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Summary 
 

In connection with his so-called  incompleteness theorem Gödel discovered the beta-function. The beta-

function theorem is important for the representation of recursive functions in the concrete calcule 

ALPHA of Robinson arithmetic. The other features are composition and minimization of primitive 

recursive functions. Recursive functions are no part of Robinson arithmetic, but they are representable 

by certain formulae. 
 

The author has developed an approach to logics that comprises, but goes beyond predicate logic. The 

FUME method contains two tiers of precise languages: object-language Funcish and metalanguage 

Mencish. It allows for a very wide application in mathematics from recursion theory and axiomatic set 

theory with first-order logic, to higher-order logic theory of real numbers and so on. 
 

The concrete calcule LAMBDA of a natural number arithmetic with first-order logic has been defined 

by the author. It includes straight recursion and composition of functions, it contains a wide range of so-

called compinitive functions, with processive functions far beyond primitive recursive functions. They 

include e.g. Ackermann's function and similar constructions. All recursive functions (that are obtained 

by minimization too) can be represented in LAMBDA . As long as there is no proof that all processive 

functions are minimitive recursive (recursive but not primitive recursive) one has the problem of 

representing them in concrete calcule ALPHA of Robinson arithmetic. As long as the challenge of such 

a proof is not met there is the conjecture that there are calculative functions that are not representable 

in Robinson arithmetic.  

 

An abstract calcule alphakappa of Robinson-Crusoe arithmetic shows that there exists an even weaker 

adequate arithmetic than Robinson's.  
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1.  FUME system of object-language and metalanguage 
 

The author has put forward FUME a precise system of object-language Funcish and metalanguage 

Mencish that overcomes certain difficulties of predicate logic and that extends to a full theory of types. 

In order to describe an object-language one needs a metalanguage. According to the author's principle 

metalanguage has to be absolutely precise as well, normal English will not do. There are at least three 

levels of language: 
 
 

English supralanguage  natural    talks about everything 
 

Mencish metalanguage  formalized precise  talks about object-language 
 

Funcish object-language formalized precise  language of mathematics 
 

 

The essential parts of a language are its sentences. A sentence is a string of characters of a given 

alphabet that fulfills certain rules. This means that metalanguage talks about the strings of the object-

language. The essential parts of the metalanguage are the metasentences  (that are strings of characters 

as well). It is important to realize that the metalanguage talks about the strings of the object-language 

and nothing but. If one wants to comment on a certain mathematical system that is realized with the use 

of an object-language one has to take refuge to the supralanguage. As supralanguage is not a formal, 

precise language, there are no restrictions. One can comment on mathematical systems and one can talk 

in supralanguage specifically about metasentences, just as metalanguage talks about object-language. 
 

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However, 

they are especially adapted to a degree of precision so that they can be used universally for all kind of 

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect 

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially 

the same syntax. Mencish, however, has strictly first-order logic. The fonts-method allows to 

distinguish between object-language (Arial and Symbol, normal, e.g. 1), metalanguage (Arial and 

Symbol, boldface italics e.g. Axiom) and supralanguage English (Times New Roman). 
 

Notice that Funcish and Mencish have a context-independent notation, which implies that one can 

determine the category of every language element uniquely from its syntax, 'wherefore by their words 

ye shall know them' (fruits according to Mathew 7.20).  The reader may be puzzled by some expressions 

that are either newly coined by the author or used slightly different from convention. This is done in 

good faith; the reason for the so-called Bavaria notation is to avoid ambiguities.  
  
 

There are some hints on the front of the author's homepage https://pai.de/ . You will find some a short 

description in chapter 1. of the pdf-download GeoO1.1.pdf  that can be started from 'Geometries of O' 

on the homepage. There is also a description in the pdf-download that can be started from 'Church's 

thesis …' on the homepage. This publication from 2006, however, is not quite up to date in other respects. 

A complete description of Funcish and Mencish is forthcoming. 
 

 

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method 

FUME . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 'calculus' 

is conventionally used for real number mathematics and various logical systems. As a German 

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually corresponds to 

'calculus'. Calcules are given names using some convention that relates to the Greek sort names of a 

calcule, e.g. concrete calcule LAMBDA with sort .  
 

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and 

concrete functions and relations that can be realized by 'machines' (called calculators). An abstract 

calcule talks about nothing. It only says: if some entities exist with such and such properties they also 

have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that 

obey the Euclid axioms the following sentence is true for these entities'.  

https://pai.de/
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Mencish ih the language of the corresponding metacalcules, metasentences talk about sentence and other 

strings of Funcish calcules. It contains many metaproperties that classify strings of Funcish, but there 

are some metafunctions too.  In section 5 it will be made use of metafunction string-replacement  

where 123  gives the result of replacing all suitable appearances of the second string 

2 in the first string 1 by the third string 3 . Mencish contains a few other metafunctions as well as 

some unary and binary metrelations. 

 

Mencish allows for a precise defintion of what is usually called an Axiom scheme or schema. It is 

preferred to talk about a sentence mater. In sections 2 and 5 the metalingual expression scheme  will 

be introduced and treated with a completely different meaning. As mentioned before, so-called Bavaria 

notation has been chosen for good reasons. Although it may put up some hardship for the reader in the 

beginning, it will finally be realized that it gives so much more clarity. 
 

Funcish allows for higher-order logic by means of type strings, e.g. function-type or property-type 

that one could e.g. put into1 or 1 where the function-variable 1and the 

relation-variable 1 appear. 
 

It is not absolutely correct to say that first-order logic is sufficient for calcule LAMBDA . Like for many 

other calcules one needs the implicit definition of functions . To this end one has to make a little detour 

to second-order logic, but one can return from that detour anytime. The detour means that one makes 

use of the purely logical Implicition-axiom matres allowing for the implicit definition of functions. They 

state the unique existence of functions so that they can be given names (i.e.extra-function-constant 

strings); subsequently these functions can be used in normal fashion. Afterwards there occur no 

omnications with 1or entications with 3 and therefore one again is in the safe world of 

first-order logic The method is based on UNEX-formulo1)   strings, that have to be introduced now. 
 

As opposed to a  formula that must not include the variable 0 a formulo must include the variable 0 . 

UNEX-norm-formulo2) strings  define relations that hold  for exactly one value 0 for every booking of 

the input variable strings   1 , 2 , …   according to the arity of the UNEX-formulo . It is metadefined as 

follows in the unary case. This is the first appearance of a metasentence; remember that the boldface 

italics fonts belong to Mencish that talks about strings of Funcish that uses normal fonts. You also see 

that the same logic syntax is used in both Funcish and Mencish. Requiring the string 011   to 

be a sentence means that 1 is a formulo with exactly the free variable strings 0 and 1. The second 

condition means that variable 2 does not appear bound in 1 . The following metasentence defines a 

UNEX-formulo such that theres exists a value 0 for all input, and that this value is unique: 
 

1sentence011 sentence0121  

UNEX-norm-unary-formulo1

TRUTH101 2102203)
 

 

Talking about the arity of UNEX-formulo strings the variable 0 is not counted. A nullary UNEX-formulo 

string has no other variable , a unary UNEX-formulo string has one free, a binary UNEX-formulo string 

has two other free variable strings and so on. 
 

Logical Axiom4) of implicit definition of unary functions by UNEX-formulo 
 

 

1sentence011 sentence0121 

Axiom1012102 20

111011 211021 21
 

 

 

 

 
1) the capital letters indicate that UNEX-formulo is not a metaproperty that is effectively decidable like e.g. formulo 
2) norm means variable strings 0 and consecutive  1 , 2 , 3   …  
3) the capital letters indicate that TRUTH is not a metaproperty that is effectively decidable like e.g. sentence 
4) the only initial capital letter indicates that metaproperty Axiom is related to TRUTH but decidable  
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2.  Concrete calcule LAMBDA for pinitive functions 

 

Concrete calcule LAMBDA of decimal pinitive arithmetic uses the following alphabet which is not the 

shortest possible one, but it is tried keep as close to conventional logic language as possible:  
 

Arial 8, petit-number for variables  Arial 12, normal size numbers for decimal individuals 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
Symbol 12, general logic symbols, special calcule symbols 

                    
 

List of 40  characters of calcule LAMBDA 
 

sort::     

sort-array::   sort  ¦  sort-array  sort    the recursivw definition is evident 

decimal::  number ::  0  ¦  1  ¦  2  ¦  …   definition without dot-dot-dot see section 5 
 

basis-ingredient::  sort  ¦  decimal  ¦  basis-function-constant  ¦  basis-relation-constant 

basis-function-constant::   ¦  sort-array  ¦    pinitive functions, decimal synaption 

basis-relation-constant:: ¦      pinity, minority  
 

pinon-catena  ::  pinon  ¦  pinon-catena pinon   

pinon-array ::   pinon  ¦  pinon-array ; pinon  
pinon ::   0  ¦  1  ¦  2 pinon  pinon  ¦  8 pinon pinon-catena 9  only 4 cases 
 

pinon strings are natural numbers that code primitive functions, when they replace  in basis-function-

constant string  or sort-array resp. : 0 codes the zero function, 1 the succession function. The 

third case 2 pinon  pinon codes straight recursion, where the left pinon of intrinsic arity m gives the initial 

value and the right pinon of intrinsic arity n gives the iteration function (the intrinsic arity of the new 

pinon is max(m+1,n-1) ). The last case 8 pinon pinon-catena 9 codes composition of functions with any 

intrinsic arity: the left pinon  is the function where the pinon strings of the pinon-array are plugged in. 

The PINITOR calculator that does the calculating is not described here, neither the basic true sentences.  

 

The basis-function-constant gives the decimal synaption of two strings, which is basically 

concatenation, except that no leading 0 is admissible. Actually its definition among the basis-ingredient 

strings is redundant, as it could be given by a pinon .The same is true for basis-relation-constant strings 

 and   as they can be defined using some pinon strings piny1)  and emiy resp. .
 

Primitive recursive functions are obtained by pinon strings, these  precede as codes the  basis-function-

constant strings   and  sort-array . If a number is not a pinon string the primitive function with 

this code is simply put to 0 for all input. Very few examples for coding of primitive recursive functions 

by decimal numbers are given here (many are given in the download listed below). It is a funny 

observation that pinitive functions have a Janus face. They have been designed to produce  primitive 

recursive functions 

 

2201112 the addition of two numbers with pinon add22011 e.g. 22011112 
 

But the following is defined too and gives a funny function: 
 

10   the value for all codes at 0 where the result is put to 0 if 1 is not a  pinon code.  
 

The strange functions that can be obtained by putting variables into code position can be generalized to 

so-called processive functions. One realizes that scheme strings that are obtained from function-

constant strings by inserting number and variable strings and compositions thereof produce functions 

(conventionally they are called general terms ). The world of processive functions is very rich, e.g. it 

comprises straightforwardly Ackermann's function and other hyperexponentiations that are obtained 

by the so-called generator technique (see download C6-C7-Pinon.pdf for 'Programming primitive 

recursive functions and beyond' that can be obtained on homepage https://pai.de/Church-s-

thesis/Programming-functions ). 
 

 
1) one can introduce extra-number-constant  as names by adding a small-medium-letter-word  subscript to the sort  

 ; a pinon string can be referred to both in Mencish and Funcish, e.g.by upr  orupr  resp.  

https://pai.de/Church-s-thesis/Programming-functions
https://pai.de/Church-s-thesis/Programming-functions
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3.  Primitive and minimitive recursive functions 

 

Concrete calcule LAMBDA of decimal pinitive arithmetic allows to define what is meant by a recursive 

unary function by its representation as a UNEX-recursive-norm-unary-formulo1. A UNEX-norm-

unary-formulo1  contains exactly variable strings 0 and 1 and fulfills the condition UNEX wich means 

that for every 0 there exist exactly one 1 ; uniqueness is obtained by choosing the smallest possible 

value (minimization). It is called recursive if its either primitive or minimitive : 
 

1UNEX-primitive-norm-unary-formulo12 pinon21021 
 

1UNEX-minimitive-norm-unary-formulo1

23 pinon2 pinon3 TRUTH122120

1221203213023032 
 

It was proven by Kleene that one minimization suffices. The definition of UNEX-minimitive-norm-unary-

formulo strings shows that they are denumerable (as finite strings of characters) but not enumerable 

(meaning effectively denumerable), as it cannot be decided in general if the primitive recursive function  

scheme212has a zero 2for all arguments 1 . Therefore recursive functions are not enumerable 

- and thus do not lend themselves to diagonalization. However, one can say e.g. 'for all unary minimitve 

functions' as they are given by 3 and 4 with unary-regularity-condition 123120 
 

It is sufficient to consider UNEX-minimitive-norm-unary-formulo strings as UNEX-primitive-norm-unary-

formulo with a pinon 3 can be expressed as UNEX-minimitive-norm-unary-formulo strings with the 

trivial choice:  2  8220120220120122012012019 (that is pinonjsub for the primitive function  

subtraction x-y ) and the given 3 .    
 

Onr can define corresponding minimitive functions with a minimitive-norm-unary-function-constant 

using the logical Axiom of implicit definition of unary functions by a  UNEX-norm-unary-formulo . 
 

 

 

4.  Processive functions and non-calculative functions  
 

One has to start with an exact definition of scheme strings which are pattern strings with at least one 

variable , the count of different variable strings gives the arity of the scheme .   
 

pattern ::  number  ¦  variable  ¦  pattern    ¦  pattern  pattern-array 

pattern-array :: pattern  ¦  pattern-array pattern 
 

A scheme where every left-paranthesis '  'is preceded by a number is a  primitive-scheme. All other 

scheme strings are called  processive-scheme . Examples:  
 

primitive-scheme  01   2013 1231  202220120113121 

processive-scheme 10   11 123  22011254 
 

Every scheme defines a compinitive function, that is either primitive by a primitive-scheme or 

processive by a  processive-scheme (where processive-scheme may also result in primitive functions, 

just take the trivial case where the schemer that precedes the  left-paranthesis  is evaluated to give 0 or 

not a pinon . All compinitive functions are calculative. It is easy to define a non-calculative function by 

a UNEX-formulo . Take as an example the unary lazy-slothy-function1)  LAZY-SLOTHY  that is given 

by UNEX-formulo using binary-scheme 12 
 

lazy-sloth 212000212001
 

It is almost always 0 and only sometimes gets 1 (the first time for 11 , the next time for 18109 ), 

but it cannot be determined if the binary function given by12 is regular (i.e. has a zero). This 

corresponds to the so-called busy-beaver-function of Turing-machines. One should have in mind that 

the uncalculability of the busy-beaver-function has nothing to do with its tremendous growth but only 

with the unsolvability of the halting problem. The lazy-slothy-function does not grow at all. 
 

 

1) an extra-unary-function-constant  is denoted by  sort  capital-medium-letter-word  sort   
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The existence of non-calculative functions is beyond doubt if one accepts the logical Axiom of implicit 

definition of unary functions by a  UNEX-norm-unary-formulo . In this connection there are two 

interesting questions: 
 

- are there calculative functions that are not recursive or compinitive (E not empty) 

 (thus contradicting Church's thesis, see download Snark1.1.pdf ' Snark, …' that can be obtained  

 on homepage https://pai.de/Church-s-thesis/Snark-counterexample ) 
 

- are there processive functions that are not recursive (D not empty); 

 this will be discussed in section 6 . 
 

 

calculative functions 
 

 

recursive 
 

 

primitive 

A 

minimitive 

B 

minimitive and processive 

C 

processive 

D 

metacursive 

E 

  
 

transcursive 

 

 
 

 
 

compinitive 
 

 

progressive 
 

 

 

Diagram: classification of calculative functions with respect to concrete calcule LAMBDA 
 

 

 

5.  Representation of recursive functions in Robinson arithmetic  

 

The ontological basis of concrete calcule ALPHA of Robinson decimal natural number arithmetic 

comprises the following ingredients: 

 

sort ::        capital Greek letter, read ALPHA 
cipher  ::   1  ¦  2  ¦  3  ¦  4  ¦  5  ¦  6  ¦  7  ¦  8  ¦  9    

positive-number  ::  cipher  ¦  positive-number 0  ¦  positive-number cipher     

number  ::   0  ¦  positive-number     
 

basis-function-constant::   ¦    ¦    succession, addition, multiplication 

basis-relation-constant::     minority  
 

The following Basiom  strings  correspond to Axiom strings of an abstract calcule (the difference of the 

two notions is not discussed here): 
 

B1 110

B2 121212

B3 110212

B4 1101

B5 121212

B6 1100

B7 1212121

B8 110

B9 10101

B10 12121212

B11 12121212
 

 

(By the way: the appendix contains an even weaker abstract calcule of natural number arithmetic)  

 

  

https://pai.de/Church-s-thesis/Snark-counterexample
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At first sight ALPHA is a very poor calcule. The only functions that can be defined explicitely are 

multinomials. It is better with formula and formulo strings, where at least it can be expressed that a 

number  is a prime and one can express by a sentence string that there is no largest prime. However you 

will run into trouble of proving the Euclid THEOREM in ALPHA . 
 

But the idea of theory of numbers is to prove it in a stronger calcule and represent (see beginning of 

section 3) the result in ALPHA . Let's exemplify for the unary case what is meant by representation of 

functions by UNEX-formulo strings as they have been introduced in section 1 for calcule LAMBDA 

together with the logical Axiom of implicit definition of functions ; everything stays the same in 

ALPHA or in any other calcule, it is all purely logical (no special features of the calcules do appear). 
 

The standard problem in connection with functions is composition. Two unary functions that are 

represented by two UNEX-unary-norm-formulo strings 1 and  2  produce a new UNEX-unary-norm-

formulo strings 3 by composition, where variable strings4 is not contained in  1 or  2   
 

3 4204 114  
 

So far this is applies in every calcule. If it comes to represent the recursive functions of calcule 

LAMBDA in calcule ALPHA one also has to represent straight recursion and minimization. 
 

Minimization poses no problem in representing except that it is a problem by itself as it rests on the 

undecidable question if a function is regular. But this is already the problem in LAMBDA . Lets do 

minimization in the simplest case i.e. for a UNEX-binary-norm-formulo string 1 to produce a UNEX-

unary-norm-formulo string 2  using variable strings 3 that is not contained in  1  . 
 

2 10020 310023 03 
 

Straight recursion is a different story. However, it was Gödel's ingenious invention of so-called beta-

function technique that laid a way out. There are various ways to code a suite (i.e. a finite sequence) of 

numbers by two numbers, the code-number and the arity-number if some kind of recursion is available. 

But now we are heading for recursion and have the very limited supply of three Robinson functions only. 

And yet one can do it. A suite of numbers of arity 5 can be coded by two  number 1 and 2 so that 

the value at position 3 is given by the number 0 using a UNEX-ternary-norm-formulo that represents 

the beta-function gbeta(b,c,i)=divisionremainder(b,c(i+1)+1) in conventional notation (which has to be 

used for the moment as there is no way talk about suites in ALPHA ). The beta-function lemma states 

that the constituents of a suite x0, x1, … , xa-1 of arity a can be obtained by two code numbers b and c , 

applying the beta-function xi=gbeta(b,c,i) for i<a . The UNEX-ternary-norm-formulo is given as 
 

gbeta 402341023 implicitely limited 441
 

With the inclusion of beta-function technique the window also opens to talk about suites of numbers. 

This means one can e..g. express the following  THEOREM strings in ALPHA : 
 

- Fermat's last theorem 

 It needs beta-function technique for expressing xn strings 

 

- Euclid's theorem of unlimiuted prime numbers 

 It needs beta-function technique for expressing suites of prime numbers  
 

- Fundamental theorem of arithmetic prime decomposition 

 It needs beta-function technique for expressing suites of prime numbers and suites of prime- 

 power-products. 
 

 

By the way: there is a very fundamental difference between minimization and application of beta-

function technique. In minimization it is not guaranteed if there exists a zero, whereas in beta-function 

application there always exist two code numbers, one just cannot give a majorant.  
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Let's return to UNEX-formulo strings and straight recursion: treating it in the second simplest, the binary 

case, again starting in conventional notation. A function f(x,y) is to be constructed such that f(0,n)=g(n 

and f(m+1,n)=h(f(m),m,n) with a unary starting function g(x)  and a ternary iteration function h(x,y,z). 

Let the two functions g(n) and h(x,y,z) be given by a UNEX-unary-norm-formulo 1 and UNEX-ternary-

norm-formulo 2 , where both of them  and gbeta  do not contain variable strings 3 , 4 , 5 , 6  and 

7 . The UNEX-binary-norm-formulo for straight recursion is constructed with the application of beta-

function technique (in the second expression the gbeta is expanded) : 
 

345gbeta1324300511205

0155167gbeta13243506

216253207gbeta13243507

gbeta132431 
 

345404435411205

0155167464543645

216253207474543

745404143041 
 

The generalization to functions of all arities is tedious but straightforward. One has to treat the nullary 

case, the unary case and the multary case separately.This means that one can represent all recursive 

functions by UNEX-norm-formulo strings: A unex-norm-formulo1) strings is a UNEX-norm-formulo string 

where the proof of unique existence is trivial. One can make this definition precise, but for the moment 

this should be enough. One starts from the following trivial unex-norm-formulo strings that represent 

nullification, succession and projections for all arities: 
 

nullary unary   binary    ternary       … 

00 0011 00112200112233 

 01  0122  012233

    0122  012233 

    1102  112203 
 

If one then successively applies compositions and straight recursion as defined above for UNEX-norm-

formulo strings (and extends it to all arities ,which is a tedious but feasible job) one obtains the so-called 

unex-primitive-norm-formulo strings. They represent the primitive recursive functions in ALPHA . 
 

If one successively applies compositions , straight recursion and minimization to the starting unex-

norm-formulo strings one obtains the so-called UNEX-recursive-norm-formulo2)  strings. They represent 

the recursive functions in ALPHA that besides primitive functions also include minimitive functions 

that are obtained by minimization. 

 

Now that one can represent the primitive recursive functions and the recursive functions in ALPHA one 

can ask: can one represent every sentence string of LAMBDA as a sentence string of ALPHA ? The 

answer is astonishing: 
 

Every sentence string of LAMBDA that comprises only primitive recursive functions and minimizations 

and compostions thereof can be represented as a sentence string of ALPHA as everything can be 

expressed properly with UNEX-formulo technique.  
 

However, what happens, when processive functions appear in LAMBDA ? The answer is given in the 

next section. Finally: 

 
 

How about the THEOREM strings of LAMBDA that comprise only primitive recursive functions and 

minimizations. As the corresponding sentence strings of ALPHA are THEOREM strings, one can ask, 

where the TRUTH of these sentence strings comes from. It certainly is not obtained by derivation from 

the Robinson Basiom strings, but rather from the outside through metalingual reasoning. This is a great 

step and a very deep feature, that needs further discussion (but not in this publication). 
 

 

 
1)  small Latin letter indicates that no problem of TRUTH  is involved 2)  capital Latin letter indicates that TRUTH is involved   
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6.  Representation of processive functions in Robinson arithmetic ? 
 

Processive functions of concrete calcule LAMBDA of decimal pinitive arithmetic have been introduced 

in section 2 and have been discussed in section 4. Now that the concept of representation of functions 

and sentences of one calcule in another calcule has been introduced for the examples LAMBDA and 

ALPHA one can discuss what processive functions mean in connection with the concrete calcule 

ALPHA of Robinson decimal natural number arithmetic. 
 

Representing processive functions in ALPHA would necessitate the construction of adequate UNEX-

formulo strings.  
 

In the preceding section it was shown how to construct adequate unex-formulo strings for primitive 

recursive functions, meaning that one can do even better than constructing UNEX-formulo strings. It was 

based on trivial starting unex-formulo strings for nullifications, successions and projections and 

successive application of compositions and straight recursions, the latter with beta-function technique. 
 

However, there is no correponding way to construct UNEX-formulo strings for processive functions, as 

they are defined by processive-scheme strings, meaning that they can only be talked about  

metalingually, although every one of them is perfectly admissible and expressible in object-language. 
 

This leads back to the diagram at the end of section 4 and the preceding question if there are processive 

functions that are not recursive (D not empty). The following is not a conjecture for a sentence of 

ALPHA but rather a conjecture in metalanguage. 
 
 

metaconjecture: there are processive functions that cannot be represented in ALPHA 

   (D is not empty) 
 

 

There are two possibilities for a proof of the contrary in metalanguage (a metaproof): 
 

- give a construction of a recursive function for every processive functions 
 

- or show the weaker metatheorem that there exists a recursive function for every processive  

 function. 
 

Given Kleene's normal form these two possibilties amount to the following: 
 

- for every processive functions of arity a one has to construct two  pinon numbers,  

 one for a regular characteristic primitive function of arity a+1 (that has to be minimized) 

 and one  for a unary primitive function that is to be applied subsequently  

 

- or one has at least to show the existence of such two  pinon numbers  

 for every processive function. 

 
 

As long as this challenge is in the open one may say that not all calculative functions can be represented 

in the concrete calcule ALPHA of Robinson decimal natural number arithmetic 
 

  



version1.0 Representation in Robinson arithmetic 10 

Appendix  Abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic 
 

Based on the observation that one only needs the unex-formulo technique for representaion of functions 

in concrete calcule ALPHA one remembers equation (x+y)2=x2+y2+2xy (in classical notation) to 

produce an eaven weaker calcule. This time the abstract counter piece is introduced; 
 

The ontological basis of abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic 

comprises the following ingredients: 

 

sort ::     

basis-individual-constant:: n     nullum 

basis-function-constant::   ¦    ¦    succession, addition, quadration 

basis-relation-constant::     minority  
 

with Axiom strings: 
 

A1 11n

A2 121212

A3 11n212

A4 11n1

A5 121212

A6 1nn

A7 11111

A8 11n

A9 1n1n1

A10 12121212

A11 12121212
 

extra-individual-constant:: un    unus 

 

One uses the following binary-norm-unex-formulo for the introduction of multiplication  

 

121200 

 

It is achieved by an 
 

extra-function-constant::     multiplication 

 

which is introduced by application of the logical Axiom  of implicit definition of unary functions by 

UNEX-formulo as given in section 1 : 

 

1212121212  
 

All the UNEX-formulo strings get a little lengthier as compared to section 5. But everything is 

representable: Gödel's beta-function, straight recursion  and so on.  
 

No tremendous progress but funny.  


