Total Ct = +0 Ct = +1 

Pt 
Pt = +0 1 1  
Pt = +1 0 1  

                           Total   1 
 
 

 

Modus sine as the other side of modus ponens doesn’t allow us to 
draw a false conclusion form a true premise. A brief 
methodological remark intended to clarify the basics of modus 
ponens has the potential to undermine today’s unquestioned 
traditional views on modus ponens. The other fundamental side of 
modus ponens (i.e. modus sine) is that without a false premise Pt 
no false conclusion Ct. In toto, it is no longer necessary to reduce 
modus ponens only to the “if Pt is true then Ct is true” point of 
view. The proof by modus sine in classical two-valued logic is not 
completely identical with the proof by contraposition and can be 
demonstrated by use of illustration. 

 
 
 
Proof by modus sine.   
Claim.   
  (Premise 1)  ¬Pt ¬ ¬Ct 
Proof.   
  (Premise 2)  ¬Pt 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Ct 
Quod erat demonstrandum.   
 
 

Table 11. 
     Implication Modus sine Contrapositive 
t Pt Ct ¬Pt ¬Ct (Pt → Ct) (¬Pt ¬ ¬Ct) (¬Ct → ¬Pt) 
1 1 1 0 0 1 1 1 
2 1 0 0 1 0 0 0 
3 0 1 1 0 1 1 1 
4 0 0 1 1 1 1 1 

 
In general, we obtain the logical equivalence of                                 

(𝑃4 → 𝐶4) = ?𝑃4 ∪ 𝐶4A = (¬𝑃4 ← ¬𝐶4) = (¬𝐶4 → ¬𝑃4)   (14) 

 
Because modus sine has always the same truth value (truth or 
falsity) as modus ponens itself, it can be a powerful tool for proving 
mathematical theorems from another point of view. 
 
 
2.2.5. Proof by modus tollens 

Modus tollens and modus ponens are closely related.  
Theophrastus was the first to explicitly describe the argument form 
modus tollens [16]. A proof by modus tollens is determined by the 
secured relationship Pt → Ct. The logical consequence is that the 
negation of Ct implies the negation of Pt is valid. Following 
Popper, “… it is possible by means of purely deductive inferences 
(with the help of the modus tollens of classical logic) to argue from 
the truth of singular statements to the falsity of universal 
statements.” ([17], p. 19). In other words, “By means of this mode 
of inference we falsify the whole system (the theory as well as the 
initial conditions) which was required for the deduction of the 
statement p, i.e. of the falsified statement.” ([17], p. 56). In 
particular and in contrast to a proof by contrapositive, the modus 
tollens statement demands that Pt → Ct or that the premise “If Pt is 
true, then Ct is true” is given. 

 
 
Proof by modus tollens.   
Claim.   
  (Premise 1)  Pt ® Ct 
Proof.   
  (Premise 2)  ¬Ct 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Pt 
Quod erat demonstrandum.   
 
 
In other words, modus tollens demands that (Pt ® Ct) = +1 and that 
¬ Ct = +1 is true. In this case, the conclusion is justified that ¬ Pt = 
+1 and is clearly demonstrated by use of the following table 12. 

 

Table 12. Modus tollens: if the premisse Pt is true then the conclusion Ct is 
true (Pt -> Ct). Ct =+0. Ergo: Pt =+0. 

Pt ® Ct 
Ct  

Total Ct = +1 Ct = +0 

Pt 
Pt = +1 1 0  
Pt = +0 1 1  

                           Total   1 
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The modus tollens rule may be written as a theorem of 
propositional logic as 

>? 𝑃4 → 𝐶4 A ∩ ¬ 𝐶4 C → ?¬ 𝑃4 A                                    (15) 

 
The following table 13 may illustrate modus tollens from another 
point of view. 
 
Table 13. 

     Implication  Modus tollens 
t Pt Ct ¬Pt ¬Ct (Pt → Ct) ((Pt → Ct)Ç¬ Ct) ((Pt → Ct)Ç¬ Ct) ® (¬ Pt) 

1 1 1 0 0 1 1 1 
2 1 0 0 1 0 0 0 
3 0 1 1 0 1 1 1 
4 0 0 1 1 1 1 1 

 
 
2.2.6. Proof by contraposition 

The contrapositive of Pt → Ct  is known to be ¬Ct → ¬ Pt. In general, 
if a statement is true, then its contrapositive is true and vice versa. 
If a single statement is false, then its contrapositive is false too. A 
statement and its contrapositive are logically equivalent. A proof 
by contraposition is based on the fact that the statement “if the 
premisse Pt is true then the conclusion Ct is true” is logically 
equivalent to the statement “if the conclusion Ct is not true then 
the premisse Pt is not true”. (Table 14). The proof by 
contraposition is not identical with the proof by modus tollens. In 
contrast to modus tollens, in a proof by contraposition we show 
that Ct is false and then conclude that Pt is false too. 

 
 
Table 14. Proof by contraposition: if the conclusion Ct is not true then the 
premisse Pt is not true (¬Ct → ¬Pt). 

¬Ct → ¬Pt 
Pt  

Total Pt = +0 Pt = +1 

Ct 
Ct = +0 1 0  
Ct = +1 1 1  

                           Total   1 
 
 
Modus ponens and the proof by contrapositive are logically 
equivalent and are determined by the minimum demand that 

 

? 𝑃4 ∩ 𝐶4 A = ?¬ 𝑃4 ∩ ¬ 𝐶4 A = 	+1 = 𝑇𝑅𝑈𝐸                 (16) 

 
The case Pt = +1 and Ct = +0 is neither compatible with the 
equation 

 

? 𝑃4 ∩ 𝐶4 A = (1 ∩ 0) = 	+0                                               (17) 

 

nor with the equation 

 

?¬ 𝑃4 ∩ ¬ 𝐶4 A = (0 ∩ 1) = 	+0                                         (18) 

 

In general, logical equivalence doesn’t care whether a glass is half-
full or half-empty. This is a matter of personal taste. A statement 
and its contrapositive are logically equivalent or it is  

 

? 𝑃4 A → ? 𝐶4 A ≡ ?¬ 𝐶4 A → ?¬ 𝑃4 A = +1 = 𝑇𝑅𝑈𝐸         (19) 

 

The contrapositive of a certain statement has the same truth value 
(truth or falsity) as the statement itself. If a contrapositive is true, 
then its statement is true (and vice versa). If a contrapositive is 
false, then its statement is false (and vice versa). 

 
Proof by contrapositive.   
Claim.   
  (Premise 1)  ¬Ct ® ¬Pt 
Proof.   
  (Premise 2)  ¬Ct 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Pt 
Quod erat demonstrandum.   
 
 
2.2.7. Proof by modus inversus 

A valid argumentation, in the absence of technical errors or 
incorrectly applied rules of reasoning et cetera, preserves the truth-
value of its premises with the logical necessity that if a premise Pt 
is false, then conclusions Ct derived from it should be false as well. 
The proof by inversion (modus inversus) is a valid rule of inference 
or a proof method “by which from a given proposition another is 
derived having for its subject the contradictory of the original 
subject and for its predicate the contradictory of the original 
predicate.” ([18], p. 51). In general, the inverse of the modus 
ponens statement Pt → Ct (“If Pt is true, then Ct is true”) is known 
to be the statement or the equation ¬Pt → ¬Ct or in spoken 
language: “If Pt is false, then Ct is false” (Table 15)  while the 
basic relationship (Pt → Ct) = (¬¬Pt → ¬¬Ct) is valid. 

 
Table 15. Proof by modus inversus: if the premisse Pt is not true then the 
conclusion Ct is not true (¬Pt → ¬Ct).  

¬Pt → ¬Ct 
Ct  

Total Ct = +0 Ct = +1 

Pt 
Pt = +0 1 0  
Pt = +1 1 1  

                           Total   1 
 

In contrast to modus ponens, modus inversus demands that it is not 
possible to draw a true conclusion from a false premise (Table 16).  

 
Table 16. Proof by modus inversus: without premisse Pt is true no 
conclusion Ct is  true (Pt ¬ Ct).  

Pt ¬ Ct 
Ct  

Total Ct = +1 Ct = +0 

Pt 
Pt = +1 1 1  
Pt = +0 0 1  

                           Total   1 
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The logical equivalent of the equation ¬Pt → ¬Ct or in spoken 
language: “If Pt is false, then Ct is false” is “Without Pt is true no 
Ct is true” and viewed by table 17 (Table 17). 

 

Table 17. Modus inversus. 

     
Modus 
ponens 

Modus 
inversus 

Without Pt is true  
no Ct is true. 

t Pt Ct ¬Pt ¬Ct (Pt → Ct) (¬Pt → ¬Ct) (Pt ¬ Ct) 

1 1 1 0 0 1 1 1 
2 1 0 0 1 0 1 1 
3 0 1 1 0 1 0 0 
4 0 0 1 1 1 1 1 

 

In other words, a direct proof provided without any technical errors 
which is grounded on something false must end up in something 
false.  

 
Proof by modus inversus.   
Claim.   
  (Premise 1)  ¬Pt ® ¬Ct 
Proof.   
  (Premise 2)  ¬Pt 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Ct 
Quod erat demonstrandum.   
 
 
 
 
2.2.8. Proof by modus juris (anti modus inversus) 

In point of fact, modus inversus demands that “if the premisse Pt is 
false then the conclusion Ct is flase (¬Pt ® ¬Ct). Pt =+0. Ergo: Ct 
=+0. Thus far, if the negation of modus inversus is true i. e. ¬(¬Pt 
® ¬Ct) = true, then the original modus inversus is false.  

 
Table 18. Proof by modus juris (negation of modus inversus): ¬ (¬Pt → 
¬Ct). Pt = 0. Ct = +1.  

¬ (¬Pt → ¬Ct) 
Ct  

Total Ct = +0 Ct = +1 

Pt 
Pt = +0 0 1  
Pt = +1 0 0  

                           Total   1 
 
Either modus inversus (¬Pt ® ¬Ct) is true or modus juris (¬(¬Pt 
® ¬Ct)) is true but not both. 

 
 
Proof by modus juris.   
Claim.   
  (Premise 1)  ¬ (¬Pt ® ¬Ct) 
Proof.   
  (Premise 2)  Pt = +0 
  Additional arguments. 
Decision.   
  (Conclusion)  Ct = +1 
Quod erat demonstrandum.   
 

 
2.2.9. Proof by modus conversus 

The inverse of Pt → Ct is ¬ Pt → ¬ Ct and logically equivalent to 
the contrapositive (¬ Ct → ¬ Pt) of the converse (Ct → Pt). If (Pt → 
Ct) is true, then its contrapositive (¬ Ct → ¬ Pt) is true (and vice 
versa). In other words, the contrapositive (¬ Ct → ¬ Pt) always has 
the same truth value (truth or falsity) as (Pt → Ct) itself, both are 
logically equivalent. The converse of (Pt → Ct) is the result of 
reversing the two parts of Pt → Ct to Ct → Pt (Table 19). 

 
Table 19. Proof by modus conversus: if conclusion Ct is true then premisse 
Pt is true (Ct → Pt).  

Ct → Pt 
Pt  

Total Pt = +1 Pt = +0 

Ct 
Ct = +1 1 0  
Ct = +0 1 1  

                           Total   1 
 

The converse as the contrapositive of the inverse has always the 
same truth value as the inverse. A truth table (Table 20) is able 
to provide evidence that (Pt → Ct) and its own converse (Ct 
→ Pt) are not logically equivalent unless both terms imply 
each other. 
 
 
 

Table 20. Modus conversus. 

     
Modus 
ponens 

Modus 
conversus 

Modus inversus 

t Pt Ct ¬Pt ¬Ct (Pt → Ct) (Ct → Pt) (¬Pt → ¬Ct) 
1 1 1 0 0 1 1 1 
2 1 0 0 1 0 1 1 
3 0 1 1 0 1 0 0 
4 0 0 1 1 1 1 1 

 

Under conditions where (Pt → Ct) is treated as being equivalent to 
its own converse (Ct → Pt) without being the case, the fallacy of 
affirming the consequent is committed. However, there are 
circumstances where (Pt → Ct) is true and its own converse (Ct → 
Pt) is equally true (i.e., if Pt is true if and only if Ct is also true). 
The dominance of modus ponens over the other rules of inference 
is not justified. In particular, it is possible to approach to a 
methodological proof of a theory, of a theorem et cetera from 
different points of view and it is completely a matter of personal 
taste whether a glass of water is treated as being either half full 
(modus ponens: Pt → Ct) or half empty (modus inversus: ¬Pt → 
¬Ct). One disadvantage of modus ponens is that conclusions with 
false antecedents are potentially considered true. In opposite to 
modus ponens, modus conversus does not allow to conclude a true 
conclusion (Ct = +1) from a false premise (Pt = +0).  
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2.2.10. Proof by modus securus 

The various rules of inferences differ in many aspects but 
have at least one point in common. Besides of all differences, 
the implication, the converse, the contrapositive and the 
inverse agree all completely at the trial t=1 and the trial t=4. In 
the following, Table 21 provides us with an overview. 

 
Table 21. Overview 

   Implication Converse   Contrapositive Inverse 

Trial t Pt Ct (Pt → Ct) (Ct → Pt) ¬Pt ¬Ct (¬Ct → ¬Pt) (¬Pt → ¬Ct) 

1 1 1 1 1 0 0 1 1 

2 1 0 0 1 0 1 0 1 

3 0 1 1 0 1 0 1 0 

4 0 0 1 1 1 1 1 1 

 

Note that the converse of Pt → Ct is Ct → Pt. The contrapositive of 
Pt → Ct is ¬Ct → ¬Pt and has the same truth values as Pt → Ct or it 
is Pt → Ct = ¬Ct → ¬Pt. The inverse of Pt → Ct is ¬Pt → ¬Ct. The 
converse of Pt → Ct and the inverse of Pt → Ct have the same truth 
values or it is Ct → Pt = ¬Pt → ¬Ct. In general, the inverse of 
premise Pt → Ct is the same as the contrapositive of the converse.  

 
 
Proof by modus securus I.   
Claim.   
  (Premise 1)  Pt  ¬®Ct 
Proof.   
  (Premise 2)  Pt 
  Additional arguments. 
Decision.   
  (Conclusion)  Ct 
Quod erat demonstrandum.   
 
 
or 
 
 
Proof by modus securus II.   
Claim.   
  (Premise 1)  Pt  ¬®Ct 
Proof.   
  (Premise 2)  ¬Pt 
  Additional arguments. 
Decision.   
  (Conclusion)  ¬Ct 
Quod erat demonstrandum.   
 
 
 
 
2.2.11. Proof by contradiction (Reductio ad absurdum) 

Science had always been conducted through step-by-step 
experiments or (logical) proofs but still requires a careful attention 
to (classical) logic otherwise various confusions and contradictions 
may appear. In classical logic, a contradiction is something which 
is always absurd. A theorem, a theory et cetera which includes a 
contradiction is logically inconsistent. In point of fact, even if it is 

difficult for scientists prove a theorem, a theory et cetera to be true 
for ever, it is necessary to prevent the outbreak of epidemic 
contradictions. Regardless of how many positive examples appear 
to support a theorem or a theory, one single counter-example or 
one single contradictory instance to a theory is sufficient enough 
to falsify the general validity of a theorem or of a theory et cetera. 
A proof by contradiction [19], [20] is a very commonly used 
scientific proof technique which is able to proof in general the 
falsity or the truth of a statement, an equality, a principle (P) et 
cetera. The principal concern, then, is that if contradictions are not 
absurd and if a theory has contradictions in it then reductio ad 
absurdum is not possible. However, reduction to the impossible is 
a style of reasoning which has been used by many authors and can 
be found repeatedly in Aristotle's Prior Analytics [21]. Throughout 
the history of philosophy and mathematics from classical antiquity 
onwards there have been circumstances where a thesis had to be 
accepted because its rejection would be untenable. “The proof ... 
reductio ad absurdum, which Euclid loved so much, is one of the 
mathematician’s finest weapons” ([22], p. 94).  

Classical logic, as we all know, cannot tolerate the presence of a 
contradiction without collapsing. In this context, the Principle of 
Pseudo-Scotus (PPS), also known since medieval times as ex 
contradictione sequitur quodlibet [23] (and also called the 
Principle of Explosion), states that from any theory or formal 
axiomatic system which includes a contradiction A and not A any 
other desired theorem B (correct or incorrect) can be derived. In 
other words, a contradiction in a formal axiomatic system can 
prove any theorem true. Thus far, even if there are trials advocated 
especially by the Peruvian philosopher Francisco Miró Quesada 
[24] and other [25] authors in modeling something like a system of 
paraconsistent logic  which attempts to deal with contradictions 
[26], the progress has been very slow. Many times, dialectical logic 
has been treated as a particular case [23] of paraconsistent logic. 
This is clearly a mistake. In contrast to paraconsistent logic, 
dialectical logic is an extension of classical logic and goes beyond 
classical logic. Dialectical logic [27] starts there, where classical 
logic ends and vice versa. The relationship between classical logic 
and dialectical logic [28]–[30] is similar to the relationship 
between Newtonian mechanics and Einstein’s special theory of 
relativity, the one pass over into its own other  [26] without any 
contradiction. Thus far and in short, a proof by contradiction 
demands to assume that Pt is false. In the following assume that 
¬Pt is true and derive a contradiction. Since Pt cannot be both true 
and false, Pt is false. 

 
Proof by contradiction.   
Claim.   
  (Premise 1)  Pt is false. 
Proof.   
  (Premise 2)  ¬Pt is true. 
  Additional arguments. 
Decision.   
  (Conclusion)  Derive a contradiction 
     from ¬ Pt is true.  
Quod erat demonstrandum.   
 
Something impossible or incorrect cannot be derived from 
something correct as long as there are no technical or other errors 
inside a proof. 
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2.2.12. Proof by counterexample 

Can we learn anything from scientific theories or from experiments 
at all? Theoretically, one single experiment [31] has the potential 
to refute a whole theory even if historically, no theory has been 
refuted by one single experiment. In philosophy, mathematics, 
physics or in science as such, it is not all the time possible to prove 
all scientific claims in time beyond any doubt. The proof by a 
counterexample [32]–[35] is a valid proof methodology to infer 
consequences of scientific claims or theories and to demonstrate 
clearly that a certain scientific position is wrong by showing that it 
does not apply in certain cases. A counterexample which is able to 
derive a logical contradiction in the absences of technical and other 
errors out of a theorem or a theory refutes the same. 

 

 

2.3. Axioms 

An axiom as simple as possible taken to be true has the potential 
to serve as the foundation for consistency and completeness [1] in 
mathematics and as the premise or starting point for further 
reasoning and arguments in all other sciences too besides of  
Gödel's incompleteness theorems [2]. In light of Kurt Gödel's most 
extreme view [2] that consistency is incompatible with 
completeness we are forced to accept that an inconsistent 
foundation for mathematics appears to be the only remaining 
candidate for completeness. Gödel's incompleteness theorems are 
illustrated by the following table. 
 
Table 22. Gödel's first incompleteness theorem [2]. 

A set of axioms is consistent  
Total yes no 

complete 
yes 0 1  
no 1 0  

                           Total   1 
 

The starting point of Gödel’s theorems is an either completeness 
or consistency logical fallacy. The key to diagnosing Gödel’s error 
in reasoning is to point out that Gödel is unnecessarily and unfairly 
limiting our possibilities only two choices, either complete or 
consistent. Gödel's incompleteness theorems are placing us 
unjustifiably between a hard place and a rock. A proper challenge 
to Gödel's incompleteness theorems fallacy could be to say, 
everything is either complete or not complete, but not everything 
is either complete or inconsistent. Theoretically, it is possible that 
a certain and special set of axioms is complete and consistent. 
However, since the problem of indeterminate forms is not solved, 
the division of a tensor by a tensor is not solved and many other 
problems too, a set of axioms valid for all system is to be achieved. 
 
Example. 
Let as set of axioms describe the construction of a big house (or a 
scientific theory) perfectly. A house under construction may be 
complete or incomplete.  The statics of the same house can be 
consistent or not consistent. However, the statics of a house, even 
if the same is not complete, can but must not be consistent. Thus 
far, the limited menu of choices as advocated by Gödel's 
incompleteness theorems is not fair, it is unfair and completely 
worthless.  
 
 

2.3.1. Axiom I (principium identitatis) 

+1 = +1                                                                            (20) 

Remark 1. 
The identity law has a very long history in philosophy and science.   
The earliest recorded use of the identity law is ascribed to Plato in 
his dialogue Theaetetus. In one of his dialogues concerning the 
nature of knowledge, Plato wrote circa 369 BCE that “each is 
different from each, and the same with itself” ([36], p. 177 ). The 
identity law can be found in Aristotle’s Metaphysics (Book IV, 
Part 4) and has been discussed by several other ([37], p. 113) 
authors too.  A more restrained, but still unorthodox, view on the 
identity law is expressed especially Gottfried Wilhelm Leibniz 
(1646-1716). Leibniz wrote, “Chaque chose est ce qu’elle est. Et 
dans autant d’exemples qu’on voudra A est A, B est B” [38] or  “… 
everything is that what it is ... A equals A, B equals B”  
 
 
2.3.2. Axiom II (principium contradictionis) 

Contradictions are an objective and important feature [26] of 
objective reality. Still, contradictions in theorems, arguments and 
theories would allow us to conclude everything desired. In contrast 
to religion and other domains of human culture, one very important 
and at the end to some extent normative criteria to achieve some 
advances and progress in science is depended on detecting 
contradictions in science and eliminating the same too. The most 
important point is that even if we are surrounded by contradictions 
a co-moving observer [26] will always find that something is either 
+1=+1 or +0=+0 but not both, i. e. it is not +1 = +0. The simplest 
form of Aristotle’s law of contradiction is defined as 

 

+0 = +1                                                                                (21) 

Multiplying this equation by +0, we obtain [26]  
 

(+0) × (+0) = (+1) × (+0)                                                  (22) 

 
Aristotle’s law of contradiction follows according to Boolean 
algebra [39] according to today’s laws of algebra and mathematics, 
as  
 

(+0) = +1 × (+0)                                                                 (23) 

 
Boole is of the position that “... the principle of contradiction ... 
affirms that it is impossible for any being to possess a quality, and 
at the same time not to possess it ... “([39],  p.  49). Accordingly, 
“Hence x(1 -x) will represent the class whose members are at once 
‘men,’ and ‘not men,’ and the equation (1) thus express the 
principle, that a class whose members are at the same time men 
and not men does not exist. In other words, that it is impossible for 
the same individual to be at the same time a man and not a man.” 
([39], p. 49). Thus far, and no wonder that, according to Popper, a 
philosopher of science of the 20th century, contradiction is at the 
end a demarcation line between science and ‘non-science’ too. “We 
see from this that if a theory contains a contradiction, then it 
entails everything, and therefore, indeed, nothing[...]. A theory 
which involves a contradiction is therefore entirely useless as a 
theory”. ([17], p. 429). In particular, to face the threat of a logical 
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or scientific Armageddon and the breakdown of any logical 
coherence posed by accepting the contradiction +0 = +1, it is 
necessary to formulate the same clearly. Far from reduced to the 
silence of deep space given due to the explosive effect of ex 
contradictione quodlibet, there are circumstances of special theory 
of relativity where it is possible to allow a kind of inconsistency 
without logical incoherence [26]. A proof can be based on 
principium contradictionis, the premise like +0 = +1 can justify 
further conclusions. A sound argument would follow if the 
conclusions were logically derived from the premises [40] without 
any technical errors. The result would have to be a mistake, since 
we started with a mistake. In contrast to a sound argument a valid 
argument is a sound argument while all the premises are true. If 
anything after the false premise is true and logically consistent then 
in the absence of any technical errors the conclusion itself must be 
false too. 
 
2.3.3. Axiom III (principium negationis) 

 
KL
K*

≈ +∞                                                                                (24) 

 

while +¥ denotes the positive infinity. 
 

3. Results 
 
 
Theorem 3.1 (The preservation of the truth) 

 

Claim. 

In the absence of technical errors or incorrectly applied rules of 
reasoning et cetera, the truth is preserved. 

Proof by counterexample.  
In contrast to our theorem above, we assume that in the absence of 
technical errors or incorrectly applied rules of reasoning it is 
generally valid that the truth is not preserved. In this case, it is not 
allowed to find one single case which provides evidence that the 
truth is preserved.  

+1 = +1                                                                             (25) 

Adding +1, we obtain 

+1 + 1 = +1 + 1                                                               (26) 

or 

+2 = +2                                                                             (27) 

which is true and equally a contradiction. 
In general, it is not possible to derive something incorrect from 
something correct in the absence of technical errors or incorrectly 
applied rules of reasoning and other errors. In the absence of 
technical errors or incorrectly applied rules of reasoning et cetera, 
it is not generally valid that the truth is not preserved. 

Quod erat demonstrandum.  
 
 
 

Theorem 3.2 (The preservation of the contradiction) 

We inevitably make mistakes and have false beliefs. To prevent 
lapsing into absurdity, hypothesis can be tested only on clear 
foundations. In general, it is claimed that from a contradictory 
premise, anything follows, which contradicts the principle of the 
preservation of contradictions. However, in the absence of 
technical errors, if something contains a contradiction then 
everything else derived from such a contradiction should obtain a 
contradiction too (preservation of contradiction) otherwise it must 
be possible without one exemption the derive a true conclusion 
form a false premise. 

Claim. 

In the absence of technical errors or incorrectly applied rules of 
reasoning et cetera, the contradiction or falsehood is preserved. 

Proof by counterexample.  
In contrast to our theorem above, we assume that it is generally 
valid that the falsehood is not preserved. In this case, it is not 
allowed to find one single case which provides evidence that the 
falsehood is preserved.  The equation 

+0 = +1                                                                             (28) 

is obviously false or self-contradictory. Adding +1, we obtain 

+0 + 1 = +1 + 1                                                               (29) 

or 

+1 = +2                                                                             (30) 

which is false. 
In general, it is not possible to derive something correct from 
something incorrect in the absence of technical errors or 
incorrectly applied rules of reasoning and other errors. In the 
absence of technical errors or incorrectly applied rules of reasoning 
et cetera, it is not generally valid that the falsehood or contradiction 
is not preserved. In contrast to the starting point of this proof, the 
contradiction is preserved. 

Quod erat demonstrandum.  
 
Remark 2. 
We started the proof above with a false premise (Pt: +0=+1). Our 
expectation was, that this contradiction will not be preserved with 
the consequence that we should be able to derive a true conclusion 
but we failed. In the absence of technical errors, it was not possible 
to derive a true conclusion (Ct: +1=+2 is false) from a false 
premise, which completes our proof. From a contradiction, a 
contradiction follows. It was mentioned before that modus ponens 
allows to derive a true conclusion from different premises. If one 
concrete and single premise (i. e. Pt is true) is used to derive a true 
conclusion, then the rest (i. e. Pt is false) of many other possible 
but true premises is equally not used for these purposes. Modus 
pones just don’t care about the rest of all other possible premises 
to derive a true conclusion, modus ponens considers only one 
single premise and insists that from such a single and true premise 
a true conclusion must be drawn. To be precise, the conclusion 
that modus ponens allows to derive a true conclusion from a false 
premise is incorrect. As a result, obtaining true and long-lasting 
scientific knowledge conducted through most simple step-by-step 
proofs has the potential to overcome obscurity and confusion in 
science. Searching for true scientific knowledge is a risky gesture. 
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Still, either modus inversus (¬Pt ® ¬Ct) is generally true or modus 
juris (¬(¬Pt ® ¬Ct)) is generally true but not both. The proof 
demonstrated that modus juris, the negation of modus inversus, is 
not generally true. Consequently, we must accept that modus 
inversus is generally true and of use for further purposes. 
Nonetheless, contemporary approaches taken to develop a system 
of paraconsistent logic [24]–[26], [41]–[44] which we have so far 
seen need to ensure the preservation of truth. Despite the fact that 
paraconsistent logic is to some extent the rejection of classical 
logic, even a system of paraconsistent logic cannot avoid the 
explosion principle (ex contradictione quodlibet) when faced with 
a contradiction, where a contradiction is present. The 
contradiction is preserved especially according modus sine (¬Pt ¬ 
¬Ct) too which is the logical equivalent of modus ponens (Pt → 
Ct). Modus sine as the other side of modus ponens demands that 
without a false premisse Pt no false conclusion Ct. 
A theorem which assures both, something and equally its own 
negation, is logically inconsistent, includes a contradiction and is 
entirely useless. However, this does not exclude real existing 
contradictions in objective reality [26]. 
 
Theorem 3.3 (At < Bt and disjunction are not equivalent) 

The strict inequality At < Bt is not identical with an inclusive 
(logical) disjunction At  È Bt, also known as alternation. 
Proof by contradiction.  
In contrast to our theorem before, we assume that logical 
disjunction and the strict inequality At < Bt are logically equivalent. 
The logical equivalence between strict inequality At < Bt and an 
inclusive (logical) disjunction means that both are true together or 
false together. In other words, if a statement is true according to 
the strict inequality At < Bt, then the same statement is true 
according an inclusive (logical) disjunction too and vice versa. 
Any difference with respect to this point determines a contradiction 
and cannot be accepted. The logical disjunction (At  È Bt) is 
defined as follows (Table 23). 

Table 23. Logical disjuntion.  

At  È Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = yes  
At = +0 ct = yes dt = no  

                           Total   1 
 

The strict inequality At < Bt itself is defined as follows (Table 24). 

 
Table 24. The strict inequality At < Bt.  

At  < Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = no bt = no  
At = +0 ct = yes dt = no  

                           Total   1 
 

The logical disjunction At  È Bt and the strict inequality At  < Bt are 
identical only at the case ct = ((At = +0)Ç (Bt = +1)) but not in 
general. The strict inequality At < Bt is not identical with inclusive 
disjunction At  È Bt. 

 
Quod erat demonstrandum.  
 

Remark 3. 
There are many ways how to proof the correctness of something. 
The above method uses truth tables to establish a valid proof. This 
proof is of importance especially for quantum theory too. 
 
 
Theorem 3.4 (At > Bt and disjunction are not equivalent) 

The strict inequality At > Bt is not identical with an inclusive 
(logical) disjunction At  È Bt, also known as alternation. 
 
Proof by contradiction.  
In contrast to our theorem before, we assume that logical 
disjunction and the strict inequality At > Bt are logically equivalent. 
Again, a logical equivalence between strict inequality At > Bt and 
an inclusive (logical) disjunction means that both are false together 
or true together. In other words, if a statement is true according to 
an inclusive (logical) disjunction, then the same statement is true 
according the strict inequality At > Bt too and vice versa. Any 
difference means a contradiction and cannot be accepted. The 
logical disjunction (At  È Bt) again is defined as follows (Table 
25). 

Table 25. Logical disjuntion At  È Bt.  

At  È Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = yes  
At = +0 ct = yes dt = no  

                           Total   1 
 

The strict inequality At > Bt itself is defined as follows (Table 26). 

 
Table 26. The strict inequality At > Bt.  

At  < Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = no bt = yes  
At = +0 ct = no dt = no  

                           Total   1 
 

The logical disjunction At  È Bt and the strict inequality At  > Bt are 
identical only at the case bt = ((At = +1)Ç (Bt = +0)) but not in 
general. The strict inequality At > Bt is not identical with inclusive 
disjunction At  È Bt and vice versa. 

 
Quod erat demonstrandum.  
 
Remark 4. 
Throughout history or at least since the French Revolution, both 
equality and inequality are complex, multifaceted and very 
contested concepts in science and in our everyday life. Despite of 
the widespread and controversial misconceptions about the 
meaning equality and inequality as great social ideals, this article 
is not concerned with social and political equality or inequality. 
The role and correct account of the relationship between an 
inequality and a logical disjunction is itself a difficult issue. For 
this reason, and to clarify this, the theorems above are of use. 
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Theorem 3.5 (At < Bt and material implication) 

The non-strict inequality At < Bt is identical with material 
implication. 
 

Proof.  
The material implication (At  ® Bt) is defined as follows (Table 
27). 

 
Table 27. Material implication (At  ® Bt).  

At  ® Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = no  
At = +0 ct = yes dt = no  

                           Total   1 
 

The strict inequality At < Bt itself is defined as follows (Table 28). 

 
Table 28. The non-strict inequality At < Bt.  

At  < Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = 0  
At = +0 ct = yes dt = yes  

                           Total   1 
 

Material implication (At  ® Bt) and non-strict inequality At < Bt  

agree in all cases. The non-strict inequality At < Bt is identical with 
material implication (At  ® Bt). 

 
Quod erat demonstrandum.  
 
Remark 5. 
This theorem is of use for continuously distributed random 
variables too. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Theorem 3.6 (At > Bt and conditio sine qua non) 

The non-strict inequality At > Bt is logically identical with the 
conditio sine qua non relationship. 
 

Proof.  
The conditio sine qua non (At  ¬ Bt) is defined as follows (Table 
29). 

 
Table 29. Conditio sine qua non (At  ¬ Bt).  

At  ¬ Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = yes  
At = +0 ct = no dt = no  

                           Total   1 
 

The strict inequality At > Bt itself is defined as follows (Table 28). 

 
Table 30. The non-strict inequality At > Bt.  

At  > Bt 
Bt  

Total Bt = +1 Bt = +0 

At 
At = +1 at = yes bt = yes  
At = +0 ct = no dt = yes  

                           Total   1 
 

Conditio sine qua non (At  ¬ Bt) and non-strict inequality At > Bt  

agree in all cases. The non-strict inequality At > Bt and the conditio 
sine qua non (At  ¬ Bt) relationship are logically equivalent. 

 
Quod erat demonstrandum.  
 
Remark 6. 
This proof demonstrates clearly the equivalence of the non-strict 
inequality At > Bt and conditio sine qua non. Especially, it is not 
true, that the non-strict inequality At > Bt is identical with (an 
inclusive/exclusive) disjunction. The non-strict inequality At > Bt 
can be simplified as either (At = Bt) or (At > Bt) but not both at the 
same trial. Furthermore, both cases either (At = Bt) or (At > Bt) are 
a determining part of the non-strict inequality At > Bt. If the case 
(At > Bt) is not allowed, then the use of the non-strict inequality 
At > Bt is not allowed too, since the same demands that it must be 
possible that (At > Bt) too. Using the non-strict inequality At > Bt 
without allowing the case (At > Bt) implies a mis-use of the non-
strict inequality At > Bt and can be the source of many 
contradictions. The variance  s(Xt)2 is defined as  s(Xt)2 =  E 
((Xt)2)  - E(Xt)2 and can take the values  s(Xt)2 > 0, where E 
denotes the expectation values. In principle, it is allowed that 
either  s(Xt)2 > 0 or  s(Xt)2 = 0, but not both at the same trial t / 
(period of) time t.  
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Theorem 3.7 (The general validity of modus inversus) 

We appear to rely on some scientific methods ubiquitously in our 
daily life, and it is also generally thought that the same are at the 
very foundation of science as such and generally valid. However, 
what exactly is meant by the notion general validity of a theorem, 
of a theory et cetera? Much has been written attempting to work 
out the meaning of this notion but without a clear and definite 
resolution in sight. Thus far, the notion “general validity” carries 
to some extent a negative connotation and the question is justified 
does it make any sense at all to claim that a theorem or a 
mathematical procedure et cetera is generally valid? Perhaps 
unsurprisingly, the challenge indeed is to find a way of living with 
such a radical-seeming notion like general validity of a theorem, a 
theory et cetera. The generation of scientific knowledge depends 
on the historical background too and is associated with errors and 
the diversity of scientific methods used across the sciences makes 
it to a greater or lesser extent difficult to find anything that 
separates sciences from something other not typically considered 
scientific. In order to distinguish scientific knowledge from 
dubious, nonscientific, or merely ideological and illegitimate 
forms of knowledge or pseudoscience it is necessary to develop 
and use scientific methods which ensure the perseveration of the 
truth and the preservation of the contradiction in the same respect. 
Thus far, it is worth noting, however, that even in the absence of 
unintentionally or intentionally (in order to deceive other scientist) 
created logical fallacies and other circumstances of fallacious 
human reasoning a generally valid theorem or theory is valid only 
preliminary. In principle, it is difficult to exclude that in the future 
one single counter-example can be presented which is able to 
refute the general validity of such a theorem or theory. 

Claim. 

The proof by modus inversus is generally valid.  

Proof by contradiction.  
Either the proof by modus inversus is generally valid or the proof 
by modus inversus is not generally valid, a third is not given, 
tertium not datur. In contrast to our theorem above, we are of the 
opinion that the proof by modus inversus is not generally valid. 
Thus far, if the proof by modus inversus is not generally valid, then 
it is no possible to provide one single case where the proof by 
modus inversus is valid. We are starting this proof with a false 
premise. In general, it is false that 

+0 = +1                                                                                (31) 

Adding +1 to this equation, it is 

+0 + 1 = +1 + 1                                                                   (32) 

and we obtain 

+1 = +2                                                                                (33) 

 
Quod erat demonstrandum.  
 
Remark 7. 
We started with something incorrect (Pt: +0=+1) and derived 
something incorrect (Ct :+1=+2) which is contradiction. The 
theorem above provides evidence that the proof by modus inversus 
(if Pt (+0=+1) is false then Ct (+1=+2)) is false) is valid.  

 

 

One of the central notions of (classical) logic is the notion of 
logical consequence. Thus far, taken as a whole, we have been able 
to present one single case where the assumption that the proof by 
modus inversus is not generally valid breaks down. Since either 
the proof by modus inversus is generally valid or the proof by 
modus inversus is not generally valid, a third is not given, tertium 
not datur we are left with the logical consequence that the proof by 
modus inversus is generally valid. In other words, from something 
incorrect or from a contradiction, something incorrect or a 
contradiction must follow. 

 
 
Theorem 3.8 (The general validity of modus ponens) 

Claim. 

The proof by modus ponens is generally valid.  

Proof by contradiction.  
Either the proof by modus ponens is generally valid or the proof 
by modus ponens is not generally valid. In contrast to this theorem, 
we are of the opinion that the proof by modus ponens is not 
generally valid. The logical consequence is, that if the proof by 
modus ponens is not generally valid, then it is not allowed or 
possible to provide one single case where the proof by modus 
ponens itself is valid. We are starting the proof of if Pt (+1=+1) is 
true then Ct (+2=+2) is true with a true premise. In general, it is 
true that 

+1 = +1                                                                                (34) 

Adding +1 to this equation, it is 

+1 + 1 = +1 + 1                                                                   (35) 

and we obtain 

+2 = +2                                                                                (36) 

 
Quod erat demonstrandum.  
 
Remark 8. 
This is a contradiction. Our opinion was that modus ponens is not 
generally valid. In this case, it is not allowed to present one single 
case where this assumption breaks down. However, this theorem 
provides evidence, that modus ponens is valid. Since either the 
proof by modus ponens is generally valid or the proof by modus 
inversus is not generally valid, we must anodon our opinion that 
modus ponens is not generally valid, which completes our proof. 
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Theorem 3.9 (The general validity of mods securus) 

Claim. 

Modus securus is generally valid. 

Proof.  
Modus ponens or Pt → Ct is proofed as generally valid. Modus sine 
or (¬Pt  ¬ ¬Ct) is the logical equivalent of modus ponens with the 
consequence that modus sine is generally valid too. A theorem 
before provided evidence that modus inversus or (¬Pt  → ¬Ct)  is 
generally valid too. The logical consequence is that modus securus 
as the logical conjunction of modus sine and modus inversus or 

𝑀𝑜𝑑𝑢𝑠	𝑠𝑒𝑐𝑢𝑟𝑢𝑠: (¬𝑃4 ← ¬𝐶4) ∩ (¬𝑃4 → ¬𝐶4) = 1          (37) 

is generally valid too which is illustrated by the following table 
(Table 31). 

 

Table 31. The general validity of modus securus. 

   Modus 

ponens 

Modus sine   Modus 

inversus 

Modus 

securus 

Trial t Pt Ct (Pt → Ct) (¬Pt  ¬ ¬Ct) ¬Pt ¬Ct (¬Pt → ¬Ct) (¬Pt ¬¬Ct) Ç 

(¬Pt → ¬Ct)  

1 1 1 1 1 0 0 1 1 

2 1 0 0 0 0 1 1 0 

3 0 1 1 1 1 0 0 0 

4 0 0 1 1 1 1 1 1 

 
 
Quod erat demonstrandum.  
 
Remark 9. 
The various rules of inferences may differ in several aspects but 
have at least one point in common. Modus securus is the common 
foundation of the presented rules of inferences. To recognize 
and to reduce unjustified non-scientific influence exerted upon 
scientific research and the dissemination of that research as well, 
modus securus is of strategic importance to disable that any non-
scientific influence can warp science. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem 3.10 (The rule of multiplication by zero is refuted) 

Claim. 

In the absence of technical errors, today’s rule of the 
multiplication by zero is self-contradictory and logically 
inconsistent. 
 

Proof by modus inversus.  
The proof by modus inversus is logically structured as follows.  

 

𝑃4 ≡ (+1 = +0)

𝐶4 ≡ (+3 = +2)

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃4 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶4 = (+3 = +2)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.

          (38) 

The premise 2 of this proof by modus inversus is  

+1 = +0                                                                                (39) 

which is of course incorrect. Adding +2 to something incorrect, it 
is 

+1 + 2 = +0 + 2                                                                   (40) 

and we obtain 

+3 = +2                                                                                (41) 

which is correct too according to the proof by modus inversus (if Pt 
(+1=+0) is false then Ct (+3=+2) is false). The following changes 
of this equation are mathematically without any technical error and 
correct. These changes must preserve this contradiction too. 
Multiplying by zero, it is 

(+3) × (+0) = (+2) × (+0)                                                  (42) 

According to our today’s rules of the multiplication by zero, this 
equation is equivalent with 

 
(+0) = (+0)                                                                           (43)    
 
In other words, our today’s rules of the multiplication by zero 
equalizes differences and are able to change something false to 
something true without any logical necessity. Rearranging 
equation before, it is 
 
(+1 − 1) = (+1 − 1)                                                              (44)    
 
Simplifying equation, we obtain 
 
(+1) = (+1)                                                                          (45)    
 
Quod erat demonstrandum.  
 
Remark 10. 
The proof above started with something incorrect and derived 
something correct, which is a contradiction. Thus far, one 
conclusion could be that from contradictory premises, anything 
follows, even something which is true, which is not convincing. 
Modus inversus has been proofed as generally valid with the 
consequence that a mathematical rule like the rule of the 
multiplication by zero must assure that (if Pt (+1=+0) is false then 
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Ct (+1=+1) is false) which is not the case. Today’s rule of the 
multiplication by zero which changes +3 = +2 to +0=+0 and at the 
end to +1=+1 is self-contradictory and must be abandoned. We 
must reject today’s rule of the multiplication by zero as incorrect.  

 
 
Theorem 3.11 (The old rule of addition of zeros is refuted.) 

Nicomachus of Gerasa (ca. 60 –ca. 120 AD), born in Gerasa, 
aformer Roman province of Syria, is best known for his book 
Introduction  to  Arithmetic. Nicomachus of Gerasa ([45], pp.  48,  
120,  237-238) claimed that the sum of nothing added to nothing 
was nothing or in other words it is 0+0+0+ ...+ 0= 0. 

 

Claim. 

Today’s rule of the  addition  of  zero’s  (+0+0+... +0 = +0)  is  self-
contradictory  and based  on a logical contradiction. 

Proof by modus inversus. 

In general, the premise  

+(1) + (1) + ⋯+ (1) = +(1)                                              (46) 

is of course not true and a non-acceptable contradiction. 
Multiplying this equation by 0, we obtain according to our today’s 
rules of mathematics that 

?+(1) + (1) + ⋯+ (1)A × (+0) = +(1) × (+0)                   (47) 

or 

 

?+(1) + (1) + ⋯+ (1)A × (+0) = +(1) × (+0)

(𝑛 − 𝑡𝑖𝑚𝑒𝑠) × (+0) = +(1) × (+0)
                   (48) 

or 

?+(1 × 0) + (1 × 0) + ⋯+ (1 × 0)A = +1 × 0                      (49) 

and according to our today’s rule of the addition of zero’s  

 

+(0) + (0) + ⋯+ (0) = +(0)                                              (50) 

 
Quod erat demonstrandum.  
 
Remark 11. 
According to modus inversus, if (+1+1+…+1 = +1) is false, then 
(+0+0+…+0 = +0) is false.  Thus far, (+1+1+…+1 = +1) is false. 
Ergo: (+0+0+…+0 = +0) is false.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem 3.12 (The new rule of addition of zeros.) 

Claim. 

The correct rule of the addition of zero’s is (+0+0+... +0 = n´0).   

Proof by modus inversus. 

In general, the premise  

+(1) + (1) + ⋯+ (1) = +(1) + (1) + ⋯+ (1)                      (51) 

is true. Let n= (1+1+...+1) and define n´0 = n_0 [46]. Multiplying 
this equation by 0, we obtain according to our today’s rules of 
mathematics that 

?+(1) + (1) + ⋯+ (1)A × (+0) = 𝑛 × 0 = 𝑛_0                      (52) 

or 

 

?+(0) + (0) + ⋯+ (0)A = 𝑛 × 0 = 𝑛_0                                 (53) 

 
Quod erat demonstrandum.  
 
Remark 12. 
In other words, n´0 is not equivalent to 1´0. 
 
 
Theorem 3.13 (The factorial operation is logically inconsistent) 

Claim. 

The factorial operation  

(+1)! = (+0)!                                                                      (54) 

is grounded on a logical contradiction and refuted. 

 

Proof by modus inversus.  
The proof by modus inversus is logically sound and demands that 
if Pt (+1=+0) is false then Ct (+1! = +0!) is false too. We define in 
this context 

𝑃4 ≡ (+1 = +0)

𝐶4 ≡ ((+1)! = (+0)!)

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃4 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶4 = ?(1! = 0!)	A	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.

          (55) 

The premise 2 of this proof by modus inversus is  

+1 = +0                                                                                (56) 

which is of course false. Following Christian Kramp (1760 – 
1826), the factorial [47] of a positive integer n is denoted by n!. 
Today, the value of 0! is 1, and the value of 1! is 1 too. Thus far, 
taking the factorial of the equation before, we obtain 

(+1)! = (+0)!                                                                        (57) 

or 

+1 = +1                                                                                (58) 

which is a contradiction because +1=+1 is true but it cannot be true. 

 
Quod erat demonstrandum.  
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Remark 13. 
In the proof above according to the logic of modus inversus, it is 
Pt = (+1=+0) = false, ergo Ct (+1! = +0!) must be false too but it 
is not. A technical error is not apparent. This contradiction is due 
to the fact that the factorial has the potential to equalize 
differences. It is a rule in mathematics which is self-contradictory 
and rejected. This proof demonstrated the definitions are only of 
preliminary values and must be correct as such. 
 
 
 
 
Theorem 3.14 (The equation (1/0) = (0/0) is refuted.) 

Claim. 

The equation 

+>L
*
C = +>*

*
C                                                                         (59) 

is grounded on a logical contradiction and refuted. 

Proof by modus inversus.  
This proof by modus inversus is logically structured as follows.  

 

𝑃4 ≡ (+1 = +0)

𝐶4 ≡ + >L
*
C = + >*

*
C

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃4 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶4 = +>L
*
C = +>*

*
C 	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.

       (60) 

The premise 2 of this proof by modus inversus is  

+1 = +0                                                                                (61) 

and false. Dividing this equation by plus zero, i.e. +0, we obtain 

+>L
*
C = +>*

*
C                                                                         (62) 

 
Quod erat demonstrandum.  
 
Remark 14. 
Modus inversus (¬Pt → ¬Ct) demands that if false premisse Pt (in 
our case +1=+0) then false conclusion Ct (+(1/0) = +(0/0)). In the 
proof above, it is Pt = (+1=+0) = false. There are no technical 
errors inside the proof. Ergo: Ct = (+(1/0) = +(0/0)) is false too. 
 
 
Theorem 3.15 (Anderson’s Nullity is logically inconsistent.) 

Modus ponens demands that the premise “If Pt is true, then Ct is 
true” or (Pt → Ct) = true is given. Modus inversus as the inverse 
of the modus ponens statement Pt → Ct (“If Pt is true, then Ct is 
true”) is characterized by the statement or the equation ¬Pt → ¬Ct 
or in spoken language: “If Pt is false, then Ct is false”. Thus far, 
under circumstances where Pt is false, the conclusion is that Ct 
must be false too. 

Claim. 

Anderson’s et al. definition of Nullity [48]  is grounded on a logical 
contradiction, self-contradictory and refuted. 

 

 

 

 

Proof by modus inversus.  
This proof by modus inversus is logically structured as follows.  

 

𝑃4 ≡ (+1 = +0)

𝐶4 ≡ 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦

𝑃𝑟𝑒𝑚𝑖𝑠𝑒	1: 𝑖𝑓 𝑃4 = (+1 = +0)	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, 𝑡ℎ𝑒𝑛 𝐶4 = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒.

  (63) 

The premise 2 of this proof by modus inversus is  

+1 = +0                                                                                (64) 

and false. Multiplying this equation by Andersons’s Nullity we 
obtain 

(+1) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (+0) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦)                                     (65) 

According to Anderson’s Axiom 15 [48], it is Nullity ́  1 = Nullity. 
We obtain 

(𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (+0) × (𝑁𝑢𝑙𝑙𝑖𝑡𝑦)                                                (66) 

According to Anderson’s Axiom 15, it is Nullity ́  0 = Nullity [48]. 
We obtain a conclusion Ct which is correct as 

(𝑁𝑢𝑙𝑙𝑖𝑡𝑦) = (𝑁𝑢𝑙𝑙𝑖𝑡𝑦)                                                            (67) 

 
Quod erat demonstrandum.  
 
Remark 15. 
A consistent logical or mathematical operation is one that does not 
entail any contradiction. Modus inversus as generally valid 
demands that (if Pt (+1=+0) is false then Ct (Nullity = Nullity)) is 
false). Thus far, the premise Pt (+1=+0) is false but not the 
conclusion. The conclusion Nullity = Nullity is correct, which is a 
contradiction.  
 
 
 
Theorem 3.16 (Ex contradictione sequitur quodlibet is refuted.) 

The principle ex contradictione sequitur quodlibet is said to be 
contradiction intolerant and prevent us from falling or lapsing into 
absurdity. According to the principle ex contradictione sequitur 
quodlibet  [23], [49] or the Principle of Explosion from a 
contradictory premise or statement (+1=+0), anything follows. 
Historically, ex contradictione sequitur quodlibet is ascribed to 
William of Soissons, a 12th century French logician who lived in 
Paris. However, a detailed proof, whether ex contradictione 
sequitur quodlibet is generally valid, is still not provided. 
 

Claim. 

Ex contradictione sequitur quodlibet (ECSQ) is not generally 
valid. 
 
Proof by contradiction.  
Either ex contradictione sequitur quodlibet is generally valid or ex 
contradictione sequitur quodlibet is not generally valid. In contrast 
to the theorem, we are of the opinion that ex contradictione 
sequitur quodlibet is generally valid. The logical consequence is, 
that if ex contradictione sequitur quodlibet is generally valid, then 
it is not allowed or possible to provide one single case where ex 
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contradictione sequitur quodlibet is not valid. We are starting the 
proof of if Pt (+0=+1) is false then Ct (+1=+2) is false. A thought 
experiment is performed while starting this proof with a 
contradiction. In general, it is false or a contradiction that 

+0 = +1                                                                                (68) 

Adding +1 to this equation, it is 

+0 + 1 = +1 + 1                                                                   (69) 

and we obtain 

+1 = +2                                                                                (70) 

 
Quod erat demonstrandum.  
 
Remark 16. 
In the case above, from a contradiction (+0 = +1) does not 
everything follow. Under the conditions above, from a 
contradiction +0 = +1 follows exactly that +1 = +2. Even if this 
experiment is repeated independently many times more and adding 
or using other numbers (i. e. +2 or +3 or …), the result will be the 
same. In the absence of technical errors and other errors of human 
reasoning from a contradiction does not everything follow. The 
principle ex contradictione sequitur quodlibet is not generally valid 
and refuted. A principle like ex contradictione sequitur quodlibet 
should help us and not prevent us from gaining knowledge through 
repeated experiment or observation. To be convincing, ex 
contradictione sequitur quodlibet needs to provide evidence that 
the same is true. This evidence might come from repeating the 
whole experiment independently several times. However, the 
result will not change. In toto, the refutation of the principle ex 
contradictione sequitur quodlibet does not provide evidence that 
paraconsistent logic [24], [25], [50], [51] is correct as such. 
 

4. Discussion 
The change of objective reality appears to be a consistent process, 
to date, an end is not in sight. The nature of scientific inquiry of 
objective reality by which scientific knowledge is generated varies 
much across disciplines and often also invoke the incompatibility 
of opposed properties. The scientific success achieved depend to a 
very great extent on the scientific methods used. Therefore, 
considerations accounting for the very nature of truth and falsity 
must be able to rely on logically sound scientific methods too.  
Modus ponens is one of the basic rules of inference and demands 
something like “If Pt, then Ct”. In other words, from Pt, we can 
infer Ct. If it were possible to have Pt true and Ct false then modus 
ponens inference would be invalid. What we think, what we write, 
what we talk, our everyday reasoning is supported by modus 
ponens too. Loosing modus ponens in science would indicate a 
severe loss. Philosopher's aimed to show that modus ponens is not 
a generally valid [15] rule of inference. Many times, similar to 
other paradoxes, in one or other way, such trials rest on confusions 
and are easily circumvented. 
 
 
 
Example. 
Premise 1: If it is raining today on the street X (Pt is true), then the 
street X is wet (1000000 light years later). 
Premise 2: It is raining on the street X today (Pt is true), 

Conclusion: The street X is wet (1000000 light years later). 
 
Such a conclusion is of course not justified. But this does not 
disprove modus ponens. We just don’t know today, whether the 
street X is still existing 1000000 light years later. But even if the 
street X is still existing 1000000 light years later, what has today’s 
rain to do with the street which is wet 1000000 light years later. 
Modus ponens can lead to inconsistencies if some basic 
assumptions are not considered by the user. It is necessary to make 
sure that events analysed occur at the same (period of) time t. 
 
To date, the misuse of non-strict inequalities finds its own melting 
point in the mathematical formulations of Heisenberg’s 
uncertainty principle [52], of Bell’s theorem/inequality [53], in 
CHSH inequality [54] et cetera of quantum mechanics. It is more 
than strange to ground any scientific knowledge on such an 
inconsistency [26]. 
 

5. Conclusion 
Non-strict inequalities have their own interior logic which must be 
respected in detail otherwise a theory or theorem will end up at a 
contradiction. 
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