
version1.0 Representation in Robinson arithmetic 1

Representation of processive functions in Robinson arithmetic ?

Hannes Hutzelmeyer

Summary

In connection with his so-called incompleteness theorem Gödel discovered the beta-function. The beta-

function theorem is important for the representation of recursive functions in the concrete calcule

ALPHA of Robinson arithmetic. The other features are composition and minimization of primitive

recursive functions. Recursive functions are no part of Robinson arithmetic, but they are representable

by certain formulae.

The author has developed an approach to logics that comprises, but goes beyond predicate logic. The

FUME method contains two tiers of precise languages: object-language Funcish and metalanguage

Mencish. It allows for a very wide application in mathematics from recursion theory and axiomatic set

theory with first-order logic, to higher-order logic theory of real numbers and so on.

The concrete calcule LAMBDA of a natural number arithmetic with first-order logic has been defined

by the author. It includes straight recursion and composition of functions, it contains a wide range of so-

called compinitive functions, with processive functions far beyond primitive recursive functions. They

include e.g. Ackermann's function and similar constructions. All recursive functions (that are obtained

by minimization too) can be represented in LAMBDA . As long as there is no proof that all processive

functions are minimitive recursive (recursive but not primitive recursive) one has the problem of

representing them in concrete calcule ALPHA of Robinson arithmetic. As long as the challenge of such

a proof is not met there is the conjecture that there are calculative functions that are not representable

in Robinson arithmetic.

An abstract calcule alphakappa of Robinson-Crusoe arithmetic shows that there exists an even weaker

adequate arithmetic than Robinson's.

Contact: Hutzelmeyer@pai.de
https://pai.de

 Copyright

All rights reserved. No reproduction of this publication may be made without written permission.

Any person who does any unauthorized act in relation to this publication may be liable to

criminal prosecution and civil claims for damages.

mailto:Hutzelmeyer@pai.de
https://pai.de/

version1.0 Representation in Robinson arithmetic 2

1. FUME system of object-language and metalanguage

The author has put forward FUME a precise system of object-language Funcish and metalanguage

Mencish that overcomes certain difficulties of predicate logic and that extends to a full theory of types.

In order to describe an object-language one needs a metalanguage. According to the author's principle

metalanguage has to be absolutely precise as well, normal English will not do. There are at least three

levels of language:

English supralanguage natural talks about everything

Mencish metalanguage formalized precise talks about object-language

Funcish object-language formalized precise language of mathematics

The essential parts of a language are its sentences. A sentence is a string of characters of a given

alphabet that fulfills certain rules. This means that metalanguage talks about the strings of the object-

language. The essential parts of the metalanguage are the metasentences (that are strings of characters

as well). It is important to realize that the metalanguage talks about the strings of the object-language

and nothing but. If one wants to comment on a certain mathematical system that is realized with the use

of an object-language one has to take refuge to the supralanguage. As supralanguage is not a formal,

precise language, there are no restrictions. One can comment on mathematical systems and one can talk

in supralanguage specifically about metasentences, just as metalanguage talks about object-language.

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However,

they are especially adapted to a degree of precision so that they can be used universally for all kind of

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially

the same syntax. Mencish, however, has strictly first-order logic. The fonts-method allows to

distinguish between object-language (Arial and Symbol, normal, e.g. 1), metalanguage (Arial and

Symbol, boldface italics e.g. Axiom) and supralanguage English (Times New Roman).

Notice that Funcish and Mencish have a context-independent notation, which implies that one can

determine the category of every language element uniquely from its syntax, 'wherefore by their words

ye shall know them' (fruits according to Mathew 7.20). The reader may be puzzled by some expressions

that are either newly coined by the author or used slightly different from convention. This is done in

good faith; the reason for the so-called Bavaria notation is to avoid ambiguities.

There are some hints on the front of the author's homepage https://pai.de/ . You will find some a short

description in chapter 1. of the pdf-download GeoO1.1.pdf that can be started from 'Geometries of O'

on the homepage. There is also a description in the pdf-download that can be started from 'Church's

thesis …' on the homepage. This publication from 2006, however, is not quite up to date in other respects.

A complete description of Funcish and Mencish is forthcoming.

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method

FUME . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 'calculus'

is conventionally used for real number mathematics and various logical systems. As a German

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually corresponds to

'calculus'. Calcules are given names using some convention that relates to the Greek sort names of a

calcule, e.g. concrete calcule LAMBDA with sort .

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and

concrete functions and relations that can be realized by 'machines' (called calculators). An abstract

calcule talks about nothing. It only says: if some entities exist with such and such properties they also

have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that

obey the Euclid axioms the following sentence is true for these entities'.

https://pai.de/

version1.0 Representation in Robinson arithmetic 3

Mencish ih the language of the corresponding metacalcules, metasentences talk about sentence and other

strings of Funcish calcules. It contains many metaproperties that classify strings of Funcish, but there

are some metafunctions too. In section 5 it will be made use of metafunction string-replacement

where 123 gives the result of replacing all suitable appearances of the second string

2 in the first string 1 by the third string 3 . Mencish contains a few other metafunctions as well as

some unary and binary metrelations.

Mencish allows for a precise defintion of what is usually called an Axiom scheme or schema. It is

preferred to talk about a sentence mater. In sections 2 and 5 the metalingual expression scheme will

be introduced and treated with a completely different meaning. As mentioned before, so-called Bavaria

notation has been chosen for good reasons. Although it may put up some hardship for the reader in the

beginning, it will finally be realized that it gives so much more clarity.

Funcish allows for higher-order logic by means of type strings, e.g. function-type or property-type

that one could e.g. put into1 or 1 where the function-variable 1and the

relation-variable 1 appear.

It is not absolutely correct to say that first-order logic is sufficient for calcule LAMBDA . Like for many

other calcules one needs the implicit definition of functions . To this end one has to make a little detour

to second-order logic, but one can return from that detour anytime. The detour means that one makes

use of the purely logical Implicition-axiom matres allowing for the implicit definition of functions. They

state the unique existence of functions so that they can be given names (i.e.extra-function-constant

strings); subsequently these functions can be used in normal fashion. Afterwards there occur no

omnications with 1or entications with 3 and therefore one again is in the safe world of

first-order logic The method is based on UNEX-formulo1) strings, that have to be introduced now.

As opposed to a formula that must not include the variable 0 a formulo must include the variable 0 .

UNEX-norm-formulo2) strings define relations that hold for exactly one value 0 for every booking of

the input variable strings 1 , 2 , … according to the arity of the UNEX-formulo . It is metadefined as

follows in the unary case. This is the first appearance of a metasentence; remember that the boldface

italics fonts belong to Mencish that talks about strings of Funcish that uses normal fonts. You also see

that the same logic syntax is used in both Funcish and Mencish. Requiring the string 011  to

be a sentence means that 1 is a formulo with exactly the free variable strings 0 and 1. The second

condition means that variable 2 does not appear bound in 1 . The following metasentence defines a

UNEX-formulo such that theres exists a value 0 for all input, and that this value is unique:

1sentence011 sentence0121 

UNEX-norm-unary-formulo1

TRUTH101 2102203)

Talking about the arity of UNEX-formulo strings the variable 0 is not counted. A nullary UNEX-formulo

string has no other variable , a unary UNEX-formulo string has one free, a binary UNEX-formulo string

has two other free variable strings and so on.

Logical Axiom4) of implicit definition of unary functions by UNEX-formulo

1sentence011 sentence0121 

Axiom1012102 20

111011 211021 21

1) the capital letters indicate that UNEX-formulo is not a metaproperty that is effectively decidable like e.g. formulo
2) norm means variable strings 0 and consecutive 1 , 2 , 3 …
3) the capital letters indicate that TRUTH is not a metaproperty that is effectively decidable like e.g. sentence
4) the only initial capital letter indicates that metaproperty Axiom is related to TRUTH but decidable

version1.0 Representation in Robinson arithmetic 4

2. Concrete calcule LAMBDA for pinitive functions

Concrete calcule LAMBDA of decimal pinitive arithmetic uses the following alphabet which is not the

shortest possible one, but it is tried keep as close to conventional logic language as possible:

Arial 8, petit-number for variables Arial 12, normal size numbers for decimal individuals

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Symbol 12, general logic symbols, special calcule symbols

                   

List of 40 characters of calcule LAMBDA

sort:: 

sort-array:: sort ¦ sort-array  sort the recursivw definition is evident

decimal:: number :: 0 ¦ 1 ¦ 2 ¦ … definition without dot-dot-dot see section 5

basis-ingredient:: sort ¦ decimal ¦ basis-function-constant ¦ basis-relation-constant

basis-function-constant::  ¦ sort-array ¦  pinitive functions, decimal synaption

basis-relation-constant:: ¦     pinity, minority

pinon-catena :: pinon ¦ pinon-catena pinon

pinon-array :: pinon ¦ pinon-array ; pinon
pinon :: 0 ¦ 1 ¦ 2 pinon pinon ¦ 8 pinon pinon-catena 9 only 4 cases

pinon strings are natural numbers that code primitive functions, when they replace  in basis-function-

constant string  or sort-array resp. : 0 codes the zero function, 1 the succession function. The

third case 2 pinon pinon codes straight recursion, where the left pinon of intrinsic arity m gives the initial

value and the right pinon of intrinsic arity n gives the iteration function (the intrinsic arity of the new

pinon is max(m+1,n-1)). The last case 8 pinon pinon-catena 9 codes composition of functions with any

intrinsic arity: the left pinon is the function where the pinon strings of the pinon-array are plugged in.

The PINITOR calculator that does the calculating is not described here, neither the basic true sentences.

The basis-function-constant gives the decimal synaption of two strings, which is basically

concatenation, except that no leading 0 is admissible. Actually its definition among the basis-ingredient

strings is redundant, as it could be given by a pinon .The same is true for basis-relation-constant strings

 and  as they can be defined using some pinon strings piny1) and emiy resp. .

Primitive recursive functions are obtained by pinon strings, these precede as codes the basis-function-

constant strings  and sort-array . If a number is not a pinon string the primitive function with

this code is simply put to 0 for all input. Very few examples for coding of primitive recursive functions

by decimal numbers are given here (many are given in the download listed below). It is a funny

observation that pinitive functions have a Janus face. They have been designed to produce primitive

recursive functions

2201112 the addition of two numbers with pinon add22011 e.g. 22011112

But the following is defined too and gives a funny function:

10   the value for all codes at 0 where the result is put to 0 if 1 is not a pinon code.

The strange functions that can be obtained by putting variables into code position can be generalized to

so-called processive functions. One realizes that scheme strings that are obtained from function-

constant strings by inserting number and variable strings and compositions thereof produce functions

(conventionally they are called general terms). The world of processive functions is very rich, e.g. it

comprises straightforwardly Ackermann's function and other hyperexponentiations that are obtained

by the so-called generator technique (see download C6-C7-Pinon.pdf for 'Programming primitive

recursive functions and beyond' that can be obtained on homepage https://pai.de/Church-s-

thesis/Programming-functions).

1) one can introduce extra-number-constant as names by adding a small-medium-letter-word subscript to the sort

 ; a pinon string can be referred to both in Mencish and Funcish, e.g.by upr orupr resp.

https://pai.de/Church-s-thesis/Programming-functions
https://pai.de/Church-s-thesis/Programming-functions

version1.0 Representation in Robinson arithmetic 5

3. Primitive and minimitive recursive functions

Concrete calcule LAMBDA of decimal pinitive arithmetic allows to define what is meant by a recursive

unary function by its representation as a UNEX-recursive-norm-unary-formulo1. A UNEX-norm-

unary-formulo1 contains exactly variable strings 0 and 1 and fulfills the condition UNEX wich means

that for every 0 there exist exactly one 1 ; uniqueness is obtained by choosing the smallest possible

value (minimization). It is called recursive if its either primitive or minimitive :

1UNEX-primitive-norm-unary-formulo12 pinon21021

1UNEX-minimitive-norm-unary-formulo1

23 pinon2 pinon3 TRUTH122120

1221203213023032

It was proven by Kleene that one minimization suffices. The definition of UNEX-minimitive-norm-unary-

formulo strings shows that they are denumerable (as finite strings of characters) but not enumerable

(meaning effectively denumerable), as it cannot be decided in general if the primitive recursive function

scheme212has a zero 2for all arguments 1 . Therefore recursive functions are not enumerable

- and thus do not lend themselves to diagonalization. However, one can say e.g. 'for all unary minimitve

functions' as they are given by 3 and 4 with unary-regularity-condition 123120

It is sufficient to consider UNEX-minimitive-norm-unary-formulo strings as UNEX-primitive-norm-unary-

formulo with a pinon 3 can be expressed as UNEX-minimitive-norm-unary-formulo strings with the

trivial choice: 2 8220120220120122012012019 (that is pinonjsub for the primitive function

subtraction x-y) and the given 3 .

Onr can define corresponding minimitive functions with a minimitive-norm-unary-function-constant

using the logical Axiom of implicit definition of unary functions by a UNEX-norm-unary-formulo .

4. Processive functions and non-calculative functions

One has to start with an exact definition of scheme strings which are pattern strings with at least one

variable , the count of different variable strings gives the arity of the scheme .

pattern :: number ¦ variable ¦ pattern   ¦ pattern  pattern-array 

pattern-array :: pattern ¦ pattern-array pattern

A scheme where every left-paranthesis '  'is preceded by a number is a primitive-scheme. All other

scheme strings are called processive-scheme . Examples:

primitive-scheme 01   2013 1231  202220120113121

processive-scheme 10   11 123  22011254

Every scheme defines a compinitive function, that is either primitive by a primitive-scheme or

processive by a processive-scheme (where processive-scheme may also result in primitive functions,

just take the trivial case where the schemer that precedes the left-paranthesis is evaluated to give 0 or

not a pinon . All compinitive functions are calculative. It is easy to define a non-calculative function by

a UNEX-formulo . Take as an example the unary lazy-slothy-function1) LAZY-SLOTHY that is given

by UNEX-formulo using binary-scheme 12

lazy-sloth 212000212001

It is almost always 0 and only sometimes gets 1 (the first time for 11 , the next time for 18109),

but it cannot be determined if the binary function given by12 is regular (i.e. has a zero). This

corresponds to the so-called busy-beaver-function of Turing-machines. One should have in mind that

the uncalculability of the busy-beaver-function has nothing to do with its tremendous growth but only

with the unsolvability of the halting problem. The lazy-slothy-function does not grow at all.

1) an extra-unary-function-constant is denoted by sort capital-medium-letter-word  sort 

version1.0 Representation in Robinson arithmetic 6

The existence of non-calculative functions is beyond doubt if one accepts the logical Axiom of implicit

definition of unary functions by a UNEX-norm-unary-formulo . In this connection there are two

interesting questions:

- are there calculative functions that are not recursive or compinitive (E not empty)

 (thus contradicting Church's thesis, see download Snark1.1.pdf ' Snark, …' that can be obtained

 on homepage https://pai.de/Church-s-thesis/Snark-counterexample)

- are there processive functions that are not recursive (D not empty);

 this will be discussed in section 6 .

calculative functions

recursive

primitive

A

minimitive

B

minimitive and processive

C

processive

D

metacursive

E

transcursive

compinitive

progressive

Diagram: classification of calculative functions with respect to concrete calcule LAMBDA

5. Representation of recursive functions in Robinson arithmetic

The ontological basis of concrete calcule ALPHA of Robinson decimal natural number arithmetic

comprises the following ingredients:

sort ::     capital Greek letter, read ALPHA
cipher :: 1 ¦ 2 ¦ 3 ¦ 4 ¦ 5 ¦ 6 ¦ 7 ¦ 8 ¦ 9

positive-number :: cipher ¦ positive-number 0 ¦ positive-number cipher

number :: 0 ¦ positive-number

basis-function-constant::  ¦  ¦  succession, addition, multiplication

basis-relation-constant::     minority

The following Basiom strings correspond to Axiom strings of an abstract calcule (the difference of the

two notions is not discussed here):

B1 110

B2 121212

B3 110212

B4 1101

B5 121212

B6 1100

B7 1212121

B8 110

B9 10101

B10 12121212

B11 12121212

(By the way: the appendix contains an even weaker abstract calcule of natural number arithmetic)

https://pai.de/Church-s-thesis/Snark-counterexample

version1.0 Representation in Robinson arithmetic 7

At first sight ALPHA is a very poor calcule. The only functions that can be defined explicitely are

multinomials. It is better with formula and formulo strings, where at least it can be expressed that a

number is a prime and one can express by a sentence string that there is no largest prime. However you

will run into trouble of proving the Euclid THEOREM in ALPHA .

But the idea of theory of numbers is to prove it in a stronger calcule and represent (see beginning of

section 3) the result in ALPHA . Let's exemplify for the unary case what is meant by representation of

functions by UNEX-formulo strings as they have been introduced in section 1 for calcule LAMBDA

together with the logical Axiom of implicit definition of functions ; everything stays the same in

ALPHA or in any other calcule, it is all purely logical (no special features of the calcules do appear).

The standard problem in connection with functions is composition. Two unary functions that are

represented by two UNEX-unary-norm-formulo strings 1 and 2 produce a new UNEX-unary-norm-

formulo strings 3 by composition, where variable strings4 is not contained in 1 or 2

3 4204 114 

So far this is applies in every calcule. If it comes to represent the recursive functions of calcule

LAMBDA in calcule ALPHA one also has to represent straight recursion and minimization.

Minimization poses no problem in representing except that it is a problem by itself as it rests on the

undecidable question if a function is regular. But this is already the problem in LAMBDA . Lets do

minimization in the simplest case i.e. for a UNEX-binary-norm-formulo string 1 to produce a UNEX-

unary-norm-formulo string 2 using variable strings 3 that is not contained in 1 .

2 10020 310023 03

Straight recursion is a different story. However, it was Gödel's ingenious invention of so-called beta-

function technique that laid a way out. There are various ways to code a suite (i.e. a finite sequence) of

numbers by two numbers, the code-number and the arity-number if some kind of recursion is available.

But now we are heading for recursion and have the very limited supply of three Robinson functions only.

And yet one can do it. A suite of numbers of arity 5 can be coded by two number 1 and 2 so that

the value at position 3 is given by the number 0 using a UNEX-ternary-norm-formulo that represents

the beta-function gbeta(b,c,i)=divisionremainder(b,c(i+1)+1) in conventional notation (which has to be

used for the moment as there is no way talk about suites in ALPHA). The beta-function lemma states

that the constituents of a suite x0, x1, … , xa-1 of arity a can be obtained by two code numbers b and c ,

applying the beta-function xi=gbeta(b,c,i) for i<a . The UNEX-ternary-norm-formulo is given as

gbeta 402341023 implicitely limited 441

With the inclusion of beta-function technique the window also opens to talk about suites of numbers.

This means one can e..g. express the following THEOREM strings in ALPHA :

- Fermat's last theorem

 It needs beta-function technique for expressing xn strings

- Euclid's theorem of unlimiuted prime numbers

 It needs beta-function technique for expressing suites of prime numbers

- Fundamental theorem of arithmetic prime decomposition

 It needs beta-function technique for expressing suites of prime numbers and suites of prime-

 power-products.

By the way: there is a very fundamental difference between minimization and application of beta-

function technique. In minimization it is not guaranteed if there exists a zero, whereas in beta-function

application there always exist two code numbers, one just cannot give a majorant.

version1.0 Representation in Robinson arithmetic 8

Let's return to UNEX-formulo strings and straight recursion: treating it in the second simplest, the binary

case, again starting in conventional notation. A function f(x,y) is to be constructed such that f(0,n)=g(n

and f(m+1,n)=h(f(m),m,n) with a unary starting function g(x) and a ternary iteration function h(x,y,z).

Let the two functions g(n) and h(x,y,z) be given by a UNEX-unary-norm-formulo 1 and UNEX-ternary-

norm-formulo 2 , where both of them and gbeta do not contain variable strings 3 , 4 , 5 , 6 and

7 . The UNEX-binary-norm-formulo for straight recursion is constructed with the application of beta-

function technique (in the second expression the gbeta is expanded) :

345gbeta1324300511205

0155167gbeta13243506

216253207gbeta13243507

gbeta132431

345404435411205

0155167464543645

216253207474543

745404143041

The generalization to functions of all arities is tedious but straightforward. One has to treat the nullary

case, the unary case and the multary case separately.This means that one can represent all recursive

functions by UNEX-norm-formulo strings: A unex-norm-formulo1) strings is a UNEX-norm-formulo string

where the proof of unique existence is trivial. One can make this definition precise, but for the moment

this should be enough. One starts from the following trivial unex-norm-formulo strings that represent

nullification, succession and projections for all arities:

nullary unary binary ternary …

00 0011 00112200112233

 01  0122  012233

    0122  012233

    1102  112203

If one then successively applies compositions and straight recursion as defined above for UNEX-norm-

formulo strings (and extends it to all arities ,which is a tedious but feasible job) one obtains the so-called

unex-primitive-norm-formulo strings. They represent the primitive recursive functions in ALPHA .

If one successively applies compositions , straight recursion and minimization to the starting unex-

norm-formulo strings one obtains the so-called UNEX-recursive-norm-formulo2) strings. They represent

the recursive functions in ALPHA that besides primitive functions also include minimitive functions

that are obtained by minimization.

Now that one can represent the primitive recursive functions and the recursive functions in ALPHA one

can ask: can one represent every sentence string of LAMBDA as a sentence string of ALPHA ? The

answer is astonishing:

Every sentence string of LAMBDA that comprises only primitive recursive functions and minimizations

and compostions thereof can be represented as a sentence string of ALPHA as everything can be

expressed properly with UNEX-formulo technique.

However, what happens, when processive functions appear in LAMBDA ? The answer is given in the

next section. Finally:

How about the THEOREM strings of LAMBDA that comprise only primitive recursive functions and

minimizations. As the corresponding sentence strings of ALPHA are THEOREM strings, one can ask,

where the TRUTH of these sentence strings comes from. It certainly is not obtained by derivation from

the Robinson Basiom strings, but rather from the outside through metalingual reasoning. This is a great

step and a very deep feature, that needs further discussion (but not in this publication).

1) small Latin letter indicates that no problem of TRUTH is involved 2) capital Latin letter indicates that TRUTH is involved

version1.0 Representation in Robinson arithmetic 9

6. Representation of processive functions in Robinson arithmetic ?

Processive functions of concrete calcule LAMBDA of decimal pinitive arithmetic have been introduced

in section 2 and have been discussed in section 4. Now that the concept of representation of functions

and sentences of one calcule in another calcule has been introduced for the examples LAMBDA and

ALPHA one can discuss what processive functions mean in connection with the concrete calcule

ALPHA of Robinson decimal natural number arithmetic.

Representing processive functions in ALPHA would necessitate the construction of adequate UNEX-

formulo strings.

In the preceding section it was shown how to construct adequate unex-formulo strings for primitive

recursive functions, meaning that one can do even better than constructing UNEX-formulo strings. It was

based on trivial starting unex-formulo strings for nullifications, successions and projections and

successive application of compositions and straight recursions, the latter with beta-function technique.

However, there is no correponding way to construct UNEX-formulo strings for processive functions, as

they are defined by processive-scheme strings, meaning that they can only be talked about

metalingually, although every one of them is perfectly admissible and expressible in object-language.

This leads back to the diagram at the end of section 4 and the preceding question if there are processive

functions that are not recursive (D not empty). The following is not a conjecture for a sentence of

ALPHA but rather a conjecture in metalanguage.

metaconjecture: there are processive functions that cannot be represented in ALPHA

 (D is not empty)

There are two possibilities for a proof of the contrary in metalanguage (a metaproof):

- give a construction of a recursive function for every processive functions

- or show the weaker metatheorem that there exists a recursive function for every processive

 function.

Given Kleene's normal form these two possibilties amount to the following:

- for every processive functions of arity a one has to construct two pinon numbers,

 one for a regular characteristic primitive function of arity a+1 (that has to be minimized)

 and one for a unary primitive function that is to be applied subsequently

- or one has at least to show the existence of such two pinon numbers

 for every processive function.

As long as this challenge is in the open one may say that not all calculative functions can be represented

in the concrete calcule ALPHA of Robinson decimal natural number arithmetic

version1.0 Representation in Robinson arithmetic 10

Appendix Abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic

Based on the observation that one only needs the unex-formulo technique for representaion of functions

in concrete calcule ALPHA one remembers equation (x+y)2=x2+y2+2xy (in classical notation) to

produce an eaven weaker calcule. This time the abstract counter piece is introduced;

The ontological basis of abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic

comprises the following ingredients:

sort :: 

basis-individual-constant:: n    nullum

basis-function-constant::  ¦  ¦  succession, addition, quadration

basis-relation-constant::     minority

with Axiom strings:

A1 11n

A2 121212

A3 11n212

A4 11n1

A5 121212

A6 1nn

A7 11111

A8 11n

A9 1n1n1

A10 12121212

A11 12121212

extra-individual-constant:: un    unus

One uses the following binary-norm-unex-formulo for the introduction of multiplication

121200

It is achieved by an

extra-function-constant::  multiplication

which is introduced by application of the logical Axiom of implicit definition of unary functions by

UNEX-formulo as given in section 1 :

1212121212

All the UNEX-formulo strings get a little lengthier as compared to section 5. But everything is

representable: Gödel's beta-function, straight recursion and so on.

No tremendous progress but funny.

