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I INTRODUCTION 

Recently, it has been observed that the universe is much less old than previously thought [1] [2] 

[3].  The latest galaxy studies indicate that the rate of expansion is about 9% faster than previous 

estimates.  Instead of being 13.8 billion years old, current estimates now place the age of the 

universe at a more modest age of, 12.5 − 13 𝐺𝑦𝑟.  As stated by members of the research team 

concerning the latest findings, “ there becomes a very strong likelihood that we’re missing 

something in the cosmological model”.  As indicated in the title of the work, there now is 

“stronger evidence for physics beyond  ΛCDM ”. 

 

In this short note we would like to bring to the attention of the reader that a cosmologically time-

varying 𝐺 can accommodate such a result.  As a particular example, we refer the reader to 

reference [4].  In particular, see Figure/Graph 6a, in appendix D, in that reference, which we 

reproduce here as Figure 1.  This figure replicates exactly the newest age without any 

modifications or revisions of existing cosmological parameters as determined by the Planck XIII 

collaboration [5].  Figure 1 gives the “look back” times for three specific models, the ΛCDM 

model, model A, and, model B, as a function of the cosmic scale parameter, "𝑎".  Models, 𝐴, and 

𝐵, are two specific time-varying 𝐺 models.  Specifically this figure graphs the age correction 

factors, 𝐹,  for the various models under consideration.  The specific values, as determined in 

reference [4], are 𝐹 = (.9559, .8688, .9018) for models, (𝛬𝐶𝐷𝑀, 𝑚𝑜𝑑𝑒𝑙 𝐴, 𝑚𝑜𝑑𝑒𝑙 𝐵), 

respectively.  We assumed 𝛺𝑅𝐴𝐷  =  .000083, 𝛺𝑀𝐴𝑇𝑇𝐸𝑅  =  .3089, and 𝛺𝛬  =  .6911 as our 

input values, as determined by the Planck XIII collaboration. With these values for the age 

correction factor and a Hubble value equal to, 𝐻0 = 67.74 𝑘𝑚/(𝑠 𝑀𝑝𝑐), we obtain 13.8 Gyr for 

the 𝛬𝐶𝐷𝑀 model.  But for models A, and B, we obtain, respectively, 12.5 Gyr, and, 13.0 Gyr, as 

the age of the universe without any further modifications.  These are a precise match with what is 

being claimed in reference [1]. 
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Figure 1, Age Correction Factors for Three Models, 𝛬𝐶𝐷𝑀, 𝑚𝑜𝑑𝑒𝑙 𝐴, and 𝑚𝑜𝑑𝑒𝑙 𝐵.  𝐻0 is 

Hubble’s constant. 

 

The two models, 𝐴 and 𝐵, were introduced in order to explain the quintessence parameter, 

𝑤 =  −.98, versus 𝑤 =  −1, which holds in the 𝛬𝐶𝐷𝑀 model.  We also sought to explain the 

cosmological constant fine tuning problem, the discrepancy between the present day very weak 

value of the cosmological constant, and the much greater vacuum energy found in earlier epochs. 

We assumed a connection exists, and that the cosmological constant is a characteristic of the 

vacuum.  The present-day observed value is, 𝛬𝑂𝐵𝑆  =  1.11 ∗  10−52 𝑚−2  =  4.33 ∗
 10−66 (𝑒𝑉)2.  At the very beginning of cosmic evolution, 𝛬𝑉𝐴𝐶𝑈𝑈𝑀  =  (𝑃𝑙𝑎𝑛𝑐𝑘 𝐿𝑒𝑛𝑔𝑡ℎ)−2 =
 3.83 ∗  1069 𝑚−2 =  1.22 ∗  1028 (𝑒𝑉)2 .  This discrepancy in length squared, amounting to 

121 orders of magnitude, between 𝛬𝑉𝐴𝐶𝑈𝑈𝑀 and, 𝛬𝑂𝐵𝑆, has often been referred to as the “worst 

fine-tuning problem” in physics.  To explain both the cosmological fine tuning problem, as well 

as the observationally determined quintessence parameter, 𝑤 =  −.98, we assumed that the 

inverse gravitational constant, 𝐺−1, is in reality, an order parameter varying very slowly at 

present with respect to cosmological time. 

In order to derive, 𝑤 =  −.98, we parametrized 𝐺−1 = 𝐺−1(𝑇) = 𝐺−1(𝑎), by means of two 

separate functions, which we distinguished as model 𝐴, and model 𝐵.  The cosmic scale 

parameter, “𝑎” is related to CMB temperature, 𝑇, by 𝑎 = (2.725/ 𝑇) = (1 + 𝑧)−1, where 𝑧 is 

the redshift.  In model 𝐴, we set 

𝐺−1  =  𝐺∞
−1 (1 −  𝑒−𝑥)          (1) 

In equation, (1), “𝑥” is defined as 𝑥 ≡  𝑏/𝑇 =  𝑎 𝑏/𝑇0 where “𝑏” is a constant to be 

determined, having units of degrees Kelvin, 𝑇0 = 2.275 𝐾, and “𝑎” is our scale parameter.  In 

the present epoch, “𝑎” =  1, and thus, 𝑥0  ≡  𝑏/𝑇0.  In equation (1), 𝐺∞
−1 is the saturation value 
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of 𝐺−1, applicable in the limit where the CMB temperature approaches zero, or equivalently, 

when “𝑎” approaches infinity.   

In model 𝐵, we have correspondingly,  

     𝐺−1  =  𝐺∞
−1  𝐿(𝑥)      

       =  𝐺∞
−1 [𝑐𝑜𝑡ℎ (𝑥) –  1/𝑥]          (2) 

In equation, (2), 𝐿(𝑥) is the Langevin function, defined by the equation 𝐿(𝑥)  ≡  [𝑐𝑜𝑡ℎ (𝑥) –  1/
𝑥].  As before 𝑥 ≡  𝑏/𝑇 =  𝑎 𝑏/𝑇0 where “𝑏” is a constant to be determined, having units of 

degrees Kelvin, and, 𝑥0  ≡  𝑏/𝑇0.  In equation (2), 𝐺∞
−1 is a different saturation value for 𝐺−1, 

but defined in the same way.  In the limit where 𝑇 approaches zero, 𝐺−1 approaches 𝐺∞
−1.  Both 

models, 𝐴, and 𝐵, gave a current time variation of, Ġ/𝐺 =  − .06 𝐻0, where 𝐻0 is Hubble’s 

parameter.  This variance in 𝐺 value is within current observational bounds.  To satisfy, 𝑤 =
 −.98, we found that, 

   𝑥0  =  4.28,         𝑏 =  11.663 𝐾             (𝑚𝑜𝑑𝑒𝑙 𝐴)                                 (3) 

𝑥0  =  17.67,          𝑏 =  48.15 𝐾            (𝑚𝑜𝑑𝑒𝑙 𝐵)                                 (4) 

Thus, for any scale parameter, “𝑎”, equations (1) and (2), can be utilized to find the 

corresponding 𝐺−1 = 𝐺−1(𝑎) value at any cosmological epoch.  A graph of both functions as a 

function of cosmic scale parameter is presented in Figure 2. 

 

 

Figure 2, Order Parameters 𝐺−1/𝐺0
−1 plotted as a Function of Cosmic Scale Parameter, “𝑎”, for 

models 𝐴, and 𝐵.   𝐺0 is Newton’s constant in the current epoch. 

 

Moreover, it was argued that 𝐺−1 surfaced at a temperature of 
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    𝑇𝐶 =  6.20 ∗ 1021 𝐾     (𝑚𝑜𝑑𝑒𝑙 𝐴)                     (5) 

𝑇𝐶  =  7.01 ∗ 1021 𝐾     (𝑚𝑜𝑑𝑒𝑙 𝐵)                                (6) 

Beyond this temperature, gravity, as we currently know it, did not exist.  Therefore gravity is 

considered to be an emergent “low energy” phenomenon.  We also claimed that, if 𝐺 is not 

fundamental, then there is nothing fundamental about the Planck scale.  It is to be noted that even 

though models, 𝐴, and 𝐵, are underpinned by two different functions, the inception of gravity is 

roughly at the same temperature.  We consider this to be more than a coincidence.  The 

temperatures indicated by equations, (5), and, (6), are well below the Planck temperature of, 

1.42 ∗  1032 𝐾, but well above the temperature of  1016 𝐾 ≈  1 𝑇𝑒𝑉 , where all particles in the 

standard model are ultra-relativistic [6] [7]. 

Models, 𝐴, and 𝐵, lead to saturation values of 

(𝐺∞
−1) |𝐴  =  1.014 𝐺0

−1 (𝑚𝑜𝑑𝑒𝑙 𝐴;  𝑙𝑎𝑟𝑔𝑒 “𝑎” ≥ 2)        (7) 

(𝐺∞
−1) |𝐵  =  1.054 𝐺0

−1 (𝑚𝑜𝑑𝑒𝑙 𝐵;  𝑙𝑎𝑟𝑔𝑒 “𝑎” ≥ 10)        (8) 

This means that, 𝐺0, the current value of Newton’s constant will decrease further, until 

(𝐺∞) |𝐴  =  .986 𝐺0  (𝑚𝑜𝑑𝑒𝑙 𝐴;  𝑙𝑎𝑟𝑔𝑒 “𝑎” ≥ 2)        (9) 

(𝐺∞) |𝐵  =  .949 𝐺0  (𝑚𝑜𝑑𝑒𝑙 𝐵;  𝑙𝑎𝑟𝑔𝑒 “𝑎” ≥ 10)      (10) 

The details are presented in reference [4]. 

With these two time varying 𝐺 models, we can make a case for the quintessence parameter, 

𝑤 =  −.98.  We can also show that the cosmological constant, 𝛬 , scales.  In fact, 

     𝐺/𝐺0  =  𝜌𝛬 /𝜌𝛬0
= (𝛬/𝛬0)1/2            (11) 

The subscript 0 refers to current epoch values, and 𝜌𝛬 is the dark energy mass density.  In the 

earliest times, 𝐺 is proportional to temperature, 𝑇, in both models, 𝐴, and 𝐵.  We can 

furthermore show that, at inception, 

    𝐺/𝐺0  =  5.273 ∗  1020 (𝑚𝑜𝑑𝑒𝑙 𝐴)       (12) 

𝐺/𝐺0  =  4.113 ∗  1020 (𝑚𝑜𝑑𝑒𝑙 𝐵)       (13) 

Both values are similar and quite large.  We believe, nevertheless, that there could very well be a 

twenty order of magnitude increase in G at the extremely high temperatures, indicated by 

equations (5), and (6).  We substitute equations, (12), and, (13), into relation, (11).  This gives 

𝛬/𝛬0  =  2.78 ∗  1041 (𝑚𝑜𝑑𝑒𝑙 𝐴)       (14) 

𝛬/𝛬0  =  1.69 ∗  1041 (𝑚𝑜𝑑𝑒𝑙 𝐵)       (15) 

We do not have the 121 order of magnitude difference between present and past values because 

we are stopping well short of the Planck temperature.  Our inception temperature is of the order, 
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≈ 7 ∗ 1021 𝐾  .  See equations, (5), and, (6).  We have instead a more modest 41  order of 

magnitude increase as indicated by equations, (14), and, (15). 

With these models 𝐴, and 𝐵, it now appears, that in addition to deriving 𝑤 =  −.98, as well as 

explaining (alleviating) the cosmological constant problem, we have a possible explanation for 

the younger age of the universe.  The figure above gives an age which falls in line with the newly 

observed values.  In fact, we found in the original reference, [4], that we had to modify the 

Hubble value towards lower values in order to conform to the 13.8 billion year estimate.  If we 

insist on 13.8 billion year look-back time, then for model, 𝐴 , we should chose 𝐻0𝐴  =
 61.7 𝑘𝑚/(𝑠 𝑀𝑝𝑐).  For model 𝐵, the corresponding correction should be, 𝐻0𝐵  =  63.9 𝑘𝑚/
(𝑠 𝑀𝑝𝑐).  If, on the other hand, we stick to the 67.74 𝑘𝑚/(𝑠 𝑀𝑝𝑐) value, then we obtain the 

ages as indicated above in our figure /graph.  This may provide the solution to the “tension” 

problem currently being discussed.  We went into great detail in reference [4] to show that the 

time varying 𝐺 models can reproduce the 𝛬𝐶𝐷𝑀 model in all its essentials.  It is only in the very 

early universe (𝑎 ≤ .001) that marked deviations occur between model, 𝐴 , or 𝐵 , versus the 

𝛬𝐶𝐷𝑀 model.  For most of cosmic evolution, our variable 𝐺 models give results similar to the 

predictions of the 𝛬𝐶𝐷𝑀  model.  In fact, in the limit where the quintessence parameter, 𝑤 

approaches −1, the time-varying Ġ/𝐺 vanishes, and we are left with precisely the concordance 

model.   

If 𝐺 is indeed varying with respect to cosmological time, then 𝐺−1must be replaced by a scalar 

field, as first suggested by Jordan [8].  In fact, we find that in this instance, 

     〈0|𝛷2|0〉 = 𝐺−1 = 𝑀𝐺
2/(ħ𝑐)        (16) 

Here 𝑀𝐺  is the mass of the hypothetical massive particle representing gravity, which is changing 

with respect to cosmological time.  We consider gravity, as exemplified by the coupling 

“constant”, 𝐺, to be a property of the vacuum.  The expression, equation (16), can be compared 

to the magnetization in condensed matter physics, or the inverse Fermi constant, 𝐺𝐹
−1~ 𝑀𝑊

2  , in 

high energy physics.  All have the same canonical mass dimension as, 𝐺−1, defined above.  We 

are close to 𝐺−1 having achieved its full saturation value, as can be seen upon inspection of 

equations, (7), and, (8), but we are not there yet.  The mass is still evolving, albeit at a very slow 

rate in the present cosmological epoch.  Our parametrizations indicate full saturation values at 

𝑎 ≈ 2 and 𝑎 ≈ 10 for models, 𝐴, and 𝐵, respectively.  In other words, full saturation is achieved 

when the universe will have doubled its present size for model, 𝐴.  In model 𝐵 for full saturation, 

the universe will have to increase its size by a factor of 10. 

We close by discussing a modified Planck scale. As is well known, the Planck length, the Planck 

mass, the Planck time, etc. are all given in terms of Newton’s constant, and if Newton’s constant 

varies, then, there is nothing fundamental about the Planck scale.  The saturated values for 𝐺, 

however, indicated by equations, (9), and (10), do not change.  If there is anything comparable 

to Planck scale, then we should be using these values for a refined definition of Planck length, 

mass, time, etc.  We therefore make the following adjustments, 

  𝐿𝑃𝑃 = (ħ𝐺∞/𝑐3)
1

2 = (ħ𝐺0/𝑐3)
1

2 (𝐺∞/𝐺0)
1

2 = 𝑠 𝐿𝑃 = 𝑠 1.62 ∗ 10−35 𝑚     (17) 
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The scale factor, s , can be found using equations, (9), and (10).  For model, 𝐴, we obtain 

𝑠𝐴 = .993, whereas for model 𝐵, the corresponding value is, 𝑠𝐵 = .974.  In equation, (17), 

𝐿𝑃 = 1.62 ∗ 10−35 𝑚, is the conventional Planck length, defined in terms of the present day 

value of Newton’s constant, and 𝐿𝑃𝑃 is the adjusted value using a saturated value for Newton’s 

constant.  Similarly, one can show that, 

  𝑀𝑃𝑃 = (ħ𝑐/𝐺∞)
1

2 = (ħ𝑐/𝐺0)
1

2 (𝐺0/𝐺∞)
1

2 = 𝑠−1 𝑀𝑃 = 𝑠−1 2.18 ∗ 10−8 𝑘𝑔   (18) 

The quantity, 𝑀𝑃 = 2.18 ∗ 10−8 𝑘𝑔, is the conventional Planck mass, defined in terms of the 

present day value of Newton’s constant, and 𝑀𝑃𝑃 is the adjusted value, using a saturated value 

for Newton’s constant.  For models, 𝐴, and 𝐵, the scale factor, 𝑠−1 equals, 𝑠𝐴
−1 =   1.007 , and, 

𝑠𝐵
−1 =   1.027, respectively.  The other Planck quantities can be adjusted correspondingly.  We 

notice that because these scale factors are close to one, there is not much difference between the 

adjusted Planck scale and the conventional Planck scale.  Nevertheless there is a difference, if 

these models are to be taken seriously.  An ultimate physical model/justification for the 

mathematical expressions, (1), and (2), remain to be explored and worked out. 
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