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Abstract
This paper consists of two parts.

Part A is a state-of-the-art report in quantum chromodynamics.
Here is presented in a concise form:
the QCD gauge-theory, the standard model and its particles, the perturbative QCD (QCD/QED Feynman
diagrams with results), QCD on-lattice with Wilson loops.

Part B describes a new numerical QCD calculation method (direct minimization of QCD-QED-action) and its
results for the first-generation (u,d) hadrons.
Here we start with the standard color-Lagrangian LQCD=LDirac+Lgluon , model the quarks qi as
parameterized gaussians, and the gluons Agi as Ritz-Galerkin-expansion.
We minimize the Lagrangian with parameters par=(par(q),{αk},par(Ag)) for first-generation hadrons
(nucleons, pseudo-scalar mesons, vector mesons).
The resulting parameters yield the correct masses, correct magnetic moments for the nucleons, the gluon-
distribution and the quark-distribution with interesting insights into the hadron structure.
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Part A Quantum chromodynamics theory

1. QCD gauge theory

Gauge theory

[1]
The gauge invariant QCD Lagrangian is

where is the quark field, a dynamical function of spacetime, in the fundamental representation of the

SU(3) gauge group, indexed by ; are the (color) gluon fields, also dynamical functions of
spacetime, in the adjoint representation of the SU(3) gauge group, indexed by a, b,... The γμ are Dirac matrices
connecting the spinor representation to the vector representation of the Lorentz group.

The total gluon-field is and the Dirac-conjugate
0)()(  xx

c

ii  , where
c

i is the complex-conjugate.

Dμ is the gauge covariant derivative

where is the coupling constant, )(xA
a

 is the (color) gluon gauge field, for eight different gluons is a four-

component Dirac spinor, and where is one of the eight Gell-Mann matrices,

The symbol represents the gauge invariant gluon field strength tensor, analogous to the electromagnetic
field strength tensor, Fμν, in quantum electrodynamics. It is given by


cbabcaaa AAfgAAG 

where fabc are the structure constants of SU(3) : the generators aT satisfy the commutator relations
cabcba TfiTT ],[

Note that the rules to move-up or pull-down the a, b, or c indexes are trivial, (+, ..., +), so that fabc = fabc = fa
bc

whereas for the μ or ν indexes one has the non-trivial relativistic rules, corresponding e.g. to the metric
signature (+ − − −). 
The constants m and g control the quark mass and coupling constants of the theory, subject to renormalization
in the full quantum theory.
Yang-Mills theory
Yang–Mills theories are a special example of gauge theory with a non-commutative symmetry group given by
the Lagrangian

, where for QCD with SU(3) 
aGF 

with the generators of the Lie algebra, indexed by a, corresponding to the F-quantities (the curvature or field-
strength form) satisfying

where the fabc are structure constants of the Lie algebra, and the covariant derivative defined as

where I is the identity matrix (matching the size of the generators), 
aA is the vector potential, and g is the

coupling constant. In four dimensions, the coupling constant g is a pure number and for a SU(N) group one has
2

The relation
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follows from the commutator for the covariant derivative D

The field has the property of being self-interacting and equations of motion that one obtains are said to be
semilinear, as nonlinearities are both with and without derivatives. This means that one can manage this theory
only by perturbation theory, with small nonlinearities.
From the given Lagrangian one can derive the equations of motion given by

(Yang-Mills-equations), which correspond to the Maxwell equations in

electrodynamics, where 0abcf
Putting these can be rewritten as

The Bianchi identity holds

which is equivalent to the Jacobi identity

for Lie-groups

since Define the dual strength tensor then the Bianchi identity can be rewritten as

A source current 
aJ enters into the equations of motion (eom) as

The Dirac part of the Lagrangian is

  
 mcDiLD  

with the resulting eom=gauge Dirac equation

  0  
 mcDi 

Invariants

[6]
As usual, quantum states are characterized by their eigenvalues of a complete set of commuting observables.
Out of the generators of the Poincare group, one can form the operator

that commutes with P and L . This can be checked explicitly and should also be intuitively clear since P2 is
a Lorentz-scalar. The eigenvalue of P2 is the mass m2.
A second commuting operator can be constructed using the Pauli-Lubanski-Vector

that satisfies the commutator relations characteristic of a four vector:

As for P2, it follows that the operator W2 commutes with all generators of the Poincare group. In order to
interpret W2, we use that it can be evaluated in any reference frame since it is a Lorentz scalar.
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helicity

all eigenvalues for massive particles

all eigenvalues for massless particles

Color gauge transformations [4, 1.1]

Dirac spinors
Spinors u, v: solution to Dirac equation in momentum space:

Dirac-representation (Bjorken-Drell) 
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Spinors can be chosen as helicity eigenstates:
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where
propagator

Massless vector bosons

polarization and gauge

In the frame where the polarization vectors can be chosen as

They are helicity eigenstates with eigenvalues s = ±1

with
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the polarization vectors therefore form a complete basis of Minkowski space.

Weyl spinors

transformations are given in terms of the angles φi and rapidities νi as

Weyl spinor index notation

braket notation:

Wilson loop

The Wilson loop variable is a quantity defined by the trace of a path-ordered exponential of a gauge field
transported along a closed line C:

Here, is a closed curve in space, is the path-ordering operator. Under a gauge transformation

,
where corresponds to the initial (and end) point of the loop (only initial and end point of a line contribute,
whereas gauge transformations in between cancel each other). For SU(2) gauges, for example, one has

; is an arbitrary real function of , and are the three Pauli matrices; as
usual, a sum over repeated indices is implied.

The invariance of the trace under cyclic permutations guarantees that is invariant under gauge
transformations.
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Fields

[10]

The pattern of strong charges for the three colors of quark, three antiquarks, and eight gluons (with two of zero
charge overlapping).
Quarks are massive spin-1/2 fermions which carry a color charge whose gauging is the content of QCD. Quarks
are represented by Dirac fields in the fundamental representation 3 of the gauge group SU(3). They also carry
electric charge (either −1/3 or 2/3) and participate in weak interactions as part of weak isospin doublets. They 
carry global quantum numbers including the baryon number, which is 1/3 for each quark, hypercharge and one
of the flavor quantum numbers.
Gluons are spin-1 bosons which also carry color charges, since they lie in the adjoint representation 8 of SU(3).
They have no electric charge, do not participate in the weak interactions, and have no flavor. They lie in the
singlet representation 1 of all these symmetry groups.
Every quark has its own antiquark. The charge of each antiquark is exactly the opposite of the corresponding
quark.

The running coupling constant [9]

kr
r

c
rV s 



3

4
)( potential = qq

The static qq potential in the quenched approximation obtained by the Wuppertal collaboration. The data at
β = 6.0, 6.2, 6.4 and 6.8 has been scaled by R0, and normalized such that V (R0) = 0. The collapse of the
different sets of data on to a single curve after the rescaling by R0 is evidence for scaling. The linear rise at
large r implies confinement. [9]
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The color confinement results from  )),(lim( rrV

the running coupling is characterized by the β-function with colors N=3 , flavors nf=4, μ=transfer energy  

)ln()233(
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where
≈220 MeV “cutoff parameter”
NF =3: Number of quark flavours with 2m < Q
k≈1GeV/fm
s(mb) = 0.189 (bottom quark)
s(mc) = 0.173 (charm quark)

for the cutoff Λ follows

The cut-off parameter on-lattice [9 14.8]

The relation between ΛMOM and ΛMS and Λlatt as a function of the number of active flavors. The results for
ΛMOM/Λlatt with g defined by the triple gluon vertex are in Feynman gauge [9]
ΛMOM= one-loop renormalized coupling constant in momentum space subtraction procedure [14]
ΛMS = one-loop renormalized coupling constant in minimal subtraction procedure

Gauge fixing
[6]
a gauge fixing term has to be added to the Lagrangian

Fadeev-Popov ghost fields ca and anti-ghost fields are introduced:
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alternatively, an axial gauge-fixing term could be used,

in axial gauges, it can be shown that the ghost fields are not necessary

Comparison energy electromagnetic-strong
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2. The standard model and QCD

Particles of the standard models
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Quark properties [16]

quark radius: as of 2014, experimental evidence indicates they are no bigger than 10-4 times the size of a proton,
i.e. less than 10-19 metres [16]
Quark Model [6]
Gell-Mann, Ne'eman, Zweig (1961-64) classified the hadron spectrum and proposed that hadrons are composed
of spin 1=2 quarks with fractional electric charges:
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Baryons
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Vector mesons

first generation vector mesons

rho+ du m=775.1MeV, Q=1, charge radius r0=0.748fm+-0.02fm [18]

rho0   2/dduu  m=775.3MeV, Q=0

omega0   2/dduu  m=782.6MeV, Q=0
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Pseudoscalar mesons
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Pion

In particle physics, a pion  is any of three subatomic particles: π0, π+, and π− .
Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and,
more generally, the lightest hadrons. They are unstable, with the charged pions π+and π− decaying with a mean
lifetime of 26.033 nanoseconds (2.6033×10−8 seconds), and the neutral pion π0 decaying with a much shorter
lifetime of 8.4×10−17 seconds. Charged pions most often decay into muons and muon neutrinos, while neutral
pions generally decay into gamma rays.
The exchange of virtual pions, along with the vector, rho and omega mesons, provides an explanation for the
residual strong force between nucleons. Pions are not produced in radioactive decay, but are commonly
produced in high energy accelerators in collisions between hadrons. All types of pions are also produced in
natural processes when high energy cosmic ray protons and other hadronic cosmic ray components interact with
matter in the Earth's atmosphere. Recently, the detection of characteristic gamma rays originating from the
decay of neutral pions in two supernova remnants has shown that pions are produced copiously after
supernovas, most probably in conjunction with production of high energy protons that are detected on Earth as
cosmic rays
The concept of mesons as the carrier particles of the nuclear force was first proposed in 1935 by Hideki
Yukawa. While the muon was first proposed to be this particle after its discovery in 1936, later work found that
it did not participate in the strong nuclear interaction. The pions, which turned out to be examples of Yukawa's
proposed mesons, were discovered later: the charged pions in 1947, and the neutral pion in 1950.
Pions, which are mesons with zero spin, are composed of first-generation quarks. In the quark model, an up
quark and an anti-down quark make up a π+ , whereas a down quark and an anti-up quark make up the π− , and
these are the antiparticles of one another. The neutral pion π0 is a combination of an up quark with an anti-up
quark or a down quark with an anti-down quark. The two combinations have identical quantum numbers, and
hence they are only found in superpositions. The lowest-energy superposition of these is the π0 , which is its
own antiparticle. Together, the pions form a triplet of isospin. Each pion has isospin (I=1) and third-component
isospin equal to its charge (Iz=+1, 0 or −1). 
Pion decays
The π± mesons have a mass of 139.6MeV/c2 and a mean lifetime of 2.6033×10−8s. They decay due to the weak
interaction. The primary decay mode of a pion, with a branching fraction of 0.999877, is a leptonic decay into a
muon and a muon neutrino:

The second most common decay mode of a pion, with a branching fraction of 0.000123, is also a leptonic decay
into an electron and the corresponding electron antineutrino. This "electronic mode" was discovered at CERN
in 1958:

The suppression of the electronic decay mode with respect to the muonic one is given approximately (up to a
few percent effect of the radiative corrections) by the ratio of the half-widths of the pion–electron and the pion–
muon decay reactions:

The π0 meson has a mass of 135.0 MeV/c2 and a mean lifetime of 8.4×10−17 s. It decays via the electromagnetic
force, which explains why its mean lifetime is much smaller than that of the charged pion (which can only
decay via the weak force).
The dominant π0 decay mode, with a branching ratio of BR=0.98823, is into two photons:
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The second largest π0 decay mode (BR=0.01174) is the Dalitz decay (named after Richard Dalitz), which is a
two-photon decay with an internal photon conversion resulting a photon and an electron-positron pair in the
final state:

Electromagnetic charge radius [17]
R(π+)=0.657+-0.003fm   

Nucleons

The mass of the proton and neutron is quite similar: The proton is 1.6726×10−27kg or 938.27MeV/c2, while the
neutron is 1.6749×10−27kg or 939.57MeV/c2. The neutron is roughly 0.13% heavier. The similarity in mass can
be explained roughly by the slight difference in masses of up quarks and down quarks composing the nucleons.
However, a detailed explanation remains an unsolved problem in particle physics.
The spin of both protons and neutrons is 1⁄2, which means they are fermions and, like electrons (and unlike
bosons), are subject to the Pauli exclusion principle.
The proton radius puzzle is an unanswered problem in physics relating to the size of the proton. Historically
the proton radius was measured via two independent methods, which converged to a value of about 0.8768
femtometres (1 fm = 10−15 m). This value was challenged by a 2010 experiment utilizing a third method, which
produced a radius about 5% smaller than this. The discrepancy remains unresolved, and is a topic of ongoing
research.
spectroscopy (Lamb shift): 0.8768±0.0069fm
nuclear scattering: 0.8775±0.0005fm
myonic hydrogen: 0.8751±0.0061fm
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Parameters Standard model [9]
Parameters Value Comments
mu(MS, 2 GeV) 3-4.5 MeV χPT, sum-rules

md(MS, 2 GeV) 5-8 MeV χPT, sum-rules

ms(MS, 2 GeV) 100-140 MeV χPT, sum-rules

mc(MS,mc) 1.0-1.6 GeV J/ψ sprectra

mb(MS,mb)   4.1-4.6 GeV    Ύ spectra 

MHiggs 125GeV LHC 2016

αs(MZ) 0.118 ± 0.003 World average

|Vud| 0.9736 ± 0.0010 n → peνe andμ → eνeνμ 

|Vus| 0.2196 ± 0.0023 K+ → π0e+νe and K0L→ π±e∓νe 

|Vub| (3.3 ± 0.2 ± 0.4 ± 0.7)10−3 B → πlν; B → ρlν

|Vcb| 0.040 ± 0.003 B → Xclν and B → D∗lν

|ε | 2.26 × 10−3 K0 ↔ K0 mixing

| ε/ ε’ | 0 − 30 × 10−4 K → ππ decays
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3. Perturbative QCD

Quark processes

neutron decay

lambda decay

Conservation of strangeness is not in fact an independent conservation law, but can be viewed as a combination
of the conservation of charge, isospin, and baryon number. It is often expressed in terms of hypercharge Y,
defined by:

Feynman rules

Lepton propagators [11, Fig.9.1]

QCD propagators and vertices [11, Fig.8.2]
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Two-ghosts vertex

incoming [6, 6.73]

outgoing
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[3]
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[4]

[5]

Hadronic decays
[6] R-ratio

ECM < 2:5 GeV: production of u,d,s quarks:

4 GeV < ECM < 9 GeV: production of u,d,s,c quarks:

11 GeV < ECM < 90 GeV: production of u,d,s,c,b quarks:
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Feynman cross-sections
Rutherford electron scattering [12, 5.58]

Mott

where

Rutherford β→0

Compton effect [12, 6.22]

lab frame 0ip


electron at rest

Klein-Nishiima

where a=k/m

pair annihilation [12, 6.42]
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lab frame : 01 p


electron at rest

where γ=E2/m

electron-electron (Moeller) scattering [12, 6.49]

Moeller

electron-positron (Bhabha) scattering [12,6.54]

  )u()(u)'v()'(v
)(
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attractive potential in q-space:
Bhabha

where )',( 11 pp 

electron-nucleon scattering [11, 10.34]

lab frame: )0,(


MP  , ),( pEp


 , )','(' pEp


 nucleon at rest

Rosenbluth

where )',( pp  , GE and GM are the electric and magnetic form factor of the nucleon N=p or N=n

bremsstrahlung [12, 6.68]

Bethe-Heitler

neutrino-electron scattering [11, 12.43]

electron-positron muon-antimuon production [6]
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,

(for mme  )

electron-muon scattering [6]

electron-positron muon-antimuon production [13]

m, M– are electron and muon masses

Born approximation
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dilogarithm

electron-positron pion production [13], [11]

m, M– are electron and pion masses

Born approximation








m

fg

qm

q
qF

2

2
2 1)(


 pion form factor [11] with 01.6g GeVf 15.0 GeVm 902.0

quark-antiquark scattering [6, 4.109]

potential with R=1 (singlet) or R=8 (octet) since

quark-antiquark annihilation [6,]
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DIS cross-section electron-parton [6, 5.2]

with

where F1 and F2 are structure functions and (Callen-Gross relation)

, where ei are charges, e.g.

[4, (34)]

four-quark cross-section [6, 5.85]

where
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t2 = u2 = s2 =

electron-positron quark-antiquark [6, 6.88]

t2 = u2 = s2 =

4

electron-positron quark-antiquark-gluon [6, 95]
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Soft gluon emission and DGLAP [4]

DGLAP ansatz

initial cross-section

correction with one initial-emission

q->q+g

g->q+g

q->g+g

g->g+g
where color factor CF and transmission factor TR are defined as follows
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4. QCD on lattice with Wilson-loops

QCD lattice formulation [8, 9]

Feynman path integral

where S is the QCD action , M Dirac operator mDiM  


on the gauge field A

expectation value of an operator O

corresponds to the Boltzmann average

with
kT

1
 , chemical potential μ and particle number N

integral over 4-dimensional Euclidean lattice (i t, x1,x2,x3) with complex (Wick-rot.) time
on lattice

   )]([exp][det)( xUSUMOxdUTrO   

with interaction matrix M[U] , under  )(exp)( xAgaixU   the local gauge transformation with coupling

constant g , lattice step size a , gluon field )(xA , action )]([ xUS

quenched approximation : we impose constM )det( for the interaction matrix M[U] , quark loops are

neglected

Theory on lattice with step size a [8]

momentum/energy cut-off μ = π/a

gluon-field
gluon-induced transformation for fermion moving from site x to y (ordered product)

on-lattice axy  gluon transformation
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Wilson action on a plaquette  (μa,νa)  

+ higher terms in a

where
2

6

g


from this results the naive lattice action for fermions

limit a→0
with the interaction matrix MN on the lattice

Wilson fermions [9]
The naive lattice action introduces 16 for one fermion. To eliminate the copies Wilson introduced a fifth lattice
dimension with step size r . The Wilson action becomes

with the interaction matrix MW

and rescaling

the quark mass becomes
Wilson fermion propagator is

Symmetries parity, time inversion, charge conjugation, chirality
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dispersion relation for the mass

solution
where the second solution corresponds to the pole in the Euclidean propagator at p4 = π and is the temporal
doubler, removed for r=1 .
The fermion density expectation value is

Staggered fermions [9]
The 16-doubling of the naive action is reduced to 4 by the transformation to staggered fermions

the action becomes

with the interaction matrix MS

with ±1-factors

Improved action Lüscher-Weiss [9]
The LW action improves the naive action beyond O(a2) .
original leading term

corrections

improved action
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with normalization condition

Lüscher-Weiss:

explicitly

TILW (tadpole improved Lüscher-Weiss)

with

[9] Static-quark potential computed on 64 lattices with a ≈ 0.4 fm using the Wilson action and the TILW action. 
The dotted line is the standard infrared parameterization for the continuum potential,
V (r) = Kr − π/12r + c,  
adjusted to fit the on-axis values of the potential.

Lattice calculations of hadron masses [9 18.1]
The mass (energy) eigenvalues are extracted from the decay rate

for state transition from Oi to Of, usually
[4, 1.1]
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The measured spectrum of hadron masses, compared to a lattice calculation [9]. The open blue circles are the
hadron masses that have been used to fix the three parameters of the calculation: the value of the QCD
coupling, the average of the up and down quark masses (taken equal) and the strange-quark mass. All other
points are results of the calculation.
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Part B Minimization of QCD-QED-action on lattice and its results

1. Solution methods in lattice-QCD [8,9,12,13,14]
Basically, there are four solution methods in lattice-QCD (LQCD):
Perturbative analytic Feynman solution
Here one calculates the reaction cross-sections from Feynman diagrams evaluating the corresponding Feynman-
integrals in analogy to the QED. As the QCD is renormalizable, all Feynman integrals can be made finite.
However, this works only for convergent Feynman series, i.e. if the interaction constant gc<1 . This is the case
for large energies E>EΛ=220MeV .
Non-perturbative on-lattice Wilson-loop method
Here the expectation value of an operator (e.g. energy=Hamilton operator) is calculated using path integrals

   )]([exp][det)( xUSUMOxdUTrO   

with interaction matrix M[U] , under  )(exp)( xAgaixU   the local gauge transformation, with coupling

constant g , lattice step size a , gluon field )(xA , action )]([ xUS , on closed loops on the lattice.

Non-perturbative on-lattice eom solution
The QCD equations-of-motion (eom) are derived from the minimal-action-principle as the Euler-Lagrange-
equations corresponding to the QCD Lagrangian. They are

the Yang-Mills-equations for the gluon wavefunction )(xAa
 and the color-field-

tensor )(xF a


and the Dirac equation

  0 amcDi  


with the color-covariant-derivative and the quark-wavefunction )(xa


These are nq+ng partial differential equations (pdeq) first order in x , for the nq =2 or nq =3 quarks and

ng =8 gluons, adding a gauge condition and a boundary condition for )(xAa
 .

They must be solved numerically on a lattice as an eigenvalue problem of the Dirac equation, which is very
difficult and time-consuming for a one-dimensional lattice of, say, n1=100 points (total number of points
n=n1

4=108 ) .
Non-perturbative on-lattice minimization of action
The starting point is the minimum-action-principle for QCD:

min),,(   dxAgqxLS iiQCD
 with a gauge condition and a boundary condition for )(xAgi .

It can be extended to QCD+QED

  min),,(),,(   dxAeqxLAgqxLS iiQEDiiQCD


for the quarks iq , QCD-gluons iAg , QED-photons iAe ,

In order to carry out the minimization numerically, we introduce an equidistant 4-dimensional lattice
  )()()()(,,, kkkkkkkk rtrtL   , extract a small random sub-lattice Lsub

and approximate the integral by a sum over Lsub :

  VAgqxLS
subLx

iiQCD  


,,
~

, where   rtV is the elementary integration volume in spherical

coordinates, and model the quark wavefunctions as parameterized Gauss functions  )(, qparxqq  and the

gluon-wavefunctions as Ritz-Galerkin series on a function system )(xfk with coefficients k :

 )(),( AgparxfAgAg kk  , according the photon-wavefunctions  )(},{, AeparxAeAe k .

We impose the gauge condition for iAg : 0


 iAg and a boundary condition : 0)( 0  rrAgi , the quark-

wavefunctions are normalized 1)( 3  xdxqi .

The minimization is carried out in dependence on ))(},{),(( Agparqparpar k
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 parSpar ,
~

min0  , where par0 yields information about the energy (=mass) , the sizes and the inner structure

of the considered hadron.
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Non-perturbative on-lattice minimization of action

action minimization

min),,(   dxAgqxLS iiQCD


quark wf: gaussian
 )(, qparxqq 

normalized 1)( 3  xdxqi

lattice

  )()()()(,,, kkkkkkkk rtrtL  

gluon wf: RG expansion on kf

 )(),( AgparxfAgAg kk 

discretized action

  min,,
~

 


VAgqxLS
subLx

iiQCD

))(},{),(( Agparqparpar k

→    parSpar ,
~

min0 

gauge cond.

0


 iAg

boundary cond.
0)( 0  rrAgi
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2. The ansatz for the quark and gluon wavefunctions [19]
Gluon wavefunction
For the gluon wavefunction we apply here the full Ritz-Galerkin series on the function system

},...,0),sincos,{(cos},...,0,),,({),( 2100
221

 nknkrdrrrbfuncrf kk
r

k
k  with coefficients k ,

where





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

 




0

0

00

exp1

1
),,(

dr

rr
drrrbfunc is a Fermi-step-function which limits the region 0rr  of the hadron

with „smearing width“ dr0 .

}8,...,1,
sin),,(

cos),,(
{),,( 








 i

aArtAg

aArtAg
rtAg

ii

ii




 , where iaA is the phase angle between the particle and the anti-

particle part of the gluon, and with the Ritz-Galerkin-expansion

 kj
j

k EAtirfjkrtAg  exp),(],[),,(  with energies kEA

Because of color-symmetry, the active (non-zero) gluons are
},...,{ 81 AgAgAg  all gluons for nucleons

},,,,,{ 765421 AgAgAgAgAgAgAg  6 non-diagonal gluons for vector-mesons

},,{ 752 AgAgAgAg  3 quark-antiquark gluons for for pseudo-scalar mesons

Quark wavefunction
The first-generation (u,d)-hadrons consist of three quarks (nucleons) or three color-symmetric quark-antiquark-
combinations (vector-mesons) or two quark-antiquark-combinations (pseudo-scalar mesons)
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q for vector-mesons

(omega0, rho0, rho+)
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A Ritz-Galerkin series for quarks would blow up the complexity of calculation, therefore we use here a simpler
model, based on the asymptotic-freedom property of quarks: gaussian “blobs”
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and kudr , is the

position(r,) and its width, ka is the quark-antiquark phase and the antiquark is
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The ansatz and the color symmetry
The form of the quark color-wavefunction and the corresponding set of active gluons are enforced by the color-
symmetry and the number of particles equal to the number of combinations.
The 8 gluons of the SU(5) form 3 families: the diagonal },{ 83 AgAg , which map color indices into itself,

the non-diagonal },,{ 641 AgAgAg , which exchange color-index with a different color index, and

the non-diagonal },,{ 752 AgAgAg , which exchange color-index with a different anti-color index.
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The nucleons consist of three quarks with color (r,g,b), and the color wavefunction q is mapped into itself
under color-permutations, therefore the full set of 8 gluons Agi is required, and there are only two possibilities
for first-generation hadrons: p=uud and n=ddu .
The vector mesons consist of quark-antiquark pairs, where the color wavefunction q has three identical
components.
q is mapped into itself under the corresponding set of 6 non-diagonal gluons

},,,,,{ 765421 AgAgAgAgAgAgAg  (each flips two color indices).

It is seen immediately that the three combinations listed above are the only possible ones, which is confirmed
by the existence of the three v-mesons omega0, rho0, rho+ .
The pseudo-scalar mesons consist of quark-antiquark pairs, where the color wavefunction q has two non-zero
components. The corresponding gluon set are the 3 non-diagonal color-anticolor gluons },,{ 752 AgAgAgAg  ,

which exchange a color-quark with a different anti-color-quark. For example, 2Ag flips color-indices (3,1) and

transforms }0,
0

,
0

{
2

1

12 
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
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



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c

c

q

q
q . So in reality, the wavefunction is a

superposition of the three  312312 ,, qqq and is mapped by the gluon set into itself.

Again, one can see immediately that there are only two possible combinations, which correspond to the two
known ps-mesons pi+ and pi0 .
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3. The numerical algorithm [19]

The energy, length, and time are made dimensionsless by using the units: E( GeV
fm

c
E 196.0

1
0 


) , r(fm) ,

t(fm/c) fm=10-15m . The hadrons have axial symmetry, so we can set φ=0 and use the spherical coordinates
(t, r, θ) .
We choose the equidistant lattice for the intervals ],0[]1,0[]1,0[),,(  rt with 21x21x11 points and, for

the minimization 8x in parallel, 8 random sublattices :
}8,...,1|)}100...1,()3,2,1(|),,{{(],[ 321  ixjlatticerandomiiitrtjixl iii .

For the Ritz-Galerkin expansion we use the 12 functions

},...,0),sincos,{(cos},...,0,),,({),( 2100
221

 nknkrdrrrbfuncrf kk
r

k
k 

The action  dddrdtrAgqxLS iiQCD sin),,( 2

 becomes a mean-value on the sublattice ][ixl

   tr
ixlx

iiQCD VAgqxL
ixlN

ixS
sub

2,,
])[(

1
][

~

][




 ,where  trV the ),,( rt -volume and ])[( ixlN number of points

is. We impose the gauge condition and the boundary condition for iAg via penalty-function (imposing exact

conditions is possible, but slows down the minimization process enormously).

S
~

is minimized 8x in parallel with the Mathematica-minimzation method “simulated annealing” , the execution

time on a 2.7GHz Xeon E5 is 9100s for the proton p=uud , the complexity ])[
~

( ixSK =8.4 million terms.

The minimization is performed in the parameters ))(},{),(( Agparqparpar k , for the proton is the number

of parameters N( }{ k )=16*12=164 , N( )(qpar )=3*5=15 , N( )(Agpar )=8*2=16 .

The proper parameters of the quarks and the gluons are:
},,,,{)( iiiiii druuruaEuqpar  , },{)( iii aAEAAgpar 

Criteria for correctness of the ansatz
1.Convergence of minimization
As we found out during the computation, a wrong ansatz, e.g. lacking color symmetry, leads to a non-
convergent minimization. We chose a high goal precision of prec=10-4, so there was a high probability that a
convergent minimizations hits a real (global) minimum.

2.High relative deviation between solutions
Strongly differing solutions indicate a non-correct ansatz, as we found out e.g. for the nucleons with too many
degrees –of-freedom for the gluons: the relative deviation for crucial variables, like energy, should be no more
than 2% for the nucleons and 6% for the ps-mesons.

3.Vanishing parameter-derivatives

A true minimum must satisfy the derivative-condition 0




ip

S
, where ip is one of the minimization

parameters, Normally, the parameter-derivatives are close to zero, otherwise the minimum is not genuine, or the
ansatz is wrong.

4.Boundary condition and gauge condition
The boundary and gauge condition must have values close to zero, otherwise the weight for the penalty function
is too low.

5.Minimum value
The minimum value should be -30,...,30 for the considered parameter range. Very large positive values result
in the case of too high penalty weights. Very large negative values may come out, if the Ritz-Galerkin
parameters i are not bounded appropriately.

6.Correct energy scale and number of particles
The three types of first-generation hadrons have energy scales: E(nucleon)≈0.98GeV, E(v-meson)≈0.78GeV, 
E(ps-meson)≈0.14GeV , and these values emerge automatically with 8, 6 and 3 gluons respectively. 
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Furthermore, with the above ansatz, the number of possible particles is 2, 3, 2 respectively.
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4. The results for first-generation hadrons [19]

nucleons n, p quarks(3),gluons(8),spin=1/2

energy quarks, gluons

0 2 4 6 8 10
n quark ,gluon

0.05

0.10

0.15

0.20

0.25

0.30
E GeV

n blue ,p red

distribution quarks (r[fm])

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0
n blue ,p red

The quark distribution differs largely between the nucleons: the proton has only one orbital orthogonal to
the z-axis, the neutron has two orbitals at an with an angle of α=π/4 . The small mass difference is probably due
to the electromagnetic contribution, which is about 1% of the total mass.
The mass of the nucleons, as is the case for all first-generation-hadrons is generated almost exclusively by the
energy of the gluons and the quarks, the rest masses of u and d (mu=2.3MeV , md=4.8MeV) contribute very little
to the total mass.
The gluon distribution is practically the same for both nucleons, which is to be expected, since the two particles
are identical for the color interaction.
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proton p=uud
m=0.938GeV, r0=0.84fm

Etot=0.945GeV, ΔEtot=0.032, dEem=-0.013
Eui EAi ai aAi drui rui ui

0.0047,0.028,0.211 0.044,0.071,0.083,0.098,0.105,
0.108,0.113,0.146

-.99,-.99,.99 0,...,0 .16,.27,.75 .16,.15,.41 -.12,.08,0

ΔEui    ΔEAi    Δai    ΔaAi Δdrui    Δrui Δui

0.004,0.007,0.014 0.018,0.006,0.005,0.006,0.004,
0.002,0.001,0.062

.0041,.0037,.0014 0,...,0 .29,.26,.25 .20,.050,.016 .50,.42,0

gluons Agi

The proton p has one rotation plane (orbital), the two quarks (u,d) are close at r=0.15 low energy E≤0.03 , the
second u-quark further outside r=0.4, and high energy E=0.2. The “smearing” width is comparable, δr≈0.3 .
The electromagnetic correction is negative and much larger than with the neutron, dEem=-0.013GeV , which is
probably the reason for the proton’s smaller mass.
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neutron n=ddu
m=0.939GeV, r0=0.84fm

Etot=0.945GeV, ΔEtot=0.018, dEem=+0.0017
Eui EAi ai aAi drui rui ui

0.048,0.086,0.126 0.024,0.054,0.08,0.086,0.096,
0.103,0.113,0.117

-.92,-.95,.93 0,...,0 .72,1.05,.82 .71,.016,.50 -.68,.35,0

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.011,0.012,0.002 0.0005,0.005,0.0009,0.004,
0.00001,0.0005,0.0004,0.003

.017,.021,.041 0,...,0 .031,.052,.034 .042,.021,.021 .008,.007,0

gluons Agi

The neutron n has two orbitals with an angle of α=π/4 , the u-quark is at the center with low energy E=0.05 ,
the two d-quarks sit in the orbitals with higher energies E=0.09,0.013 . The “smearing” width is comparable,
δr≈0.4 and higher than with the proton.
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The gluon distribution is practically the same as for the proton, which is to be expected, since the two particles
are identical for the color interaction.
The electromagnetic correction is positive and much smaller than with the proton, dEem=+0.0017GeV , which
is probably the reason for the proton’s smaller mass.
magnetic moment of nucleons

The magnetic moment is 2

22
rm

m

q
L

m

q
  , for a rotating charge distribution: q

i
ii Irq

22

2 
   ,

where dqrrqI
i

iiq   22
is the momentum of charge, in analogy to the momentum of inertia dmrIm 

2 .

For a rotating solid sphere with radius r0 with constant charge density
2
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2
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The magnetic moment of the nucleons is measured in nuclear magnetons
m

e
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
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
i

iiq qrqqI 2)()(

We get for the neutron

Iqn=−0.1766 e , IqNn= 0.106 e , so
qNn

qn

I

I
=−1.766 , measured

N


=-1.91

and for the proton

Iqp=+ 0.2226 e , IqNp= 0.0909 e , so
qNp

qp

I

I
=+ 2.448 , measured

N


=+2.793

The calculation does not take into account the orbitals, and there is also the statistical uncertainty of the order
7% , so the results are satisfactory.
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pseudo-scalar mesons pi+, pi0 quarks(2),gluons(3),spin=0-

energy quarks, gluons

0 2 4 6 8 10
n quark ,gluon
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distribution quarks (r[fm]): independent(θ)=spherical 
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1.0
pi blue ,pi0 red

The pseudo-scalar mesons are spherically-symmetric, there is no θ-dependence: θ≈0 in the quark-distribution, 
the gluon-wavefunctions show little θ-dependence, and the gluon amplitudes are much smaller (factor 30) for 
pi0 than for pi+ .

For the pi0, uu and dd sit at r=0.4 E≈0 , and at r=0.75 E≈0.1 .

For the pi+, the u and d have practically equal radii, but different energies: r=0.6 E≈0.001 ,
and r=0.6  E≈0.01 .
The measured masses of the ps-mesons (0.135, 0.139) are reproduced by the calculation
(0.155±0.025, 0.129±0.026), but only roughly within the error bounds.

ps-meson pi0=   2/dduu 

m=0.135GeV, r0=0.66fm

Etot=0.155GeV, ΔEtot=0.025, dEem=+0.007
Eui EAi ai aAi drui rui ui

0.0007,0.098 0,0,0,0,0.0012,0,0.045,0 .073,-.650 0,-.77,0,0,-.131,0,-.634,0 .985,.631 .387,.746 -.058,0

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.001,0.013 0,0,0,0,0.002,0,0.022,0 .028,.018 0,.40,0,0,.38,0,.25,0 .040,.031 .039,.011 .010,0

gluons Agi
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ps-meson pi+= du
m=0.139GeV, r0=0.66fm

Etot=0.129GeV, ΔEtot=0.026, dEem=+0.0014
Eui EAi ai aAi drui rui ui

0.0004,0.009 0,0.005,0,0,0.014,0,0.0945,0 -.136,-
.319

0,-.868,0,0,-.011,0,-.556,0 .020,.025 .588,.560 .180,0

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.001,0.012 0,0.003,0,0,0.016,0,0.017,0 .68,.67 0,.294,0,0,.100,0,.223,0 .0,.008 .190,.171 .243,0

gluons Agi
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vector mesons rho0, rho+, omega0 quarks(2),gluons(6),spin=1

energy quarks, gluons
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n quark ,gluon
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rho0 blue ,rho red,omega0 green

distribution quarks (r[fm])
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rho0 blue ,rho red,omega0 green

The vector mesons are spin-1 bosons but only rho+ shows an explicit θ-dependence of quark-distribution: it has 
two orbitals.  The gluons show explicit θ-dependence and are, as for the nucleons, practically equal for all three 
particles.

For rho0: the quarks uu and dd have identical parameters r=0.5, δr=0.3, E=0.1

For omega0: the quarks uu and dd again have identical parameters, are at center, δr=0.25, E=0.1

For rho+: the heavier quark d has r=0.5 , δr=0.05, E=0.05 , the light quark u has r=0.9 , δr=0.5, E=0.07 ,

rho+ has two orthogonal orbitals. Its two quarks have completely different width; the d quark closer to the
center has a small bandwidth, the light u quark is strongly “smeared” like all the other quarks in the 3 particles.
The measured masses of the v-mesons (0.775, 0.775, 0.782) are reproduced correctly by the calculation
(0.771±0.0052, 0.779±0.012, 0.782±0.007).

v-meson rho0=   2/dduu 

m=0.775GeV, r0=0.75fm

Etot=0.771GeV, ΔEtot=0.0052, dEem=+0.002
Eui EAi ai aAi drui rui ui

0.094,0.094 0.045,0.088,0,0.094,0.099,
0.111,0.138,0

-.0057,-
.0057

.018,-,003,0,.250,-.809,.227,-

.533,0
.56,.56 .2327,.327 0,0

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.0003,0.0003 0.005,0.0005,0,0.0005,0.0005
,0.002,0.0005,0

.0005,.0006 .015,.002,0,.008,.002,.006,.003,0 .071,.071 .033,.033 0,0
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gluons Agi

v-meson rho+= du
m=0.775GeV, r0=0.75fm

Etot=0.779GeV, ΔEtot=0.012, dEem=+0.002
Eui EAi ai aAi drui rui ui

0.047,0.073 0.054,0.102,0,0.107,0.113,
0.124,0.152,0

-.628,.620 .011,-,003,0,.250,-.810,.229,-
.534,0

1.05,.02 .89,.48 0,-1.0

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.004,0.009 0.006,0.001,0,0.001,0.001,
0.003,0.001,0

.018,.0 .012,.003,0,.011,.001,.003,.001,0 .019,.012 .018,.011 0,.001

gluons Agi
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v-meson omega0=   2/dduu 

m=0.782GeV, r0=0.75fm

Etot=0.782GeV, ΔEtot=0.007, dEem=+0.002
Eui EAi ai aAi drui rui ui

0.092,0.092 0.045,0.092,0,0.097,0.103,
0.113,0.142,0

.750,-.750 .012,-,003,0,.241,-.810,.228,-
.534,0

.517,.517 0,0 -.45,-.07

ΔEui    ΔEAi    Δai    ΔaAi    Δdrui    Δrui Δui

0.002,0.002 0.006,0.0008,0,0.0008,0.0007,
0.002,0.0008,0

.707,.707 .007,.002,0,.012,.001,.005,.003,0 .118,.118 .0,.0 .207,.200

gluons Agi
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