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Abstract
This paper consists of two parts.

Part A is a state-of-the-art report in quantum chromodynamics.

Hereis presented in a concise form:

the QCD gauge-theory, the standard model and its particles, the perturbative QCD (QCD/QED Feynman
diagrams with results), QCD on-lattice with Wilson loops.

Part B describes anew numerical QCD calculation method (direct minimization of QCD-QED-action) and its
results for the first-generation (u,d) hadrons.

Here we start with the standard color-Lagrangian LQCD=LDirac+Lgluon , model the quarks g as
parameterized gaussians, and the gluons Ag; as Ritz-Galerkin-expansion.

We minimize the Lagrangian with parameters par=(par(q),{a},par (Ag)) for first-generation hadrons
(nucleons, pseudo-scalar mesons, vector mesons).

The resulting parameters yield the correct masses, correct magnetic moments for the nucleons, the gluon-
distribution and the quark-distribution with interesting insights into the hadron structure.
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Part A Quantum chromodynamicstheory

1. QCD gaugetheory
Gaugetheory

[1]
The gauge invariant QCD Lagrangian is
_— 1
‘CQCD = t-_",‘i; [?’[T‘#D}J)ij — m rfij) ; EGEV G“u

where ¥ z-( r)lsthe quark field, adynammal functlon of spacetime, in the fundamental representation of the

N A f
7 A lTI

SU(3) gauge group, indexed by ¥: J; - - - ="\ /arethe (color) gluon fields, also dynammal functions of
spacetime, in the adjoint representation of the SU(3) gauge group, indexed by a, b,... The y* are Dirac matrices
connecting the spinor representation to the vector representation of the Lorentz group.

Thetotal gluon-field is 1 (*) = AL(2) - Aa/2: g the Dirac-conjugate

v, (X) =w,“(X)7° , where y,° isthe complex-conjugate.

. . — D, = ap —ig Aj

D, isthe gauge covariant derivative
where is the coupling constant, Aya(x) isthe (color) gluon gauge field, for eight different gluonsis afour-
component Di rac spinor, and where is one of the eight Gell-Mann matrices,

The symbol — prrepresents the gauge invariant gluon field strength tensor, analogous to the el ectromagnetic
field strength tensor, F*, in quantum electrodynamics. It is given by

G =0,A% —0, A% +g f A" A

where fy are the structure constants of SU(3) : the generators T? satisfy the commutator relations

[T, T°] =i f®T°

Note that the rules to move-up or pull-down the a, b, or cindexes aretrivial, (+, ..., +), s0 that f*° = fape = i
whereas for the 1 or v indexes one has the non-trivia relativistic rules, corresponding e.g. to the metric
signature (+—— —).

The constants m and g control the quark mass and coupling constants of the theory, subject to renormalization
in the full quantum theory.

Yang-Millstheory

Y ang—Mills theories are a special example of gauge theory with a non-commutative symmetry group given by
the Lagrangian

Lo = —= Ta(F?) = F‘ i
2 , where for QCD with SU(3) F = G?,,

with the generators of the Lie algebra, indexed by a, corresponding to the F-quantities (the curvature or field-
strength form) satisfying

1
TI‘l:T“ Tf.r} — E&abj [Ta Tl‘.r] fﬂb\c T{.
where the f** are structure constants of the Lie algebra, and the covariant derivative defined as
D, =19, —igl A},

where | isthe identity matrix (matching the size of the generators), A®, isthe vector potential, and g isthe
goupl ing constant. In four dimensions, the coupling constant g is a pure number and for a SU(N) group one has

Therdation
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Fo, = 8, A% — 8,A% + gf*™ Ab Ag

follows from the commutator for the covariant derivative D p

[D,,D,] = —igT"“Fy,.

The field has the property of being self-interacting and equations of motion that one obtains are said to be
semilinear, as nonlinearities are both with and without derivatives. This means that one can manage this theory
only by perturbation theory, with small nonlinearities.

From the given Lagrangian one can derive the equations of motion given by

O"Ff, + gf ™ A Ff, =0, | | | .
(Yang-Mills-equations), which correspond to the Maxwell equationsin
dectrodynamics, where f 2 =0
Putting these can be rewritten as
(D" F)* = 0.
The Bianchi identity holds

{D_u P:')'.F.',}“ —+ {DKEW}H + [:.D,_,.le }" =1
which is equivalent to the Jacobi identity

[Dus [Duy D] + [Py [y Do) + [Dis [Di Dul] =0
7 _ Lo

- T
since Define the dual strength tensor 2 I then the Bianchi identity can be rewritten as

i
D,F" =0
A source current J % entersinto the equations of motion (eom) as

O EL, + gf ™ A FE, = —J8.
The Dirac part of the Lagrangian is
L, = (inD,y* - mcly
with the resulting eom=gauge Dirac equation
(7D,7*-mely =0

I nvariants

[6]
Asusual, quantum states are characterized by their eigenvalues of a complete set of commuting observables.
Out of the generators of the Poincare group, one can form the operator

PQ = Gug pPe P,‘.?

that commutes with P¥ and L** . This can be checked explicitly and should also be intuitively clear since P? is
aLorentz-scalar. The eigenvalue of P? is the mass n7’.
A second commuting operator can be constructed using the Pauli-Lubanski-V ector

W, = _%EWMP”MPJ

that satisfies the commutator relations characteristic of afour vector:
[1[_;[___—“.: Pu] _ {}:
W, M7 =i (g W? — g""W?).

Asfor P2, it follows that the operator W2 commutes with all generators of the Poincare group. In order to
interpret W2, we use that it can be evaluated in any reference frame since it isaLorentz scalar.
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ph = (m,0).
Wy =0
. om ik
Wi = §E¢jkL3 =-mdi a2
helicity
T
|1

all eigenvalues for massive particles

2 v 2 .
P |lm,p,s,8p,...) = m" |m,p, 8 5p,...)

" v \ _ /= 2
P \m,p.s,sp, ... =" m,p,s,sp,.. .} . P =NF+m

W2 |m,p. s, sp,...) = m’s(s+ 1) |m,p,s,5p....)

\ : p-J
h|lm,p,s,sp,...) =s|m,p,s,5,...) . h=—
| P | P |ﬁ|
all eigenvalues for massless particles
W2=0, W.P=0 W*#=hpP*
[h, P¥] = [h, M*] =0
P*p,s,...)=p"|ps....) , P =|f 1
hlp,s,...) =s|ps,s...), 5=D.~:|:§~:|:1~---
Color gaugetransformations[4, 1.1]
g — etfc (@) tg:b'?'b
gD D ~ 1 _ . AE B
ACTC Y _315' (x)t (AL'TC _ _HHECU:]TC) e—?ﬂ ()t
Js

Dirac spinors
Spinors u, v: solution to Dirac equation in momentum space:

(f— m)us(p) = 0
(p+mluy(p) =10

P="D
{F:I,-_I'-I:.l ,}.If} = ,}_p:?.la' 4+ “,-"”“;"# — 25{“”
Dirac-representation (Bjorken-Drell) y*

<o 5l Y )

Spinors can be chosen as helicity elgenstates:
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A
1 \
hug(p) = igf-'«ﬂ,-LEP,'

1

T

Il
[
e
e n Tl
Q[ =
e~

huy(p) = Ava(p)

g (p)1 gt (P) = Vol p)yH 00 (p) = 29" 8o i =uly’
where
propagator
[ TR S AT A
|?1: kg r""i'g ;:I - |?1";.'2" i""fct .I:I

iSp(z — y) = OIT[()BW)NI0) = f ke G (2)

(2m)d

ip+m)
Sp(p?) = ————
F(r) P —m?4ie

M assless vector bosons

( dzp Y —ipT ¢ o ipT
A z) = Z[w (m[jﬂe‘i[p;e P +ﬂL|:j'_7:IE§ (ple™ )
}' L &

lax(E), al,(7)] = dy 0 (2m)3(20")0% (k — 7)

polarization and gauge

(ea(p) - evlp)) = —dan

g, A" =10, puet =10

[
P =(p,0,0.p)

In the frame where the polarization vectors can be chosen as

0

1 1
=75 | i
0

They are helicity eigenstates with eigenvaluess = +1

. 00 0 0
00 0 0
0000
0100
pE — b = = B
Z}':E“:E}' 0010 g + nHi” 4+ nfn
0000
_ 1 . 1 . _
n"=—(1,0,0.1). n' = —(1.0,0,-1). n-n=1
V. V2

with
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the polarization vectors therefore form a complete basis of Minkowski space.

Weyl spinors
(pk) = L (p)ur(k) = ul (p)uy (k) [pk] = Gr(p)ur(k) = ul (p)u_(k)

) ) \ 0
ugp(p) = (HJ'SP’I) ug(p) = (M (p‘u)

transformations are given in terms of the angles ¢; and rapidities v; as

1 i
Ap =exp (—E( o — 1zrjaj . Ap =exp (_;[@'4_1!}'}5)

Weyl spinor index notation

uy(p) ++ pa u_(p) & p
ABp kp — det(Ag) e4Bp ky | cipP kB = det(Ap) £yt kP
AB ~ _AB 0 1 . AB A
£ =Efap=E4p=¢ =( -1 ﬂ) p* =e"pg, P =r"cip

(pk} = p*ky = ppkae?®,
[pk] = pak* = pPep k.

pka = —pak? P’i;f_q = —P_qk'd

(pk}y = ar(p)un(k) = ul (pluy (k) [pk] = Ga(p)ur(k) = ol (p)u_(k)
(pk)* = p'k 4 = [kp]

;o A
. uy(p) 4+ pa u-(p) & p
braket notation: *

fofh Sy A . :
k) ==kt =rks  popt=Ip) p'e Ip—} = |p],
[kpl = (k+ =) = k0" pis pH = p* & (p—|= (0]

Wilson loop

The Wilson loop variable is a quantity defined by the trace of a path-ordered exponential of a gauge field A#
transported along a closed line C:

We = Tr (Pexpi f Aydat) .

=
Here, (isaclosed curve in space, ‘Pis the path-ordering operator. Under a gauge transformation
PE‘E Fo Apdz# — g(.’l:):DEE [ e, .-‘l.pd.'z:“g—l (I)'

where xcorresponds to the initial (and end) point of the loop (only initial and end point of aline contribute,
whereas gauge transformations in between cancel each other). For SU(2) gauges, for example, one has

J
g*!(z) = exp{io (z)

s g s ﬂjf Jisan arbitrary real function of ., and cIJarethethreePaull matrices; as
usual, a sum over repeated |nd|ce£|S|mpI|ed

The invariance of the trace under cyclic permutations guarantees that Weisinvariant under gauge
transformations.
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[10]
® ®
E
A
[ [ ] ]
v
F
L [ ]

The pattern of strong charges for the three colors of quark, three antiquarks, and eight gluons (with two of zero
charge overlapping).

Quarks are massive spin-1/2 fermions which carry a color charge whose gauging is the content of QCD. Quarks
are represented by Dirac fields in the fundamental representation 3 of the gauge group SU(3). They also carry
electric charge (either —1/3 or 2/3) and participate in weak interactions as part of weak isospin doublets. They
carry global quantum numbers including the baryon number, which is 1/3 for each quark, hypercharge and one
of the flavor quantum numbers.

Gluons are spin-1 bosons which also carry color charges, since they lie in the adjoint representation 8 of SU(3).
They have no electric charge, do not participate in the weak interactions, and have no flavor. They liein the
singlet representation 1 of all these symmetry groups.

Every quark hasits own antiquark. The charge of each antiquark is exactly the opposite of the corresponding
quark.

Therunning coupling constant [9]

V(r)z—gashc+kr potential =(qq)
L e B
X B=06.0 ]
JB T gzgi 5
+ B=6. 1
+ =6.8 } {i

Quenched potential

iy
-

_6 L 1 1 1 1 ‘ 1 1 1 1 | | 1 1 1 | | 1 1 1 ]
4] 1 2 3 4
R/R,

The static qg potential in the quenched approximation obtained by the Wuppertal collaboration. The data at
B=06.0,6.2, 6.4 and 6.8 has been scaled by Rp, and normalized such that V (Ro) = 0. The collapse of the
different sets of data on to asingle curve after the rescaling by Rg is evidence for scaling. The linear rise at
large r implies confinement. [9]




The color confinement results from lim(V (r),r — «) = o
the running coupling is characterized by the s-function with colors N=3 , flavors ni=4, p=transfer energy

i _ _
#L]_: = _.11"|__£-,|'1:| = _|:;J.j|j_l!:-||'3 + .l'.'jll_t’}'s' +...)
1IN —2ng .
g = LTfJf-"'lf_‘iTTg
3AN?  10Nn ne(N?—1)
3 = ( _ rf Iy r16m2)2 .
br=(— 3 N )/ (1677
2
oy () =2 4(/1) = ! = Loz — coupling constant
T 8B, |og(1’0 (33— 2Nf)|n(%)
where

A~220 MeV “cutoff parameter”

Nr =3: Number of quark flavourswith2m < Q
k~1GeV/fm

as(mp) = 0.189 (bottom quark)

as(mg) = 0.173 (charm quark)

for the cutoff 4 follows

51
2a2 1

} ¢ L'!X.I:'[_ ] =K fp{ﬂ{#:’}

Aogep = lim .
Qep i a 2009%(1e)

—oc Fag?( )

The cut-off parameter on-lattice[9 14.8]

;J'LQGD = -"‘i.[a.th;ce

ng 0 1 2 3 4
Apronr/Ajas: | 834 | 894 | 967 | 1058 | 1174

The relation between Avom and Aus and A4 as afunction of the number of active flavors. The results for
Avom/A1a With g defined by the triple gluon vertex are in Feynman gauge [9]

Amom= one-loop renormalized coupling constant in momentum space subtraction procedure [14]

Awms = one-loop renormalized coupling constant in minimal subtraction procedure

The evolution equation for the QCD coupling, czss[lif;)z]r is:

Oex
02302 =Blas),  Blas) =—al(bo+ bros + ba? +...),
by — 11Ca — 2n¢ b — 17C2 — 5Cans — 3Cpns 153 — 10n¢
- 12 T 2472 T 24r?
Gaugefixing

[6]
a gauge fixing term has to be added to the Lagrangian

1o
SF = _Eidﬁd‘i o JI'
Fadeev-Popov ghost fields ¢, and anti-ghost fields ©a are introduced:

L
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Lrp = ("2) Dii)en = (0°2a) (Gubab + g f Acp)es

i
alternatively, an axial gauge-fixing term could be used,
1. -
'SSE = —Ekﬂ'ﬂflﬁ:l_
in axial gauges, it can be shown that the ghost fields are not necessary

Comparison energy electromagnetic-strong

e Me =0.5MeV
QED Mp =938 MeV
Ebinding =13.6eV

Hydrogen Atom  (EM force)

My ~ 3Mev
® @) | :
~ 6 MeV
M p =938 MeV
Proton (Strong force)

QCD
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2. The standard model and QCD

Particles of the sstandard modéds

i 1
Quarks — 3 colours: 1, = (
'i,fl-"3

Quark part of Lagrangian:

Lq = Pa(iv" 04020 — 87  tp A — m)hp

SU(3) local gauge symmetry ++ 8 (=32 — 1) generators ralb. .. rfb
corresponding to 8 gluons ./-lh e Aﬁ.

A representation is: t* = %)\A,

(o[ e[s|e|®
[e[e[ee]
L O

0
=
o}
N
=}
o
o
<
=l
<
)
]

GAUGE BOSONS
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Quark properties [16]
Particle Antiparticle
Mass (MeVic?)’ J B Qie)| kK c s T B’
Mame | Symbol Mame Symbeoel
First generation
up u 23207405 Ta | +1a | #25 | 415 0 0 0 0 antiup u
down d 48305403 o |+l | Slg | -1 0 0 0 0 antidown d
Second generation
charm C 1275 25 u | +lg | +24 0 +1 0 0 0 | anticharm c
strange 5 95 £5 v | +lg | -4 0 0 -1 0 0 | antistrange s
Third generation
top t 1732105102710 | Y5 | +l5 | +34 0 0 0 +1 0 antitop i
bottom b 4180 +£30 15 +g | =14 0 0 0 0 -1 | antibottom b

quark radius: as of 2014, experimental evidence indicates they are no bigger than 10 times the size of a proton,
i.e. lessthan 10™*° metres [16]

Quark Mode [6]

Gell-Mann, Neeman, Zweig (1961-64) classified the hadron spectrum and proposed that hadrons are composed
of spin 1=2 quarks with fractional electric charges.

ul=+3,5=0.Q0=2), d(—1,0,-3), s(0,—1— 1),
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Baryons
|p) ~ |uud) ) ~ |udd)
Particle Quark Rest mass dJ Q o Commonly
Symbol % = s 1% % $/52|Cc#+|B'$ Meanlifetime (s) $
name content (MeVic?) (e) decays to
proton® | p/p /N’ uud | 938.272046(21)% | 16 [1e* | +1 | 0 | 0 | © Stable!™ Unobserved
neutron® | nynsn° udd | 93956537921 | 15 [15*| 0 | 0 | 0 | O | (8.800+0.009) =102 p e +V,
T+ oor
Lambdal'0l A uds 11156830006 | 0 || 0 |-1| 0 | O (2.632 +0.020)x 10-10 . 3 A
n +1
charmed - 2286464014 | O || +1 | 0 [+ | O 2.00 +0.06) x 10712 -
Lambdal'l Ac udc bl 2 (2.00 £0.06) See A decay modes 8
bottom 0 104 F) 0
Lambdal12] Mo udb 5619.4+06 | 0O 0 [0 | 0| -1]| (1.420+0.024)x10 See /\j decay modes [ &
“eror
Sigmal13! ol uus 118937007 |1 [ | #1 | -1 | 0 | 0 (8.018 £0.026) x 10-M . T
n +1
Sigmal'4! 3 uds 119264240024 [ 1 || 0 | -1 | 0 | 0O (7T4+07)x10720 Ay
sigmal'®! T dds 119744940030 | 1 || -1 | -1 | 0 | © (1479 +0.011) x10°10 0l
charmed -+ 1+ -22ld] + iy
_ b2 uuc 2453084016 |1 |T6*| +2 | 0 | #1 | O (2.91+0.32) x10 Ao+
Sigmal'é] c £
charmed . e 20 . 0
Sigmal’e! b2 udc 24529204 14| # 0|+ | 0 »1.43 =10 Ag+T
chamed v 2453742016 |1 || 0 |0 |[+#1 | 0 3.05 £0.37) x 1022 “eT
Sigmal'! 2 Ll e 2 i (3.05£0.37) x A+
pottom +09 1re +2 7
+ X ’ _ = ~73[d] 0 +
Sigmal!T] 2y uub 58113 gx1.7 | 1 +1 | 0|0 1 68 55 x10 Al s
bottom 0 1=
SigmaT by udb Unknown 1 0 0 0 = Unknown Unknown
pottom B +0.6 1, +0.87 _mnd] I -
sigmal!7] Zy ddb 58155 gg+17 | 1 -1 0|0 |- 13475 <102 A+
Xil18] =" uss 1314861020 % |%*| 0o |—=2| 0 | 0 (2.90 +0.09) x 10710 At
xiltel = dss 1321712007 |Y% || -1 | -2| 0 | O {1639 +0.015) = 10710 A e
charmed . +04 ’ e - .
X{20 = usc 24678 55 | e +1 -1 | +1 0 (4.42 +0.26) = 10° See =_ decay modes [ 4
charmed _1 +0.34 1, | 1.+ +0.13 -0
e = dsc 2 470.88 _gap Yo 0 -1 | #+1 0 112 _g4p * 10-13 See = decay modes (&
charmed = 25756431 1o | 16+ | +1 1]+ | 0 Unknown =2
Xi primel22] =@ usc d - o | e =+ (seen)
charmed =1 d 25779129 |%|% | © 1+ | 0 Unk =0
Xi primet23] =% SC 8x2 b nknown .+ (seen)
double
charmed =% 3021402072+ |\ |4l 45 | 0 |42 0 Unk CrK T 4T
== ucc f2 | 2 nENoWN A+ K +1 +11 (seen)
Xirz—ﬂ 0.27£0.14
double
charmed = dec Unknown To [ 157 | +1 0 | +2 | 0 Unknown Unknown
12
i
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bottom
¥il2sl

(or
Cascade
B)

—b

ush

5787815013

Unknown

See =, decay modes | 5

pottom
¥jl25]

{or
Cascade
B)

dsh

8791122

027
(1.56 5% + 0.02) x10-12

See =, decay modes | &

bottom Xi
primet

ush

Unknown

Unknown

Unknown

bottom Xi
prime®

dsh

Unknown

Unknown

Unknown

double
bottom XiT

ubb

Unknown

Unknown

Unknown

bottom Xi
prime®

dsh

Unknown

Unknown

Unknown

double
bottom XiT

ubb

Unknown

Unknown

Unknown

double
bottom Xit

dbb

Unknown

Unknown

Unknown

charmed
bottom XiT

uch

Unknown

+1

+1

Unknown

Unknown

charmed
bottom XiT

dcb

Unknown

+1

Unknown

Unknown

charmed
bottom Xi
primeT

uch

Unknown

+1

+1

Unknown

Unknown

charmed
bottom Xi
prime®

dch

Unknown

+1

Unknown

Unknown

charmed
OmegalZ®!

S50

26052 +1.7

1/‘&+

+1

(69 +12)x10714

see 0! decay modes | 3

bottom
OmegalZ’!

ssh

6071 £40

L&+

0.55
(113 Jy4p £ 0.02) x10712

QO + Jiy (seen)

double
charmed
OmegaT

D+

cC

SCC

Unknown

‘1‘é+

+1

+2

Unknown

Unknown

charmed
pbottom
Omega’

ch

sch

Unknown

‘1}&+

+1

Unknown

Unknown

charmed
bottom
Omega
primet

0
i
Och

sch

Unknown

1)‘&+

+1

Unknown

Unknown

double
bottom
Omega’

sbb

Unknown

1i&+

Unknown

Unknown
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Omega’

double

charmed ot b Unknown 1;&* +1 +2 1 Unknown Unknown
cc B

bottom Cct

OmegaT

charmed

double a® bb Unknown 1;&* 0 +1 =z Unknown Unknown
. _

bottom Ctt)
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Vector mesons

first generation vector mesons

rho+ ud m=775.1MeV, Q=1, charge radius r0=0.748fm+-0.02fm [18]
tho0 (ut—dd)/~2 m=775.3MeV, Q=0

omegad (uti + dd )/+/2 m=782.6MeV, Q=0

. . . . ] Commonly decays to
Particle | Particle . Antiparticle . Quark Rest mass ¢/15¢ JPCe|Se|Co B e MWMeanlifetime(s) ¢
name | symbol symbol content (MeVic?) {=5% of decays)
Charged
tho p (770) p (770) ud 751034 | 1| 17 | 0 | 0 0 |{4.412002) =102 T+t
mesan!23]
MNeutral . _
tho p’(770) Self 5 (ui—dd) | 775261025 | 1+ | 1= | 0 | 0 0 | (4.4520.03)x10-24% T
mesan!23]
Omega 0 o o oS T AT or
gy | w(782) Self — (ui+dd) | 78265012 | 0- | 1= | 0 | 0 0 | (7.75£0.07)x 102" g
meson-=": v ™ty
Phi K™+ K or
' | eroz0) Self 55 101946140019 0~ | 1= | 0 | 0 0 | (154 £001)x10-22" KL+ KO or
meson!2E] .0 -
(prm/(m +m +1)
JIPsil2e] iy Self cc 30969160011 | 0- | 1= | 0 | 0 0  (7.09:021)x1021" | % J"“JES}L;E“V
moades
Upsil _ See T(1S) d
P ) Self b 946030+026 | 0~ | 1~ | 0 | 0 0 | (122+003)x10°20" ee 1(15) decay
rmesoni27] maodes |5
Kaonl22] K K us 89166£0026 | % | 1~ | 1 | 0 0 |(3262006) =122 SeeK (892) decay
modes &
- * s = See K'(892) d
Kaon(28] K= i’ ds 895814019 | 5 | 1~ | 1|0 0 | (1394002x102e | Sof K (892)decay
modes [ &
D o, o — " 0%+ or
.| D7[2010) | D*7(2010) cd 2010264007 | % | 1= | 0 [#1 0 | (789£0.17)=10"2 A
mesani22] D"+
i) 0
D = = D+
oy D7(2007) | D7%2007) e 200696010 | % | 1= | 0 [+#1 0 3.1 x10-22" 0 e
meson!=Y] +y
Strange D™ +yor
D or* DX~ cs 21121404 0| 1= | #1 [+ 0 >34 x 10722 e
mesonl®'] 20T
B . 2 . S = 1 - -
meson®2! B B ub 53252104 s 1 0 0 +1 Unknown B +vy
B =0 ==0 .y 1 = b}
meson32! B B db 53252104 Yz 1 0 0 +1 Unknaown B +vy
Strange
B B0 B0 sb 54154727 |0 | 1T [ -1 0+ Unknown Bo+y
mesanl33] '
Charmed
B Sh BI- ch Unknown 0 1- 0 | +1  +1 Unknown Unknown
mesonT
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Pseudoscalar mesons
_ _ ~ o _ ~
|7 ~ Jud) |77} ~ |di) |m°) ~ |dd) — Jui)
-~ — —_ —_ FD e _"D 7
|KF) ~|us)  |K7) ~|sa)  |K")~|d5) |K7) ~ |sd)
. . - - Commonly decays to
Particle | Particle . Antiparticle . Quark Rest mass IS¢ JPCe Se Co B e Meanlifetime(s)
name symbol symbol content (MeV/c2) (=5% of decays)
Pion!®! m m ud 13957018 £0.00035| 1° | 0 | 0 | 0 | 0 [(2.6033 £0.0005)=1078 pe+y
u—dd
Pionl™ n” Self ““? B | 134976600006 | 1~ | 0 | 0 | 0 | 0 | (852+0.18)x10""7 VY
y+yor
Et 1-fdd - 2s3 0, 0,0
— i Self L TR E 54786240018 | 07 | 0 | 0 | 0 | 0 | (5.02:019)x10"1% AT T or
mesont®! VB e m =
m+mT +m
T 4T 4nor
Eta prime . witdd 485 3 - 2 _
T eson® n(958) Self 5 957.78 £0.06 0* | 0* |0 | 0| 0 | (332£015)=x102" | %4 \,r].i(f il v) ar
T+ 40N
Charmed
eta nJ15) Self cc 2983.6+0.7 0* [ 0 | 0 | 0 | 0 | (204+0.08)x1022" | Seen_decay modes (&
mesaon! 19!
Bottom
eta n.(15) Self bb 9398032 or | 0 i 0 i Unknown See n,, decay modes |8
mesonl!
2
P+, or
'IT+ + 'IT‘J ar
Kaonl12] K K™ us 493 677 £0.016 Yo | 00 | 1| 0 | 0 |(1.2380+£0.0021)%10-% 0 -
T +e +v or
T AT T
Kaon!12! K° K ds 4976140024 | % | 00 |1 |0 | 0 3 I3
+ o
14 o dsfad 9 " ; B » m o+ oor
K-Short!14] K2 Self == 497 614 £0.024' % 0 )| 0 | 0 | (B.954 £0.004)x10 a
42 m+T
mHeT v or
Fra e . T Y, Or
K-Long! =] K2 Self 497 614 £0.024 ol 00 | ()| 0| 0 | (5B116+0021)x10"% q
V2 T +T +71 or
+ a -
m+m 4T
D _ _
meson! 18! D" D cd 1869.61+0.10 Yo | 07 0 | +1 | 0 | (1.040£0.007)x10""2 | See D" decay modes (&
b D’ 5 ou 1864.84 £0.07 Y| 00 | 0 | #1| 0 | 4101£0.018)%10"2 | See D decay modes (8
meson!17] g g 2 . I v
strange D _ — B B
mesonl12] Dy O] cs 1968.30 £0.11 oo + [+ 0 (5.00 £0.07)x10-'3 | See D} decay modes (B
B - _
meson! 18! B” B ub 5279.26 £0.17 | 0- 0 | 0 | +1 | (1.6380.004)x10""2 | See B” decay modes (&
0 " B° db 527958 £0.17 %l o- | 0| 0| +1 | (1519+0009)=10"12 | SeeB®d des (4
mesoniZ0] - - 2 - 4 ee ecay modes
Strange B o = = B i o
mesoni2'l B, B; sh 5366.77 +0.24 0 0 -1 0 | +1 | (1.512£0.007)=10 See BY decay modes (8
Charmed
B B B cb 62756 +1.1 0 | 00 | 0 | +1|+1 | (452£033)x10""® | See B] decay modes &
mesoni?Z
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Pion

In particle physics, apion is any of three subatomic particles: 70, 7+, and 71— .

Each pion consists of aquark and an antiquark and is therefore a meson. Pions are the lightest mesons and,
more generally, the lightest hadrons. They are unstable, with the charged pions n+and n— decaying with a mean
lifetime of 26.033 nanoseconds (2.6033x10* seconds), and the neutral pion 7o decaying with amuch shorter
lifetime of 8.4x10 """ seconds. Charged pions most often decay into muons and muon neutrinos, while neutral
pions generally decay into gamma rays.

The exchange of virtual pions, along with the vector, rho and omega mesons, provides an explanation for the
residual strong force between nucleons. Pions are not produced in radioactive decay, but are commonly
produced in high energy accelerators in collisions between hadrons. All types of pions are also produced in
natural processes when high energy cosmic ray protons and other hadronic cosmic ray components interact with
matter in the Earth's atmosphere. Recently, the detection of characteristic gamma rays originating from the
decay of neutral pionsin two supernova remnants has shown that pions are produced copiously after
supernovas, most probably in conjunction with production of high energy protons that are detected on Earth as
cosMmic rays

The concept of mesons as the carrier particles of the nuclear force was first proposed in 1935 by Hideki

Y ukawa. While the muon was first proposed to be this particle after its discovery in 1936, later work found that
it did not participate in the strong nuclear interaction. The pions, which turned out to be examples of Y ukawa's
proposed mesons, were discovered later: the charged pionsin 1947, and the neutral pion in 1950.

Pions, which are mesons with zero spin, are composed of first-generation quarks. In the quark model, an up
guark and an anti-down quark make up a ©+ , whereas a down quark and an anti-up quark make up the n-, and
these are the antiparticles of one another. The neutral pion =0 is acombination of an up quark with an anti-up
quark or adown quark with an anti-down quark. The two combinations have identical quantum numbers, and
hence they are only found in superpositions. The lowest-energy superposition of theseisthe o, whichisits
own antiparticle. Together, the pions form atriplet of isospin. Each pion has isospin (I=1) and third-component
isospin equd toits charge (I~+1, 0 or —1).

Pion decays

The 7+ mesons have amass of 139.6MeV/c? and amean lifetime of 2.6033x10 ®s. They decay due to the weak
interaction. The primary decay mode of a pion, with abranching fraction of 0.999877, is aleptonic decay into a
muon and a muon neutrino:

T =+,

T =+,
The second most common decay mode of a pion, with a branching fraction of 0.000123, is also aleptonic decay
into an electron and the corresponding e ectron antineutrino. This "electronic mode" was discovered at CERN
in 1958:

T =+,

T =+,
The suppression of the electronic decay mode with respect to the muonic one is given approximately (up to a
few percent effect of the radiative corrections) by the ratio of the half-widths of the pion—electron and the pion—

muon decay reactions:

2 2\
Ry = (me/m,)? | 22— ) —1.283 x 10
m2 —m?2

The 70 meson has amass of 135.0 MeV/c? and amean lifetime of 8.4x10 ' s. It decays via the electromagnetic
force, which explains why its mean lifetime is much smaller than that of the charged pion (which can only
decay viathe weak force).

The dominant n° decay mode, with a branching ratio of BR=0.98823, isinto two photons:

0
T =2y
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The second largest 7° decay mode (BR=0.01174) is the Dalitz decay (named after Richard Dalitz), whichisa

two-photon decay with an internal photon conversion resulting a photon and an electron-positron pair in the
final state:

0 - +
m—=yte te

Commonly
Particle | Particle Antiparticle Quark Rest mass o decays to
= = } /IS4 JPFC 2 52+ C & B % Meanlifetime (s) %
name | symbol symbol content!!U] (MeVic?) (>5% of
decays)
Pionl®] m u ud 130.57018+0.00035| 17 | 07 | 0 | O | 0 |26033:0.0005x10%| 4y,
o 0 n ri+'_1j;j o - _ . - 17
Piontt m Self ? 1349766 + 0.0006 1 0 0 0 0 84+06=x107"" y+y
Electromagnetic charge radius [17]
R(n+)=0.657+-0.003fm
Nucleons
Particle uark Q i
4  symbol Mass (Mevic?) 4 Mass (u)”™ $ s S s $ Magnetic moment +
name content (e)
proton[PDE 1] PIP 1 Lug | 938272013 +0.000023 | 1.007 276 466 77 £0.000 000 000 10 15| 15+ | +#1 | 2.792 847 356 £0.000 000 023
N
nin’s
neutronlP0G 2] ' 0 ' udd 030 565 346 +0.000023 | 1.008 664 915 97 +0.000 000000 43 | 15 | 15° 0 -1.913042 73 +0.000 000 45
N
antiproton "Np_ " | Uod | 938272013 +0.000023 | 1.007 276 466 77 +0.000 000000 10 | 15 | 6% | -1 -2.793 £0.006
nin’s
antineutron -ﬁc : udd 939 485 +0.051 1.008 664 915 97 £0.000 000 000 43 +1_.-§ 1,.-;‘ 0 ?
o Commonly
Mean lifetime (s) #
decays to
Stable™ Unobserved

(8.857 £0.008) x 102 | b4 &4y
stable'™ Unobserved

(8.857 £0.008) x 102 | pse +v,

The mass of the proton and neutron is quite similar: The proton is 1.6726x10 *’kg or 938.27MeV/c?, while the
neutron is 1.6749x10 2’kg or 939.57MeV/c?. The neutron is roughly 0.13% heavier. The similarity in mass can
be explained roughly by the slight difference in masses of up quarks and down quarks composing the nucleons.
However, a detailed explanation remains an unsolved problem in particle physics.

The spin of both protons and neutronsis ¥, which means they are fermions and, like electrons (and unlike
bosons), are subject to the Pauli exclusion principle.

The proton radius puzzle is an unanswered problem in physics relating to the size of the proton. Historically
the proton radius was measured via two independent methods, which converged to a value of about 0.8768
femtometres (1 fm = 10 "> m). This value was challenged by a 2010 experiment utilizing a third method, which
produced a radius about 5% smaller than this. The discrepancy remains unresolved, and is atopic of ongoing
research.

spectroscopy (Lamb shift): 0.8768+0.0069fm

nuclear scattering: 0.8775+0.0005fm

myonic hydrogen: 0.8751+0.0061fm
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Parameters Standard model [9]

Parameters Value

mu(MS, 2 GeV) 3-4.5 MeV
md(MS, 2 GeV) 5-8 MeV
ms(MS, 2 GeV) 100-140 MeV
mc(MS,mc) 1.0-1.6 GeV
mb(MS,mb) 4.1-4.6 GeV
MHiggs 125GeV

a s(MZ7) 0.118 +0.003
[Vud| 0.9736 + 0.0010
[Vus| 0.2196 + 0.0023
[Vub| (3.3+£0.2+0.4+£0.7)10-3
[Veb| 0.040 + 0.003

le | 2.26 x 10-3

| el € | 0-30x10-4

Comments

x PT, sum-rules
x PT, sum-rules
x PT, sum-rules
J/ ¢ sprectra

Y spectra

LHC 2016

World average

n-peve anduy »evev u

K+-> n0etve and KOL-» wxe¥ve
B- nlv;B- olv

B - Xclv and B —» D=l v

KO « KO mixing

K- = = decays
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3. Perturbative QCD

Quark processes

neutron decay
d—>u+e +v,
lambda decay
i+ dd
tds  tind 1d nds udd N2
A > p+r A'>n + 7
s=—-1£0+0 s=-1£0+0

Conservation of strangenessis not in fact an independent conservation law, but can be viewed as a combination
of the conservation of charge, isospin, and baryon number. It is often expressed in terms of hypercharge Y,
defined by:

S =Strangeness

Y=S+B=2(Q0-1) B =Baryon number
() = Electric charge
{

= lsopspin

Feynman rules

Lepton propagators [11, Fig.9.1]

Photon —igue

propagator v W“"ﬁ g2 +is

W, 7 1 Gu G
propagators VAR "fi.,'l'*"'ﬁ'f K g — M? 4 i [ + Mz ]
Higgs i

propagator ""]T;.:""" Pt — M3 +is

Neutrino l—ys 1 1495
propagator p; 2 p+is 2

]..C}'.Itljln i

propagator Il p—mg +is

QCD propagators and vertices [11, Fig.8.2]
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Quark i s
propagator Aa —jj"—BrE? b—ma +ie eBA

Gluen _ _ idig = g + (1 —£)gquae ]
propagator g2 +ist M g2 + is
Quark-—gluon —igeYp(Ti ba

vertex (p+r—g=0; Ti = X:/2)
. _ . _ 1 —r
Three-gluon kv, ) Qafj_kég;?:;p_ :ﬂf} "i Guu (g —7)a
vertex Jr#q ’ g
i, A, (pt+g+r=0)

_igsg [fijmfkt‘m[ﬂkugpp - qugkpj
+ firem fiim(@ap Gvp — Guogng)
+ fkjmfifm(g}.v.gpp - .g}.p.gvpjl]

(p+g+r+s=0)

Four-gluon
vertex

---------- i AAANNY

idi ) P* Gs fiik Py
Two-ghosts vertex

incoming [6, 6.73]

ai(p) : ur(p) = p* = |p—) =g
qr(p) : ug(p) = pa — |p+) = |p)
ar(p) : trlp) = py = (p+H = [p|
dr(p): p(p) = p* — (p—| = (p|
, gl k]
Q‘_'[P] . EE{P:'"-:I"} - ﬂ{q};}
, _ aln* |k
§+{P:| . Ei{ﬁ:-?]' — u@[kq]

outgoing
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qr(k) - ap(k) = k* = (k—| = (k|
qrik) : uR{k} — kg — (k4| = [F]
qr(k) vp(k) = kg — |k4) = |K)
Tn(k) : vp(k) = k4 — [k—) = |K]
g_(p): ¥ (p.q) = 2Tkl

PR v il
gilp) ey (pg) = 3 @k

[3]

Interaction vertices of Feynman rules:

Apn Do Ap
Cp B,v
o fx.ﬂCfXBD _
- f“‘[”‘[lﬂ} are- f’“wmg:]f
Ha-rfe” D, p)+ (B c
+(r — p)*g"¥] (D.p)+ (B.v) &+ (C.7)
i §
b a b a

@b[_ igs Iﬂng )".t'?.-;

(001 0) 010\ /1
1 0 0 0
00 0 0

- e o " J\'|-I'
Py t;b ta

A gluon emission repaints the quark colour.
A gluon itself carries colour and anti-colour.

& B [(p — q)P g™
g - r)rg
+(r — p)* g™

A gluon emission also repaints the gluon colours.

Because a gluon carries colour + anti-colour, it emits ~
twice as strongly as a quark (just has colour)
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[4]
A
D.a Al
r
C,p T
a b B, v C.p B, v
—igstih " —gsfAEC(p — q)P g™ —igZ fXAC FXED g gro — gio ]+
+ilg—rpFg'? (Cyr) = (D p)+(Bv) + (Cy)
+(r—p) g%
[5]
Hadronic Z decay Drell-Yan DIS
) ) o (E
e~et = 4*/Z% = q7 g = y*/Z° = - g — i
o N o 1/ Ne o1
Hadronic decays
[6] R-ratio
R og(ete~ — Hadrons)
 o(etem = ptpo)
o(ete” = qf) = NeQo(eTe™ — ptu)

ECM < 2:5 GeV: production of u,d,s quarks:
PP 2
una,rk = :\"fcl:[%]z + [%]2 + [%]2 = ﬁf‘cﬁ =2
Reyp = 2.2
4 GeV < ECM < 9 GeV: production of u,d,s,c quarks:
N RPTEY 10
Ranak = N2((2)° + (L)% = A"‘"F =333...
Rep = 3.6
11 GeV < ECM < 90 GeV: production of u,d,s,c,b quarks:
_ L 11
T rof 242 a7 142 T i W
Rauark = No(2(2)° +3(3)°) = Neg =3.66...

Rep = 4
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Feynman cr oss-sections
Rutherford electron scattering [12, 5.58]

P

o)

2.1
d—a =P?‘!1 412';‘;2 [l - ﬁz E‘illz (g)]
d |p|? sin®(6/2) 2 Mott
pi-pr = m*+2p2E%sin(9/2)
where  laF = 4lpl*sin’©/2)
de Zla? 2

—— -/
dft  4|pf*sin*(6/2) Rutherford f—0

Compton effect [12, 6.22]

k. L5

"

% labframe p. =0 electron at rest

do o (KN &k
z.rfm(z) (E*F*‘“E'E’)z*)
Klein-Nishiima

8w’ l+a {2a(1+a) ) log{l+2a) 1+3a
- —log{1l + 2a -
¢ = (3m2){3’f4)[ e (1+2a ol +2a) | + —— {1+ 2a)°
where a=k/m

pair annihilation [12, 6.42]

]



lab frame: p, =0 electron at rest

2 2
T ('y +4Y+llog(}~'+ J},z_l)__}'_,‘_"3_)

TTRIsm\ -1 21
where y=FE>/m

electron-electron (Moeller) scattering [12, 6.49]

P P,

P p
1 * Modler

d_a_a?(z.sz—mz)l 4 3 (E? — mH? ( . 4 )
40 AEAE2 — m22 [sint0  sin?8  (2F2 — ;)2 sin? &

electron-positron (Bhabha) scattering [12,6.54]

P, P

Pl P,

é%%%@mwwmﬂWMwmm)
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.

_E"-

Vg = =
attractive potential in g-space: a1*
Bhabha
de @ /5 BE* — m* (2E% - m?y
aQ ~ 2E? (Z T EHE —mD(1 = cos6) T HET— mIR(l = cosO)

+ [16E*! [254(41 +2cos@+costg) + AE'm*(1 — cos )2+ cosd) + 2m cos? .9])
where 6 =0(p,, p,")

electron-nucleon scattering [11, 10.34]

lab frame: P=(M,0), p=(E,p), p'=(E',p') nucleon at rest

Rosenbluth
T T 2 - . . . .
da _ ( do ) ("i"-UEJI — -L?T_-'—’Gﬁil*qg ) _ qz (72 [G,? Jtan v
- —_— - 2 7 ‘ 'r[\-'It' JLe -_
Ak dfhae NS 1 — 4‘;‘?5 202 2

( der ) Thatt (i n:-an
= aT = ——=_

= = T 9F .. %@ Mott = | 7 )
das /s 1+ ZEsin® £ 2E sin” 5

where 8 =9(p, p') , Ge and Gy, are the electric and magnetic form factor of the nucleon N=p or N=n

GR(0)=1, GR(0) =0, G%,(0)=279 , G};(0)=—-1.91

bremsstrahlung [12, 6.68]

k P,
q
P -
' Bethe-Heitler
Z%® p; do P sin’ 8y 2 3 plsing;
= —_— RN S SUN— . Y - : ¢ 2 _ 2

4 P g w ((Ef T proos P T I B sy o T )
+ 20 7 sin265+p}sin29f Py pising; sin @y cos ¢

-2
@ (Ef — preost ¥ E; — pisiné;) (E; — preosB;)E: ~ p; cos6) (AEEy — q° +2w2))

neutrino-electron scattering [11, 12.43]

(7 E 5

I — — I 2 J- I e 2
oV +e” — v, +e )= l'.. gy + 03)° + 3 Gy — U )

il

€l ectron-positron muon-antimuon production [ 6]
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e*(pz2) pt(kz)

e (p) p (k)
i 1 '-2 —_ i 11 _:i' & pﬂp” Fa L —_ Fa 11 i L
| —1e) |:1l_¢¢.,j |tk1:|':.-'),_ﬂ 1:0.2“,;2) *'pz T (g.»'-“ _ pz n igltl — Jf}lj IZE'}.QItszI’}-pR}d lm )

p=k+k=p +p:
m, — 0: use cms frame:  pi, = (p.0,0,xp), kY = (E, kcos¢sinf, tksingsinf, £k cosf)

s=4p* = 4E*

dra® | dm2 2mZ
T = 35 '\vn' 1— - ll +

5

(for m,<<m,)
€l ectron-muon scattering [6]
i (pz) (k)

e (p1) e~ (ky)
_19.7-"'"
(p — k)% +1e

i B - i 3 i —_ i " i % %
(—1e)"(Tay (P2 )yutng (k2)) (g (B )iy (1))

p=k+k=p+p:
s=4p”
dra? .'ll -_11-'.'15 ll n Q???i]

7= 35 1\"11_ &

5

el ectron-positron muon-antimuon production [13]

e (p_) o)
q .
k)
etpy) ntgy)
m, M— are electron and muon masses
TR Dy T
orsn 7 = —on(s)Apdn (9),
il
i 22 5 P - o2 = a3
M) - 5230, AP 09— 1147
. 8(3 — 32) 164(3 — 32)

145 + 3

1
+ 3ln (T) —2Ina+
F(3) = —2Liz (3) 4+ 2Liz (—8) — 2Liz (1 + 5) 4+ 2Lz (1 — )

14+ 13
+3Lig( s )—E‘Lig( - j+352.

& e

Fii3),

i

(5) = 2ma®3(3 — 3%)/(3: . .
opl(s) a”d( 87)/(3s) Born approximation



M2
5= [P++f—7’—,'_ ,_'? = 1—-—15, T = T
1+ 53 2 Inl1 —
Lz;=In T .-'j‘: £, = n2/6 Liz(z) = _f udu
s " dilogarithm 0 U
electron-positron pion production [13], [11]
i J' | i I.II ]
> | E |
i LA
¥ I-J'l‘I .-llll'lll ]
m, M— are electron and pion masses
2 o 14 32
gits = ZoT () l( j; Ls— 1) 1na~.+.a-.-.;sj|],
oF T (s) = (ma?5%)/(3s)|Fy(s))? .
Born approximation
2 f
F (9°) =1+ - q_ 5 g”r’:l’ £ pion form factor [11] with g, =6.01 f =0.15GeV m, =0.902GeV
P P
- _.1-_{2 o ‘v-’E L.—=1 14 3
s=(py+p ) F=l-do, o=— =T g=miE T4
1-4 24655 149 1454 143 1-4
fy ] . : . i 7ot ;
bis) 1+ 53 e+ 5 In 5+ 33 p+&+ Lgln 25 + 2Li, (—1 T _3)]*
=In 4 _Aas
=T T =g
guark-antiquark scattering [6, 4.109]
Q_”i':i'-?'zz' Q_'!U»‘z:'
gl i (Fr )
—i(ig, )*

(g1 — k) Eﬂpzjjﬁ:ﬁ"ﬁ?"':kﬁ':“:’i_ﬂliﬁ:l :'Tﬂ'iﬁ'pt'lipljll

_— I2 rl N
VE(q) = | 5"23 CR) -
potential with R=1 (singlet) or R=8 (octet) since 3 &3 =138

R _ Cr R = 1(attractive)
- R = &(repulsive)

1
ZN,

quark-antiquark annihilation [6,]

q q q 7] q g
q q q g q [ri



qlpz) aglkz)  qipz) gl kz)

= +

qip) glk1)  qlp) alka)

i Je ey ? A % {% .,k 2 bi {4
(ig.) 2o (p.) | TP Ty et 4 @y T" - _ T, u
9:)"0(p ’ gt'23’51 —fk—m, b F1rH pr—k—m. " 2| ule)

g(pz) glks)

ql{p1) glhky)

i —1i
B(pa) (—ige) T u(pr ) ————
o(p2) (—ig0) T3 7 u(p) s

9o F (€} - e (ky — ka)® + 265 (Rez - €]) — 26 (Rey - €3)]]

DIS cross-section electron-parton [6, 5.2]

e~ (k) e (k')
X(p')
P(p)
o I/-.:I2 e |"_I; — .I.,'rj
Q* = —(k— k) r=— y=—"
T 2(p-q) (k- p)
with

do.p  Z2ma 1

d@%dz Q' z [zy*Fu(z, Q%) + Fa(x, Q%) (1— )]

Fy(x, Q%) = 2zF\ (z, °

where F; and F, are structure functions and ) (Callen-Gross relation)

57 = ) el figpl)

=q.q , where g are charges, e.g.
ToTon i _1: 1
FE = w(e2uy(x) + ejdpy(z)) = = (gup(ut.']l + an’fp(.ef})
[4, (34)]

four-quark cross-section [6, 5.85]

Je q’?’ G
: >mm< +(—1) i
qs Gy ds

t=(p1 — k2)? = 2EE'(1 — cos#)
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=P k)pzkz) 2 (pycke) (ko p2) 2= (p1-pa)(k - Ka)

el ectron-positron quark-antiquark [6, 6.88]

e~et = q7
Yipa) q (k)
|_i_.'.lJ | .--Iu':.'ll
. n S (i 3 L _ig.l'-'fl.-' . ) i
(—1e)7C) (i, VuVars (2 )) — U\ P2 )T ting (P} )
| —1E ] (‘\.qx 1( 1) Mgz |P1—|—pﬂ:| —|—1£|: aal Pz A1 )
2
1 Z|-‘H| (u® 4 t%)
spins S
@2 =P k)(pz-ke) 2 (py - Ea2) (k- p2) 1 pa)(ky - k)

E_E do _l 1 TR = 22‘.‘:.13 s—l—u 46 |n 2 4 u® _%f
df_édmsﬁ_s*fa(:zwj" B N 3 st

de 2 da& 1 1 22'-{1‘3 {s +u® [ (fz + uf) Euz] }
- = — = 2 - —— +GQ 1 —_——
dft  Sdcosfl 52 8(2m) (M2=4 O &2 t2 A 52 3 st

t=(p1 — k2)® = 2EE'(1 — cosfl) = £(1 — cos b))

electron-positron quark-antiquark-gluon [6, 95]

e~et — qig
et (pz) qikz) (k)
>~* 1(g) w@ glks) + ~l(g) gika)
e~ (py) qiky ) glky)
(—ig) T4 Qq
tg, (k1) | €5 'Azjt:fl_'_;;izl_f | %’;z[kgu Verg (F2)
iM(ey el = gl Gral) = (—ie)® (g Gr2a72 ligw(0)]0) %E o (pe) s (p1))
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Soft gluon emission and DGLAP [4]

20,Cp dE db
T E 8-

It

20,04 dE 49
r E 8°

It

weCF  dz fﬂf?
T 1—2=z Fcf '

Ohtg = Oh

a0 =f:i~r on(xp) qlz, p7) .
initial cross-section

wCp [ dk2 [ drd- ,
oy = - f ! f [on (zxp) — on(xp)] ql, u2),
H .

T 2 k? 1—= 5
R finit o
finite (large?) e correction with oneinitial-emission
o . 2 !
dq(x, puf) = % dz paq(z) (C7E20 ) (;—ﬂs_ dz paq(2) qlx, p3)
dlnp% £ Ja z < Jo
1+ 22
Pgqlz) = Pyg=Crp ( I j
g->g+g
Paglz) =Tg[2* 4+ (1 — 2)?]
99
g->g+g
1+ (1—2)?
pgq'i-'::' =CF |: lL N }
) g->g+g

(11C, — 4n4Tg)
6

z 1—2=
Pog(z) =2C4 { + +=z(1— f:]} +4(1 — =)
I:]. - .',':|+ Z

where color factor Cr and transmission factor Tr are defined as follows

g->g+g
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1
Tr(t4tP) = Tré4P, Tp= 5

A A N¢-1_4
2{:%% = Cplge, Cp= N =3

ZfACDfBCD — C‘\'Jl(s-lg : CA — _I.‘\."C =13
a.D

1 1 .
fﬁbri‘d = ;‘Sbcéad - ﬁﬁab‘ﬁcd (F1erz)

1]
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4. QCD on lattice with Wilson-loops

QCD latticeformulation [8, 9]

7 = f DA, D DY e=°
Feynman path integral
& = fﬂ'd:l' (&FL..,F"" — M)
where Sisthe QCD action , M Dirac operator M =iy“D, —m
Z = f DA, detM ef 4= (Z3FeF™)
onthe gaugefield A,
expectation value of an operator O

(O = %[ DA, Qe "

corresponds to the Boltzmann average

_ —BH—pN
(O) = TrOe™ ™" "5% ith g = % , chemical potential x and particle number N

integral over 4-dimensional Euclidean lattice (i t, X;,X2,%3) with complex (Wick-rot.) time
on lattice

(0) =Tr[11,dU,, (x) O det(M[U])exp(~ S[U (x)])

with interaction matrix M[U] , under U, (X) = exp(i gaA, (x)) the local gauge transformation with coupling
constant g, lattice step sizea, gluonfield A, (x) , action JU (x)]

guenched approximation : weimpose det(M) = const for the interaction matrix M[U] , quark loops are
neglected

Theory on lattice with step size a [8]
il 4 1)

C(a)

i — 1)

' L
L-"Ir[(.'f.!) = EXD('.f.ltjf.f-;'j.l,-,-_{.',{,':lj

momentum/energy cut-off = mfa

gluon-field"{ﬁ () = Aj(z) - AL/2,

gluon-induced transformation for fermion moving from sitex toy (ordered product)
wiy) = P :'-Jrj o ulz)dzn wix)

on-lattice y = x+ pa gluon transformation

E-"I;:z'.:z'-i—,t\.!,'l = ,[_.'“I-‘:z.:l — E_mg.—’lhu_uu+?;

Ue,z—f0) = U
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Wilson action on a plaquette (pa,va)
i

Wil _ s .'.-!U W (z + I“J[ H + )0 JH ) = et iag[Adu (o8 144, (m i+ L) A, (s 45 —Au (a4 £)]

L

) L1y a‘g? w
ReTr(1 —W_ )= —Fﬁw‘Fﬁ I (W “11— il ﬁfj:ge::

L it

Sy= £ ) Relr —Ll—nijﬁ

T g

where S :%
g

+ higher termsin a

from this results the naive lattice acti on for fermions
SNV = my, Za (x)ibix) + —_ Za ()Y [U ()t (2 4 1) — [ (2 — i) — fi)]

—Eu;rﬂ U] (w)

4 2
W ;Ewn|a—x[ﬁl = /{f xir F}” o
limit a—0
with the interaction matrix M™ on the lattice

r T 1
Norr Iy . . t
MNU] = mgbdy; + EZ VUi pbiiop — WUL, 6i4n]

Wilson fermions[9]
The naive lattice action introduces 16 for one fermion. To eliminate the copies Wilson introduced afifth lattice
dimension with step sizer . The Wilson action becomes

AV = m, EL“LTR'LJJ 4+ — ZHJJ”#[{M““J + i) — Ul{z — i)z — )]

Ztlﬁj[[“lljt (z+ ) — 2u(x) + E“L’-: — ji)(x — fi)]

T
M, + 4r)
- L—Z (2)v(x)
1
T % Z Ul — P U (z)o(z + ) — (1 “-I-?“,l[ (2 — i)z — f1)]
— —Lyrw L
= :'.c':llf.ry'l'-'y
T.u with the interaction matrix M"

IH [[ la = by — “Z[':r_ﬁ-‘#:'["'_»r.-ﬂf"ﬂ.-y—#+':r‘i‘ﬁ-‘#t:’["j—;e,u’jr.-yﬂf]

L
k=1/(2mea+8r) U =y/Mgat+dr v =1u/v2Ik

1
Mgt = — —dr
2K

and rescaling

the quark mass becomes

Wilson fermion propagator is
il

P w P L — 26 3, (r cospea —iv, sinp,a)

Symmietries parity, time inversion, charge conjugation, chirality
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P Selx,u, [U]) — 74 Se(zP yf [UF]) v
T Srlx,u, [U]) — 1avs Se(et, o7, [UT]) 957
C: Se(x,u, [U]) — 1ave Sz, v, [US]) v27a

H: SFLJEI[[],I—"‘E..&ITLUJ[[]JWE,
CPH: Selzy,[U])— Cya SLy®, 2", [U°]) yaC?
dispersion relation for the mass

mg‘“ea = r({eosh Ea — 1) 4 sinh Ea

Ba_ (ma+r)+ /(1 +2mar +m?a?)
T 1+7r ,
solution
where the second solution corresponds to the pole in the Euclidean propagator at ps= = and is the temporal
doubler, removed for r=1.
The fermion density expectation valueis

()W = (0|Sp(0,0)]0) = lim g f d' (0| P(z)P(0)|0),

Staggered fermions [9]
The 16-doubling of the naive action is reduced to 4 by the transformation to staggered fermions
b(x) =Tox(z)  Tlr) =X)L  To=17150%5"
the action becomes
Ss=my ¥, X (@) + 43, oo UoXats — Ul o iXom) = Lowyy X@IMEX(W)
with the interaction matrix M*

_ 1 o N ~
_-'1||_f-‘b'[[;']_r__g.l =?i'i!q-’5_,,-y + E Z Nz, u [[*"..u.,l.ea.,!:,y—,u - ‘[".I—,u_:._,-_:ﬂuﬁ.y-l-f-f]
T
with +1-factors

T = E—JZE"':P T,
._Zm_# T

':.r_,l..: =1—)
€. =1 _J.¢1+.¢2+.r3+.r4

Improved action L Gischer-Weiss[9]
The LW action improves the naive action beyond O(a?) .
original leading term

42' = Zf_.::.r ‘Ft'-“""Fn'-“"'

corrections
L= > T (D#PM,D“FM,)
[Ty
1-|:E:| — Z T]_' (D,I_.:-EIPD{_:-F:IP)
Lo B
=T ( DHFM,DHPW)
L'S TR

improved action
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Sg = {F':4LEIJL':4+E LJJLI: }

=13
with normalization condition
¢ (%) + 8647 (g%) + 8¢ (0%) + 165 (¢?) = 1
Lischer-Weiss:
@ 4206 — 4 +4dP =0 4 =0

2
explicitly
ey’ (0%) = é + 0.2370g%
¥ (g%) = ~ L oo
12 .

¥ (9%) = —0.00441¢7

A (g*) =0.

TILW (tadpole improved L Uischer-Wei ss)

1
Strow = 3 £l
L - -
I 2I_Iu%
g = 1 — Xg°
with -
T T T - T T T
e a) Wilson Action . } o | AL b) Improved Action 7. o |
3 E 4 3k z i
L - -
av(r) = aVir) :
L 5 L = |
2 L = E | 2 - -
|‘E'-I I
1 # . 1+ - -
| | | | o | | !
1 2 3 4 1 2 3 4
rla r/a

[9] Static-quark potential computed on 64 lattices with a = 0.4 fm using the Wilson action and the TILW action.
The dotted line is the standard infrared parameterization for the continuum potential,

V(@)=Kr—n/12r+c,

adjusted to fit the on-axis values of the potential.

L attice calculations of hadron masses[9 18.1]
The mass (energy) eigenvalues are extracted from the decay rate

(0]0f|n) (n]O; |ﬂ“> Cnr
2. 2M,,

C(m) = (O (T)O:(0)) — (O (O4) =

o
for state transition from O; to Oy, usualy Oy = 0y

[4, 1.1]
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2000 , ;
& | Budapest-Marsailla-Wupparal collebaratian
bi ——
i =T
1500 &
.
= I [Ea
@ A
= 1000- J
S K
= (P
500 b — —— experimeant
- i width
a  input
0 T = 2zh

The measured spectrum of hadron masses, compared to alattice calculation [9]. The open blue circles are the
hadron masses that have been used to fix the three parameters of the calculation: the value of the QCD
coupling, the average of the up and down quark masses (taken equal) and the strange-quark mass. All other
points are results of the calculation.
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Part B Minimization of QCD-QED-action on lattice and itsresults

1. Solution methodsin lattice-QCD [8,9,12,13,14]

Basically, there are four solution methods in lattice-QCD (LQCD):

Perturbative analytic Feynman solution

Here one calculates the reaction cross-sections from Feynman diagrams eval uating the corresponding Feynman-
integralsin analogy to the QED. Asthe QCD isrenormalizable, all Feynman integrals can be made finite.
However, thisworks only for convergent Feynman series, i.e. if the interaction constant g.<1 . Thisisthe case
for large energies E>E,=220MeV .

Non-perturbative on-lattice Wilson-loop method

Here the expectation value of an operator (e.g. energy=Hamilton operator) is calculated using path integrals

(0) =Tr[11,dU,, (x) O det(M[U])exp(~ S[U (x)])
with interaction matrix M[U] , under U, (X) = exp(i gaAi(x)) the local gauge transformation, with coupling
constant g, lattice step sizea, gluonfield A, (X) , action JU(x)] , on closed loops on the lattice.

Non-perturbative on-lattice eom solution
The QCD equations-of-motion (eom) are derived from the minimal-action-principle as the Euler-Lagrange-
equations corresponding to the QCD Lagrangian. They are

ol T abe Aph pe
O Fiiy + 9f ATy = 0 the Y ang-Mills-equations for the gluon wavefunction A%, (x) and the color-field-

tensor F?,, (X)
Fiy = 9,45 — 0, A5 + gf*“ AL A}
and the Dirac equation
(7D,7*-mc)y® =0
with the color-covariant-derivative Dy =10, —igT" 45 and the quark-wavefunction v 2, (x)
These are nq+ny partial differential equations (pdeq) first order in x* , for theny =2 or ng=3 quarksand
ng =8 gluons, adding a gauge condition and a boundary condition for A%, (x) .

They must be solved numerically on alattice as an eigenvalue problem of the Dirac equation, which is very
difficult and time-consuming for a one-dimensional lattice of, say, ;=100 points (total number of points
n=n*=10° ).

Non-perturbative on-lattice minimization of action

The starting point is the minimum-action-principle for QCD:

S= j Loco (X, 0, Ag;) dx = min with a gauge condition and a boundary condition for Ag; (x) .

It can be extended to QCD+QED

S= I(LQCD(XH /0 AG;) + Loeo (x*,q,As ))dX =min

for the quarks ¢ , QCD-gluons Ag, , QED-photons Ae

In order to carry out the minimization numerically, we introduce an equidistant 4-dimensional lattice
L(t,,r.0,,0,)=(t)x(r,)x(6,) % (p,), extract asmall random sub-lattice La

and approximate the integral by asum over Lgy, :

S= > Loo(xa,Ag)AV , where AV = AtAr AG A isthe elementary integration volume in spherical

Xelgyp

coordinates, and model the quark wavefunctions as parameterized Gauss functions q = q(x, par(q)) and the
gluon-wavefunctions as Ritz-Galerkin series on afunction system f, (x) with coefficients «, :

Ag = Ag(Zak f (%), par(Ag)) , according the photon-wavefunctions Ae = Ae(x,{c,}, par(Ae)).
We impose the gauge condition for Ag, : 6,Ag,” =0 and aboundary condition: Ag,(r =r,) =0, the quark-
wavefunctions are normalized J' q(x)d®x=1.

The minimization is carried out in dependence on par = (par(q),{«,}, par(Ag))
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par, = mi n(§, par) , Where par yields information about the energy (=mass) , the sizes and the inner structure
of the considered hadron.
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Non-perturbative on-lattice minimization of action

quark wf: gaussian
lattice

a=q(x, par(q))
L(te, T O 0) = (t) x (1) x (6) (@) normalized J-qi(X)d3X=l

gluon wf: RG expansionon f,
Ag = Ag(Y e (x), par (Ag))

action minimization gauge cond.
S:J.LQCD(Xﬂ’qi’Agi)dxzmin D E— auAgiuZO
boundary cond.

discretized action
S= > Lo (X0, Ag,)AV = min

par = (par(a).{c}, par(Ag))
—  par, =mi n(§, par)
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2. Theansatz for the quark and gluon wavefunctions [19]
Gluon wavefunction
For the gluon wavefunction we apply here the full Ritz-Galerkin series on the function system

f (r,0) ={bfunc(r,r,,dr,) r',k, =0,...,n} x{(cos® 6,cos® Asinh),k, = 0,...,n,} with coefficients ¢, ,

1
r—r
1+ ex 9
p( dry j
with ,, smearing width* drg .
Ag; (t,r,0)cos
Ag(t.r.0) = g (t,r,0) . aA
Ag (t,r,0)sinaA
particle part of the gluon, and with the Ritz-Gal erkin-expansion

Ag, (t,r,0)= Za[k, j1f,(r.0)exp(-itEA) with energies EA

Because of color-symmetry, the active (non-zero) gluons are
Ag ={Ag,,..., Agg} all gluonsfor nucleons

Ag ={Ag,, Ag,, Ag,, Ad:, AQs, Ad,} 6 non-diagonal gluons for vector-mesons
Ag ={Ag,, Ad:, Ag,} 3 quark-antiquark gluons for for pseudo-scalar mesons

Quark wavefunction
The first-generation (u,d)-hadrons consist of three quarks (nucleons) or three color-symmetric quark-antiquark-
combinations (vector-mesons) or two guark-antiquark-combinations (pseudo-scalar mesons)

q={ %)(%](%} for nucleons
BIRIEIE
%) \%)||\&) \&))| &) \&) orq:{(glj,(glj,(glj} for Vector-Mesons

V2o | 2 ) 42 ,) (%) (%

BENIIEE
= 5 0 — 0 qz 0 qz ] ' '
Q—{(Oj,(qj,O} or q={ 72 , 72 ,0} for pseudo-scalar mesons (pi+, pi0)

2

where bfunc(r,r,,dr,) = is a Fermi-step-function which limits theregion r < r, of the hadron

],i =1...,8} ,where aA isthe phase angle between the particle and the anti-

—~
O

q:

(omega0, rho0, rho+)

A Ritz-Gaerkin series for quarks would blow up the complexity of calculation, therefore we use here asimpler
model, based on the asymptotic-freedom property of quarks: gaussian “blobs’

(f— Fu,k

2
dr ) ]cosak where Eu, istheenergy, 1, =(ru,,0u,) and dr,, isthe
u,k

position(r,6) and itswidth, a, isthe quark-antiquark phase and the antiquark is

G (t,r,0) = exp(-it Euk)exp(_

qka,r):exp(-nauk>exp(-sznak
2dr,

The ansatz and the color symmetry

The form of the quark color-wavefunction and the corresponding set of active gluons are enforced by the color-
symmetry and the number of particles equal to the number of combinations.

The 8 gluons of the SU(5) form 3 families: the diagonal { Ag,, Agg} , which map color indicesinto itself,

the non-diagonal { Ag,, Ad,, Ads} , which exchange color-index with a different color index, and
the non-diagonal { Ag,, Ad., Ag,} , which exchange color-index with a different anti-color index.
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The nucleons consist of three quarks with color (r,g,b), and the color wavefunction q is mapped into itself
under color-permutations, therefore the full set of 8 gluons Ag; is required, and there are only two possibilities
for first-generation hadrons. p=uud and n=ddu .

The vector mesons consist of quark-antiquark pairs, where the color wavefunction g has three identical
components.

g is mapped into itself under the corresponding set of 6 non-diagonal gluons

Ag ={Ag,, Ag,, Ad,, Ad:, AJs, Ad,} (each flipstwo color indices).

It is seen immediately that the three combinations listed above are the only possible ones, which is confirmed
by the existence of the three v-mesons omega0, rho0, rho+ .

The pseudo-scalar mesons consist of quark-antiquark pairs, where the color wavefunction g has two non-zero
components. The corresponding gluon set are the 3 non-diagonal color-anticolor gluons Ag ={ Ag,, Ag., Ag,},

which exchange a color-quark with a different anti-color-quark. For example, Ag, flips color-indices (3,1) and
0 - 0

transforms q,, :{(q(l;j,(_ ],O} into g, :{O,(qécj,(q J} . Soin redity, the wavefunction isa
2¢C 2c

superposition of the three (qlz, O,s» G, ) @nd is mapped by the gluon set into itself.

Again, one can see immediately that there are only two possible combinations, which correspond to the two
known ps-mesons pi+ and pi0 .
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3. Thenumerical algorithm [19]

The energy, length, and time are made dimensionsless by using the units: E(E, = 1th =0.196GeV ), r(fm),
m

t(fmvc) fm=10-">m . The hadrons have axial symmetry, so we can set =0 and use the spherical coordinates
t,r0).
V(Ve ch())ose the equidistant lattice for theintervals (t,r,0) €[0,1] x[01] x[0,7] with 21x21x11 points and, for
the minimization 8x in parallel, 8 random sublattices :
I[ix, j]={{(t,r,,t5) [(i11i2,i3) = random(lattice, j =1...100)} |ix=1,...,.8} .
For the Ritz-Gal erkin expansion we use the 12 functions
f, (r,0) ={bfunc(r,r,,dr,) r' ,k, = 0,..,n} x{(cos® ,cos 6sind),k, =0,...,n,}
Theaction S= j Loco (X, G5 AG;) r’sin@dtdrddde becomesamean-vaue on the sublattice I[ix]
S[ix] = NOBD D Lo (%G, Ag )27V, WhereV,, =7 the (t,r,0)-volume and N(I[iX]) number of points
xel [iX] g
is. Weimpose the gauge condition and the boundary condition for Ag; via penalty-function (imposing exact
conditions is possible, but slows down the minimization process enormously).
S isminimized 8x in paralel with the Mathemati ca-minimzation method “simulated annealing” , the execution
timeon a2.7GHz Xeon E5 is 9100s for the proton p=uud , the complexity K (§[ix]) =8.4 million terms.
The minimization is performed in the parameters par = (par(q),{,}, par(Ag)) , for the proton is the number
of parameters N({, } )=16*12=164 , N( par(q) )=3*5=15, N( par(Ag) )=8*2=16 .
The proper parameters of the quarks and the gluons are:
par(q ) ={Eu,a,ru,6u,dru} , par(Ag)={EA,aA}
Criteriafor correctness of the ansatz
1.Convergence of minimization
Aswe found out during the computation, awrong ansatz, e.g. lacking color symmetry, leads to a non-

convergent minimization. We chose a high goal precision of prec=10-4, so there was a high probability that a
convergent minimizations hitsareal (global) minimum.

2.High relative deviation between solutions

Strongly differing solutions indicate a non-correct ansatz, as we found out e.g. for the nucleons with too many
degrees —of-freedom for the gluons: the relative deviation for crucial variables, like energy, should be no more
than 2% for the nucleons and 6% for the ps-mesons.

3.Vanishing parameter-derivatives

A true minimum must satisfy the derivative-condition S—S =0, where p isoneof the minimization

P
parameters, Normally, the parameter-derivatives are close to zero, otherwise the minimum is not genuine, or the
ansatz iswrong.

4.Boundary condition and gauge condition
The boundary and gauge condition must have values close to zero, otherwise the weight for the penalty function
istoo low.

5.Minimum value

The minimum value should be -30,...,30 for the considered parameter range. Very large positive values result
in the case of too high penalty weights. Very large negative values may come out, if the Ritz-Galerkin
parameters «; are not bounded appropriately.

6.Correct energy scale and number of particles
The three types of first-generation hadrons have energy scales: E(nucleon)~0.98GeV, E(v-meson)~0.78GeV,
E(ps-meson)~0.14GeV , and these values emerge automatically with 8, 6 and 3 gluons respectively.
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Furthermore, with the above ansatz, the number of possible particlesis 2, 3, 2 respectively.
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4. Theresultsfor first-generation hadrons [19]

nucleons n, p quarks(3),gluons(8),spin=1/2

energy quarks, gluons

n=blue ,p=red

E[GeV]
030 ¢
025 ¢
L]
020 ¢
015 |
° L]
010 A
L] ° L]
L]
005 o « °
* : : : : : n(quark ,gluon)
0 2 4 6 8 10

distribution quarks (r[fm])

n=blue ,p=red
10 r

051

'10

P

~10 _05 ' 0

-054

_10l
The quark distribution differs largely between the nucleons:. the proton has only one orbital orthogonal to

the z-axis, the neutron has two orbitals at an with an angle of a==/4 . The small mass difference is probably due
to the electromagnetic contribution, which is about 1% of the total mass.

The mass of the nucleons, asisthe case for al first-generation-hadrons is generated almost exclusively by the
energy of the gluons and the quarks, the rest masses of u and d (m,=2.3MeV , my=4.8MeV) contribute very little
to the total mass.

The gluon distribution is practically the same for both nucleons, which is to be expected, since the two particles
areidentica for the color interaction.
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proton p=uud
m=0.938GeV, r,=0.84fm

Etot=0.945GCV, AEtot=0.032, dEem:'0013

Eu; EA; a aA; druy; ru; Ou;

0.0047,0.028,0.211 | 0.044,0.071,0.083,0.098,0.105, | -.99,-.99,.99 0,..,0 | .16,.27,.75 | .16,.15,.41 -.12,.08,0
0.108,0.113,0.146

AEy; AEA; Aa; AaA; Adrui Ary; Aeui

0.004,0.007,0.014 | 0.018,0.006,0.005,0.006,0.004, | .0041,.0037,.0014 | 0,...,0 | .29,.26,.25 | .20,.050,.016 | .50,.42,0
0.002,0.001,0.062

gluons Agi

Agii Ag12

Ag21 Ag22

Ag3 Ag3z

1.0 1.0

The proton p has one rotation plane (orbital), the two quarks (u,d) are close at r=0.15 low energy £<0.03 , the
second u-quark further outside r=0.4, and high energy E=0.2. The “smearing” width is comparable, 6r=0.3 .

The electromagnetic correction is negative and much larger than with the neutron, dEe,=-0.013GeV , which is
probably the reason for the proton’s smaller mass.
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neutron n=ddu
m=0.939GeV, rp=0.84fm

Etot=0.945GCV, AEtot=0.018, dEem:+00017

Eu; EA; a aA; dru; ry; Ou;

0.048,0.086,0.126 | 0.024,0.054,0.08,0.086,0.096, | -.92,-.95,.93 0,...,0 .72,1.05,.82 .71,.016,.50 -.68,.35,0
0.103,0.113,0.117

AEy; AEA; Aa; AaAj Adrui Aru; Aeui

0.011,0.012,0.002 | 0.0005,0.005,0.0009,0.004, .017,.021,.041 | 0,....0 .031,.052,.034 | .042,.021,.021 | .008,.007,0
0.00001,0.0005,0.0004,0.003

gluons Agi

Agii Ag12

Ag21 Ag22

Ag3 Ag3z

i 1.0
The neutron n has two orbitals with an angle of a=n/4 , the u-quark is at the center with low energy E=0.05,
the two d-quarks sit in the orbitals with higher energies E=0.09,0.013 . The “smearing” width is comparable,
or=(0.4 and higher than with the proton.
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The gluon distribution is practically the same as for the proton, which is to be expected, since the two particles
areidentica for the color interaction.

The electromagnetic correction is positive and much smaller than with the proton, dEs=+0.0017GeV , which
is probably the reason for the proton’s smaller mass.

magnetic moment of nucleons

The magnetic momentisuzziL:imoor2 , for arotating charge distribution: u:%Zqi i2:%| ,
m i

2m a

where I, = Zqi ri2 - I r’dq isthe momentum of charge, in analogy to the momentum of inertia | = J' r’dm.

For arotating solid sphere with radius ro with constant charge density |, = % qro2 :

The magnetic moment of the nucleons is measured in nuclear magnetons 1, = éﬂ , Which is the magnetic
m

moment of arotating solid sphere with constant charge density 1, = % | ,(sphere) = %é ero2 :

The actual momentum of chargeistherefore:

Iq = Zq(qi)r(CIi)2

, jrz exp(—(rZ_Arir))dr

We have to take into account the “smearing” Ar; of radiusr; <r. > , S0 it becomes

(r _ri)z
J.eXp(—T)dr
o= 2 a(a)(r(a)?)

We get for the neutron

|
ln=—0.1766 ¢, Iqwn= 0.106 €, S0 —~ =—1.766 , measured -+~ =-1.91
gNn :uN

and for the proton

I
lop=+ 0.2226 €., lap= 0.0909 €, 50 =+ 2448 , meastred H 42793

gNp :uN
The calculation does not take into account the orbitals, and there is also the statistical uncertainty of the order
7% , so the results are satisfactory.
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pseudo-scalar mesons pi+, pi0 quarks(2),gluons(3),spin=0-

energy quarks, gluons

pi+=Dblue ,piO=red

E[GeV]
010 r .
Ld
0.08 r
0.06 r
004 ¢
002 ¢
.
.
L]
- : - - - - e - -~ n(quark ,gluon)
0 2 4 6 8 10

distribution quarks (r[fm]): independent(0)=spherical

pi+=Dblue ,piO=red
10

05 r

~10 05 ‘ 051 10

-05+

_10 L
The pseudo-scalar mesons are spherically-symmetric, there is no 6-dependence: 6=0 in the quark-distribution,
the gluon-wavefunctions show little 0-dependence, and the gluon amplitudes are much smaller (factor 30) for
pi0 than for pi+ .
For the pi0, uu and dd sit at r=0.4 E~0 , and at r=0.75 E~0.1 .
For the pi+, theu and d have practically equal radii, but different energies: r=0.6 E~0.001 ,
and r=0.6 E=0.01 .
The measured masses of the ps-mesons (0.135, 0.139) are reproduced by the calculation
(0.155+0.025, 0.129+0.026), but only roughly within the error bounds.

ps-meson pi0=(uti — dd )/+/2
m=0.135GeV, ro=0.66fm

Etot=0.155G€V, AEtot:0.0ZS, dEem:'*'OOO7

Eui EA; a aA; dru; rui ou;
0.0007,0.098 | 0,0,0,0,0.0012,0,0.045,0 | .073,-.650 | 0,-.77,0,0,-.131,0,-.634,0 | .985,.631 .387,.746 -.058,0
AEui AEAi Aai AaAi Adrui AI'U.i Aeui
0.001,0.013 | 0,0,0,0,0.002,0,0.022,0 | .028,018 | 0,.40,0,0,.38,0,.25,0 .040,.031 .039,.011 .010,0

gluons Agi
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2.00010

000005

0.00000

Ag21

ps-meson pi+=ud
m=0.139GeV, rp=0.66fm

Etot=0.129GeV, AEtot=0.026, dEem:+00014

Ag22

2.00040

Eu EA; a aA, dru; rui ou;

0.0004,0.009 | 0,0.005,0,0,0.014,0,0.0945,0 | -.136,- 0,-.868,0,0,-.011,0,-.556,0 | .020,.025 | .588,.560 .180,0
319

ZXIEUj ZXIE}\i ZXai ZXalXi ZX(hIh ZXYUJ ZXGLM

0.001,0.012 | 0,0.003,0,0,0.016,0,0.017,0 | .68,.67 0,.294,0,0,.100,0,.,2230 | .0,.008 190,171 243,0

gluons Agi

An21

Ag22
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vector mesonsrho0, rho+, omega0 quarks(2),gluons(6),spin=1

energy quarks, gluons

rhoO=Dblue ,rho+=red,omegaO=green

E[GeV]
0.20 ¢

015 ¢

0.10 |

005 ¢ .

0 2 4 6

distribution quarks (r[fm])

rhoO=blue ,rho+=red,omega0=green

10

05 r

|

n(quark ,gluon)

-10 -05

-05™

-10¢t

[~

10

The vector mesons are spin-1 bosons but only rho+ shows an explicit 6-dependence of quark-distribution: it has
two orbitals. The gluons show explicit 0-dependence and are, as for the nucleons, practically equal for all three

particles.

For rhoO: the quarks uti and dd have identical parameters r=0.5, or=0.3, E=0.1
For omega0: the quarks utl and dd again have identical parameters, are at center, or=0.25, E=0.1
For rho+: the heavier quark d hasr»=0.5, 5r=0.05, E=0.05 , the light quark u has r=0.9 , 6r=0.5, E=0.07 ,
rho+ has two orthogonal orbitals. Its two quarks have completely different width; the d quark closer to the
center has a small bandwidth, the light u quark is strongly “smeared” like all the other quarksin the 3 particles.

The measured masses of the v-mesons (0.775, 0.775, 0.782) are reproduced correctly by the calculation

(0.771+0.0052, 0.779+0.012, 0.782+0.007).

v-meson rhoO=(ut — dd )/+/2

m=0.775GeV, ro=0.75fm

Eio=0.771GeV, AE4=0.0052, dE&,=+0.002

Evu; EA; & aA dry; ru; ou;

0.094,0.094 0.045,0.088,0,0.094,0.099, -.0057,- .018,-,003,0,.250,-.809,.227,- .56,.56 .2327,.327 | 0,0
0.111,0.138,0 .0057 .533,0

AEui AEAi Aai AaAi Adrui AI'U.i Aeui

0.0003,0.0003 | 0.005,0.0005,0,0.0005,0.0005 | .0005,.0006 | .015,.002,0,.008,.002,.006,.003,0 | .071,.071 | .033,.033 0,0
,0.002,0.0005,0
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gluons Agi

v-meson rho+=ud
m=0.775GeV, ro=0.75fm

Etot=0.779GeV, AEtot=0.012, dEem:+0002

Eu; EA; a aA; dru; rui ou;

0.047,0.073 | 0.054,0.102,0,0.107,0.113, -.628,.620 | .011,-,003,0,.250,-.810,.229,- 1.05,.02 | .89,.48 0,-1.0
0.124,0.152,0 534,0

AEy; AEA,; Aaj AaA; Adrui Ary; Aeui

0.004,0.009 | 0.006,0.001,0,0.001,0.001, .018,.0 .012,.003,0,.011,.001,.003,.001,0 | .019,.012 | .018,.011 | 0,.001
0.003,0.001,0

gluons Agi

0.010

0.005

0.000 1,2




v-meson omega0= (uti +dd )/ ~/2
m=0.782GeV, ro=0.75fm

Etot=0.782GCV, AEtot=0.007, dEem:+0002

Eu; EA; a aA; dry ru oy,

0.092,0.092 | 0.045,0.092,0,0.097,0.103, .750,-.750 | .012,-,003,0,.241,-.810,.228,- .517,.517 0,0 -.45,-.07
0.113,0.142,0 .534,0

AEu; AEA; Aaj AaA; Adry; Aru; AOU;

0.002,0.002 | 0.006,0.0008,0,0.0008,0.0007, | .707,.707 | .007,.002,0,.012,.001,.005,.003,0 | .118,.118 .0,.0 .207,.200
0.002,0.0008,0

gluons Agi
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