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ABSTRACT
1
 

This paper suggests one way around the issue of complex matching (ordering or comparison) 

which may give rise to [excessive] multiplicity of RH solutions beyond branching. More 

importantly, the RH appears to posit some counter-intuitive analogies in areas as diverse as 

Mikusinski operators and Euler equation (EE), which analytical or variational extensions could 

be seen as one way in which the general (or complete) bears on simplicity (in line with the 

orduale programme). While both could be seen as precursors or special approaches to functional 

analysis, these representational parallels have been arrived at from very distinct standpoints 

without any prior regard for each other. Arcane realizations such as the Veblen ordinals could 

further result from mere juxtaposition of the two. 

Keywords: Euler equation (variations), Mikusinski operators (generalized functions or 

distributions), Veblen ordinals 

 

Paths Most Traveled By: Lessons [Almost] Learned 

If the jaded reader has by any chance noticed my first paper in the series 

(viXra:1904.0235), they may definitely have had their grudge and second thoughts on how the N-

multiplicity of solutions should be construed. Invoke the complex non-orderability of sets (or 

awkward matching of series terms within the ERE), and this becomes a [lame] excuse and a 

source of mounting paradoxes or indeterminacy in its own right (dub it another continuum 

hypothesis or its variety if you like). The silvery lining, though, would be that one can still think 

of remedies so amazingly sparing and parsimonious, this low a deliberation cost alone could put 

them into question (unless one has lost the nerve to cope with more paradoxes). Indeed, the 
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mental (and spiritual) disorder while praying their way or to geopolitical fanatics’ insane ambition without having 

any discretion or say over. 
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averages (as appropriately chosen) of any equivalence (be it ERE or otherwise) could be seen as 

[self] identity while positing one way around the bijective mapping or matching chasm.  

Now revert to the exponential representation of the Riemann zeta (not necessarily 

considered at zero or any particular value) to see that: 

(1)  𝑁−𝑠̂ ≡ (𝑙𝑜𝑔𝑁𝜁𝑁! )̂ ↔ 𝑁̂−𝑠 = 𝑙𝑜𝑔𝑁̂𝜁𝑁̂!  

The N-hjatt could be seen as non-linear (CES or Lame type) averaging, and might not exactly 

seem to allow for unique match beyond ‘reasonable doubt.’ That said, considering a summation 

over the respective left- and right-hand side terms, one arrives at zeta identically, in which light 

the interpretation holds (at least weakly) for all practical purposes for lack of superior 

alternatives. Moreover, by assuming away the somewhat Diophantine nature of discerning the 

zeta (or s) from the above without any prior knowledge of what it is the N average amounts to, 

one can still think of a potential shortcut (otherwise confined to an open-form, implicit-functional 

reduction) by invoking: 

(1.1)  𝑁̂ ≡ (𝜁𝑇)−1/𝑠, 𝑇 → ∞ 

 

So Much for Minkowski Raum: Making Room for Mikusinski Space 

Multiply, for simplicity, both sides of (1) times N-hat, arriving at: 

(2)   𝑁̂1−𝑠 = 𝑙𝑜𝑔𝑁̂𝜁Γ(𝑁̂)  

Somehow, this immediately led my imagination all the way back to the Mikusinski operators as a 

kind of [dual] analogy, as in
2
: 

(𝐴)  (𝑠 − 𝛼)−𝜆 = {𝑡𝜆−1Γ(𝜆) 𝑒𝛼𝑡} 

Now, by assessing the above at alpha equal 0 versus 1 and (t, lambda-1) identically matched to 

(log zeta, N-hat), it follows that: 

(2.1)   (𝑠 − 𝛼)−(𝑁̂+1) = { 𝑙𝑜𝑔𝑁̂𝜁Γ(𝑁̂ + 1) 𝜁𝛼} = {𝑁̂−𝑠 ∗ 𝜁𝛼} = {𝜁1+𝛼𝑇 } 

                                                           
2
 In the original (Mikusinski, 1953), he deploys the definition: 𝑠−1 ≡ 𝑙. However, in order to avoid notational 

confusion with an eye on the similarly looking zeta and differentiation operator, I opted to proceed with, 𝑠 ≡ 𝐿−1  

likely to come in handy throughout. 
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 (2.1𝐴)   (𝑠 − 1)−(𝑁̂+1) = {𝑁̂−𝑠 ∗ 𝜁} = {𝜁2/𝑇} (2.1𝐵)   𝑠−(𝑁̂+1) = {𝑁̂−𝑠 ∗ 1} = {𝜁/𝑇} 

In order to reconcile (2.1) and (2), one may want to do away with the braces, which could be 

straightforward by invoking their nature as stemming from that of the integration (or inverse s) 

operator. The two latter equivalences can thus be rewritten to arrive at
3
, 

(2.1′)   (𝑠 − 𝛼)−(𝑁̂+1) ∗ 𝑠 = 𝜁1+𝛼𝑇  

(2.1𝐴′)   (𝑠 − 1)−(𝑁̂+1) ∗ 𝑠 = 𝜁2𝑇 = 𝑁̂−𝑠 ∗ 𝜁 

(2.1𝐵′)   𝑠−(𝑁̂+1) ∗ 𝑠 = 𝑠−𝑁̂ = 𝜁𝑇 = 𝑁̂−𝑠 

The latter suggests the initially conjectured duality: (2.2)  𝑠−𝑁̂ = 𝑁̂−𝑠 

Final reconciliation yields: 

𝑁̂−𝑠 = 𝑙𝑜𝑔𝑁̂𝜁Γ(𝑁̂ + 1) = (𝑠 − 𝛼)−(𝑁̂+1) ∗ 𝑠𝜁𝛼  

                                                           
3
 Strictly speaking, the braces may have to be treated along the lines of: 𝑠{𝑎(𝑡)} = {𝑎′(𝑡)} + 𝑎(0). However, for 

special cases like 𝑠−1 = {1}, clearly 1 = 𝑠−1𝑠 = 𝑠{1} = 1.  This need not hold for constants only: By multiplying 

the general definition as in (A) at alpha=0, one obtains that 𝑠−𝜆𝑠 = 𝑠 {𝑡𝜆−1
Γ(𝜆)} = 𝑠𝑠−1 𝑡𝜆−1

Γ(𝜆) , or 𝑠1−𝜆 = 𝑡𝜆−1
Γ(𝜆) . In fact, this 

does hold for lambda anywhere near 1, or for 𝑎(𝑡) ≡ 𝑡𝜆−1
Γ(𝜆), such that 𝑎(0) = 0 outside that neighborhood or 1 within 

it. Not least, bearing in mind that 𝑒−𝜆𝑠{𝑓(𝑡)} = 𝑓(𝑡 − 𝜆) for 𝜆 < 𝑡 and 0 otherwise, by considering the overlap or 

convergence at 𝜆 → 𝑡 ← − 𝑙𝑜𝑔𝑠𝑠 , it follows that 𝑠{𝑓(0)} → 𝑓(0) as long as 𝑠±1/𝑠 tends to 1 yet not in general. 

Incidentally, the same could be attained insofar as 𝜆 → 𝑡 ← 0−could suggest that 𝑒−𝜆~𝑙𝑜𝑔𝑒 = 1—which may, at the 

same time, provide one alternate solution for (2.1B), namely (perhaps valid for large N-average only) (2.1𝐵′′)   𝑠−(𝑁̂+1) = { 𝑙𝑜𝑔𝑁̂𝜁Γ(𝑁̂ + 1) 𝑙𝑜𝑔𝜁} = { 𝑙𝑜𝑔𝑁̂+1𝜁Γ(𝑁̂ + 1)} 

In actuality though, 𝑠 = 𝑙𝑜𝑔𝑒𝑠 = − 1𝜆 lim𝜆𝑠→0− 𝑒−𝜆𝑠−1−𝜆𝑠 , which implies 𝑒−𝜆𝑠~1 + (𝜆𝑠)2 = 1 + 02 = 1. This reworks 

the initial relationship as, 1{𝑓(𝑡)} = 𝑓 (𝑡 + 0𝑠), i.e. either 𝑠±𝜆{𝑓(𝑡)} = 𝑓(𝑡) or 𝑠ℎ{𝑓(𝑡)} = 𝑓(𝑠𝑡) = {𝑓(1)𝑓(0), where the 

h power points to homogeneity degree and the argument-differentiation outcomes to the corner values of the 

convolution while depending on whether t pertains to a line (variable) or a specific point (value). Alternatively, 𝑠ℎ−1𝑓(𝑡) = 𝑠ℎ{𝑓(𝑡)} = 𝑓(𝑠𝑡) = 𝑠ℎ𝑓(𝑡) iff the function is either homogeneous of degree ±𝑇 (infinite) or is 

represented by its specific value (varying around a constant). Incidentally, this may befit either a zero function (such 

as the zeta at its specific 0 value or 𝑒𝑙𝑜𝑔0representation) or the respective reduction of the 𝑁̂−𝑠 terms to 

characteristic powers of zero (both proposed in the previous two papers on the RH).  
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Summation over (2.2) running ad infinitum returns the zeta: (2.2′) 𝑇𝑠−𝑁̂ = 𝜁 

Based on this alone, the nature or estimate of N-averaged can be inferred as, 

(2.2𝐴′)  𝑁̂ = 𝑙𝑜𝑔𝑇 − 𝑙𝑜𝑔𝜁𝑙𝑜𝑔𝑠   
Alternatively, the solution per a particular zeta amounts to, 

(2.2𝐵′)  𝑠 = 𝑁̂𝑙𝑜𝑔𝑠𝑙𝑜𝑔𝑁̂ = 𝑙𝑜𝑔𝑇 − 𝑙𝑜𝑔𝜁𝑙𝑜𝑔𝑁̂  

Further reconciliation obtains by dividing, respectively, (2.1’) over (2.1B’) and (2.1A’) over 

(2.1B’): (2.1′′)   (𝑠 − 𝛼𝑠 )−(𝑁̂+1) = 𝜁𝛼 

(1 − 1𝑠)−((𝑁̂+1)) = 𝜁 

 

Herr Euler & Monsieur Veblen Shall Make ‘Em Equal (or Reconciled at Any Rate) 

Now reconsider (1) in terms of: 

𝑁̂! = [(𝑙𝑜𝑔𝑁̂𝜁𝑁̂! )−1/𝑠] ! 
More generally, for any [interim or interior] X: 

𝑋 = [(𝑙𝑜𝑔𝑋𝜁𝑋! )−1/𝑠] 

∏ 𝑋𝑁̂
𝑋 ≡ 𝑁̂! = [(𝑙𝑜𝑔∑ 𝑋𝑁̂𝑋 𝜁∏ 𝑋𝑁̂𝑋 ! )−1/𝑠] 

(3)  𝑁̂! = (𝑁̂! 𝑙𝑜𝑔−𝑁̂𝜁)1/𝑠! = (Π𝑋! 𝑙𝑜𝑔−Σ𝑋𝜁)1/𝑠 

One is then moved to generalize (3) along the following lines (while setting zeta at zero): (3′)  𝑁̂ = ℎ ∘ [𝜑(𝑁̂) ∗ 0𝑁̂] = 𝜑−1 ∘ ℎ ∘ [Πφ(X) ∗ 0Σ𝑋] 
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It is straightforward to observe that the phi stretching generalizes the factorial or gamma, 

while h(.) pertains to taking the argument to the power of 1/s, such that: (3.1)   𝛾(𝑋) ≡ 𝜑(𝑋) ∗ 0𝑋 

(3. 𝐴) 𝑋 = ℎ ∘  𝛾(𝑋) = 𝜑−1 ∘ ℎ ∘ [𝛾(𝑋) ∗ ∏ 𝛾(𝜉)𝑋−1
𝜉 ] = 𝜑−1 ∘ ([ℎ ∘ 𝛾(𝑋)] ∗ [ℎ ∘ ∏ 𝛾(𝜉)𝑋−1

𝜉 ]) 

Not only is h(.) homogeneous
4
, its associativity with respect to [lowercase] gamma over products 

(as the flipside of homogeneity) is coupled with their being mutually inverse: 

ℎ ∘ ∏ 𝛾(𝜉)𝑋−1
𝜉 = ∏ ℎ ∘ 𝛾(𝜉) =𝑋−1

𝜉 ∏ 𝜉 =𝑋−1
𝜉

𝑋!𝑋  

In particular, for 𝑋 ≡ 𝑁̂ = (𝜁𝑇)−1/𝑠,  𝑇𝜁 = 𝛾 ∘ (𝑇𝜁)1/𝑠 ≡ 𝛾 ∘ ℎ ∘ 𝑇𝜁  

(3. 𝐵)  𝑋 = ℎ ∘  𝛾(𝑋) = 𝛾 ∘ ℎ(𝑋) 

This could be one other instance showcasing how the line could be fuzzy between associativity 

versus commutativity (viXra:1905.0210), while tracing up to a shared source or pattern.  

Incidentally, the above could serve as basis for inferring a peculiar yet instrumental 

calculus based on a particular zeta value, e.g.: 0𝑠 = 1 = 1𝑠2 ,  1𝑠 = 0,  2𝑠−1 = 02 =  12𝑠 = (±𝑇)−2,  1𝑠3 = 0𝑠2
 

The inference and implications will for now be assumed away alongside the non-zero zeta 

extensions for (3’). Suffice it at this stage to invoke the Euler equation so as to possibly detect 

some common structural representations
5
. The square bracket part (taken at zero in line with the 

variational lemma) looks (as per the special monodimensional case) as follows: 

[. ] ≡ [𝜕𝐹𝜕𝑓 − 𝑑𝑑𝑥 𝜕𝐹𝜕𝑓′] = 0 

                                                           
4
 Any restriction or ‘narrowing’ of the form, ℎ(𝑎𝑏) = ℎ(𝑎)ℎ(𝑏), should do the candidate generalizing job. 

5
 The careful reader will have observed the previous paper did propose that the RH bears some striking resemblance 

to variational foundations. Whilst it may, in hindsight, seem like 𝜂(𝑥) = 1 was an unfortunate choice for a candidate 

‘compactly supported function’ if only because it never equals zero at the corners, still it could be seen as a corner 

case of a tossup representation as its power share tends to a very small value: ∃𝛼: 0 = Σ𝑁̂−𝑠 ≡ ∫ [. ]𝑏𝑎 𝜂(𝜉)𝑑𝜉 = 𝑇 ∗𝜁𝑇 = 𝑇 ∗ 02 = 𝑇 ∗ 02(1−𝛼) ∗ 02𝛼, such that 𝜂(𝑇) = 𝜂(1) = 02𝛼 = {0,   𝛼 > 01,   𝛼 → 0 .  
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Now rework the above as follows, by applying the proposed convention: 

(4) ∀𝑎:  𝜕𝜕𝑎 ≡ 𝐿𝑎−1 ≡ 𝑠𝑎 ≡ 𝑎̃ 

In this light, the EE takes on the following form: (4. 𝐴) 𝐿𝑓−1 = 𝐿𝑥−1 ∘ 𝐿𝐿𝑥−1∘𝑓  −1  (4. 𝐴′)  𝑠𝑓 = 𝑠𝑥 ∘ 𝑠𝑠𝑥∘𝑓 (4. 𝐵) 𝑓 = 𝑥̃ ∘ 𝑥̃ ∘ 𝑓̃ 

For it to resemble (3.A) or (3.B), it would have to look as follows: 

𝑓 ≡ 𝑥̃ ∘ 𝑥̃−1 ∘ 𝑓 = {ℎ̃ ∘ 𝛾̃(𝑓)𝛾̃ ∘ ℎ̃(𝑓) 

From comparing with (4.B), this necessitates (5)  𝑥̃ ∘ 𝑓̃ = 𝑥̃−1 ∘ 𝑓 

In particular, (5.1)   ℎ̃ ∘ 𝑓̃ = 𝛾̃ ∘ 𝑓 (5.2)  𝛾̃ ∘ 𝑓̃ = ℎ̃ ∘ 𝑓 

One straightforward way of generalizing beyond—indeed supplying a reconciliatory extension of 

both—the Mikusinski and Euler equivalences could be to violate (5) on margin or in major ways. 

Even in its present form, though, (5) can be reduced to a fairly involved: 

(5.1′) 𝑓𝑠1𝑠̃ = {0𝑓̃ ∗ sΓ ∘ (𝑓 + 1)𝑓𝑠𝑠  

(5.2′) 𝑓𝑠1𝑠 = {𝑠0𝑓∗sΓ∘(𝑓+1)𝑓𝑠𝑠̃  

In passing, it remains to be seen whether or not this resembles Veblen ordinals.  

  


