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Abstract

“Every natural number, with the exception of 0 and 1, can be written in a unique way as a
linear combination of consecutive powers of 2, with the coefficients of the linear
combination being -1 or +1”. According to this theorem we define the L/R symmetry of
the natural numbers. The L/R symmetry gives the factors which determine the internal
structure of natural numbers. As a consequence of this structure, an algorithm for the
factorization of Fermat numbers is derived. Also, we determine a sequence of prime
numbers, and we prove an essential corollary for the composite Mersenn numbers.
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1 Introduction

In this article, we start by proving the theorem: “Every natural number, with the exception
of 0 and 1, can be written in a unique way as a linear combination of consecutive powers
of 2, with the coefficients of the linear combination being -1 or +1”. As a consequence of
this theorem we have two fundamental symmetries of natural numbers: the symmetry L
and the symmetry R. There exists a transformation which confesses the symmetries L and
R. In fact, we have a single L/R symmetry instead of having two different symmetries.

The L/R symmetry categorizes the natural numbers and reveals to us the factors which
determine their internal structure. Every natural number belongs to one of the following
categories: it has symmetry L or it has symmetry R or it is not symmetric. In the
categorization of natural numbers according to L/R symmetry there exist three numbers
each of them is a distinct category contained of exactly one number. These numbers are 0,
land 3.

We prove an algorithm for the factorization of the asymmetric numbers. Fermat numbers
are asymmetric, and therefore we can apply the algorithm for their factorization. Also, we
prove that Fermat numbers F,F,F,, F;, F, cannot be composite numbers.



In the region of numbers in the form of 2% |S e N we determine intervals in the form

of [p, P] where p, P are prime numbers, in which the magnitude of the difference P-p is
known. In that way we determine a sequence of pairs of prime numbers (p, P).

In the last chapter we prove a corollary for the composite Mersenn numbers.

2 Natural numbers as linear combination of consecutive powers of 2
We prove the following theorem:

Theorem 2.1.Every natural number, with the exception of 0, and 1, can be uniquely
written as a linear combination of consecutive powers of 2, with the coefficients of the
linear combination being -1 or +1.

Proof. Let the odd number I1as given from equation

v-1 .
O=TI(v,B)=2""+2"+2"+2" 2+ .£20+2°=2""4 2"+ ) B2
i=0

B =+1i=012,..,v-1 . 1)
veN

From equation (2.1) for v = 0 we obtain

M=2"+2°=2+1=3.

We now examine the case where v e N™ = {1, 2,3,...} . The lowest value that the odd
number 1T of equation (2.1) can obtain is

M, =T(v)=2"+2"-2" 2"~ ..2' -1

I, =I1(v)=2"+1. (2.2)
The largest value that the odd number I1of equation (2.1) can obtain is

I, =T(v)=2""+2"+2""+......2' +1

I, =I1(v)=2""-1. (2.3)
Thus, for the odd numbers IT=TI(v, B ) of equation (2.1) the following inequality holds
I, =2 +1<TI(v, B )< 2"? -1=1I1,,, . (2.4)

The number N(TI(v,3,)) of odd numbers in the closed interval [2”1 +1,2"*%2 —1] is

+1

_ _ 2v+2 -1)- 2v+1 1
N(H(v,ﬁi))=nmaxznm'" v )2( +1)

N(TI(v,3))=2". (2.5)



The integers 3,i=0,12,........ ,v—=11n equation (2.1) can take only two values,

B =-1v B =+1, thus equation (2.1) gives exactly 2" =N (H(v,ﬁi)) odd numbers.
Therefore, for everyv e N™ equation (2.1) gives all odd numbers in the interval
[2v+l +1 2v+2 _1] )

We now prove the theorem for the even numbers. Every even number « which is a
power of 2 can be uniquely written in the form of o =2",v e N". We now consider the

case where the even number « is not a power of 2. In that case, the even number « is
written in the form of

a=2'TI,IT=0dd,IT=1leN". (2.6)

We now prove that the even number « can be uniquely written in the form of equation
(2.6). If we assume that the even number ¢ can be written in the form of
a=2T1=2'11

L1 (1>1)

I=IT 2.7

I,I e N

I1,IT = odd

the we obtain

2m=2"r

2=

which is impossible, since the first part of this equation is even and the second odd. Thus,
itis 1=1"and we take that TT =TT from equation (2.7). Therefore, every even number o
that is not a power of 2 can be uniquely written in the form of equation (2.6). The odd
number 11 of equation (2.6) can be uniquely written in the form of equation (2.1), thus

from equation (2.6) it is derived that every even number « that is not a power of 2 can be
uniquely written in the form of equation

a=a(lv,B)=2 (2”1+2V+§,8i2‘j

leN,veN (2.8)
B =+1i=012,......,v—1

and equivalently
v-1
a:a(l,v1ﬂi):2|+v+l+2|+v +Zﬁi2|+i
i=0

leN,veN . (2.9)
B =4Li=012,.....,v-1

For1we take



1=2°
1=2"-2°

thus, it can be written in two ways in the form of equation (2.1). Both the odds of
equation (2.1) and the evens of the equation (2.8) are positive. Thus, 0 cannot be written
either in the form of equation (2.1) or in the form of equation (2.8).o

In order to write an odd number IT=1,3 in the form of equation (2.1) we initially
define the v e N" from inequality (2.4). Then, we calculate the sum
2V 42V,
If it holds that 2" + 2" <T1 we add the 2", whereas if it holds that 2"** +2" > IT then
we subtract it. By repeating the process exactly v times we write the odd number ITin
the form of equation (2.1). The number of v steps needed in order to write the odd

number 1T in the form of equation (2.1) is extremely low compared to the magnitude of
the odd number T, as derived from inequality (2.4).

Example 2.1. For the odd number IT =23 we obtain from inequality (2.4)
2" 41<23<2"2 -1
2 42 <24 <272
2" <12 <2
thus v = 3. Then, we have
2" 42V = 2% 4 2° =24 > 23(thus 2* is subtracted)
2* +2° —2% =20 < 23(thus 2'is added)
24 +2° —22 42t =22 < 23(thus 2° =1 is added)
2 +2° -2 +2' +1=23.
Fermat numbers F, can be written directly in the form of equation (2.1), since they are
of the form I1

min
Fo=2" +1=I1,,(2°-1)=2" +2" ' -2" 2 -2 °— ..-2'-1 (2.10)
seN

Mersenne numbers M can be written directly in the form of equation (2.1), since they
are of the form IT__,

M, =2 —1=1I1_, (p—-2)=2""+2P2+2"° + ... +21+1.

p = prime

(2.11)

In order to write an even number ¢ that is not a power of 2 in the form of equation
(2.1), initially it is consecutively divided by 2 and it takes of the form of equation (2.6).
Then, we write the odd number IT in the form of equation (2.1).

Example 2.2. By consecutively dividing the even number « =368 by 2 we obtain



o =368=2"-23.

Then, we write the odd number IT = 23 in the form of equation (2.1),

23=2%4+23_-2%2 42" 1,
and we get
368:24(24+23—22+21+1)

368=28+27 —26 425424,

This equation gives the unique way in which the even number « =368 can be written in

the form of equation (2.9).

From inequality (2.4) we obtain
24 1<TI<2"? -1

2 < 2P ISTI <27 —1< 272
ol ] < 9742
(v+1)In2<InTI<(v+2)In2

from which we get

_InH —1<v+1<—|nH
In2 In2
and finally
v+l= InTt

In2

Where[ln—n} the integer part ofln—rI eR.
In2 In2

We now give the following definition:
Definition 2.1.We define as the conjugate of the odd
v-1 .
O=M(v,5)=2""+2"+> B2
i=0
L =%1i=012,..... ,v-1

veN

the odd I'T",

T =H*(v,yj)=2v*l+2v +§7/j2j
j=0

(2.12)

(2.13)

(2.14)



for which it holds

7 =—BVk=012,.... v—1. (2.15)
For conjugate odds, the following corollary holds:

Corollary 2.1.For the conjugate odds TT=TI1(v,3) and IT =IT (v,7,) the following

hold:

1 () =11. (2.16)

2. 11 =3-2"" —11. (2.17)

3. IT is divisible by 3 if and only if TT" is divisible by 3.

4. Two conjugate odd numbers cannot have common factor greater than 3.

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.

2. From equations (2.13), (2.14) and (2.15) we get

I+IT =(2V+1+2V)+(2V+1+2V)

and equivalently

M+IT =3-2"".

3. If the odd IT is divisible by 3 then it is written in the form IT=3x, x = odd and from
equation (4.17) we get 3x+I1" =3-2""* and equivalently IT =3(2V+l —x). Similarly we
can prove the inverse

4.1f T1=xy,IT =xz, X, y, z odd numbers, from equation (2.17) we have
x(y+2)=3-2""" and consequently is x=3. o

From corollary 2.1 we have that 3 the only odd number which is equal to its conjugate:
3 =3.2""-3=3,

3 The L/R symmetry
We now give the following definition:

Definition 3.1. Define as “symmetry” every specific algorithm which determines the
signsof £ =+41,1=0,12,........ ,v—=1 in equation (2.1):

v-1 .
O=TI(v,B)=2""+2"+2"1 422+ 222420 =2""4+2"+> B2

i=0

In this article we study the symmetries L and R, which are determined by the following
definition:



Definition 3.2.1. The odd number /7 in the equation (2.1) has symmetry L when there
exists an index L so that

BL=+1
Ba=PB = =p=p=-1 (3.1)

2. The odd number /7 in the equation (2.1) has symmetry R when there exists an index R
so that

Pra=Pry = =p=p =+l (3.2)
Re{1,23,..,v-1}

3. We will call asymmetric the odd numbers which have neither symmetry L nor
symmetry R.

4. For each even number a,

a=2'TI,IT=o0dd,IT#Lle N
we define as the symmetry of « the symmetry of the odd 77.

We will note the symmetry of an odd IT by L=L(IT)=LII, or by R=R(IT)=RII. At first
the L/R symmetry categorizes the odd numbers, and then the even numbers by 4 of
definition 3.2. The odd number IT=1 cannot uniquely be written in the form of equation
(2.1). So 1 and the powers of 2 are asymmetric numbers.

The odd numbers of the form
As = As(v) =2"+1lveN

have # =-1vi=0,12,...,v—1 in the equation (2.1), and so these are the only

asymmetric odd numbers. From its definition we have that the Fermat numbers are
asymmetric numbers. However, although 3 is a Fermat number it is asymmetric because
of a different reason: It is the unique natural number which comes from equation (2.1) for
v=0,

3=24+2°=2"+1,(v=0).

In the categorization of natural numbers according to L/R symmetry, 3 is a distinct
category contained just one element, number 3. There are two other natural number with
this property, 0 and 1.

The even numbers of the form
a=2"As
leN



where As is asymmetric number, as well as the powers of 2 are the asymmetric even
numbers. The rest even numbers are symmetric (so the symmetric even numbers are more
than the asymmetric ones).

The symmetry of an odd number can be found by writing it in the form of the equation
(2.1). According to 4 of corollary 3.1, the factors, prime numbers or composites of
Fermat numbers have symmetry L. Next, we have two examples:

Example 3.1. The prime number Q= 45592577 is a factor of F, =2'%* +1. From the

equation (2.12) we have v+1=25, and then (see example 2.1) from the equation 2.1 we
have

Q — 225 + 224 _223 + 222 _221 + 220 + 219 _218 + 217 + 216 + 215 + 214 _ 213 + 212
1210 99 9B 9T 90 95 24 23 22 ol g '
So the factor 45592577 of F,, has symmetry L 45592577=11.

Example 3.2. The prime number
Q=568630647535356955169033410940867804839360742060818433 is a factor of

F,, = 2" +1. From the equation (2.12) we have v+1=178, and then from equation 2.1 we
have
Q=28 4 217 QO L QN5 QA L QN3 | QT2 QL | QIO | 199 | D168y 16T | D160
2105 D104 4 163 _ptez_DloL_ DIo0 189 | D18 4 QIST | IS0 _ IS5 ot o1ss _ otz
QI Q10 U Q1B _QUT_lab | DUIS_ leh | D3 puiz_ plat_ pla0 | D139 | D138
_I8T _9l36 | 9135 o134 9183 | 9132 o131 | 9130 9120 | 5128 9127 | 9l26 9125 9124
Q1B gl _piel  gi0 QU9 | NS _ LT | U6 _ LS | pitd _plis_puz_ olit_ oo
2109 Q108 4 IO _ D106 | D105 D108 | D103 pl0z | IO _ D100 4 2% 4 2% %7 1 2% 2%
2% 2% 2% 1 29 1 2% 2% 1 0% 08 1 080 4 0% 0% 0% | 08208t %0 4 0"
278 21 27 2T 4 27 4 21 27 Tt 970 1 %9 1 2% 4 2% 4 2% 4 0% 4 0% 2%
_ 962, 96l 9680 959 958 ST 956 4 955 954 953 952 951 950 949 | o8 | o47
L% 985 9% | o83 | 982 ol 940 | 939 938 937 936 935 93 933 | 932, 93l
2% 1 2% 1 2% L M 4 9% 4 2% 4 2% B 102 L M 00 19 _ 18 _ ol _ D16 01
T S S sy L Ay Ly Sty Sy Ay A iy |
So the factor 568630647535356955169033410940867804839360742060818433 of F,
has symmetry L 568630647535356955169033410940867804839360742060818433=14.
From Lucas theorem for the Fermat numbers [1] the following corollary is derived:
Corollary 3.1. 1. The prime numbers factors of Fermat numbers have symmetry L.
2. For the symmetry L of the prime numbers factors of a Fermat number

F, =2 +1,SeN (3.3)



holds
Le®, ={S+1S+2,5+3..}. (3.4)
We have the following example.

Example 3.5. For the known factors, prime numbers and composites of F, =2**° +1 we
have:

S=12

L114689=13

L26017793=15

L63766529=15

L190274191361=13

L1256132134125569=13
L568630647535356955169033410940867804839360742060818433=14
L(C1133)=13

where C1133 is a composite, non-factorized factor of F, with 1133 digits. From the
equations (3.3) we have

Q,=114689=3-2% +2".1+1

Q, =26017793=3-2% +2'°.13+1

Q, =63766529 = 3-2* +2'°.205+1

Q, =190274191361=3-2% — 2" .969497+1

Q, =1256132134125569 = 3- 2% - 2'* . 26410994027 +1

Q, =568630647535356955169033410940867804839360742060818433
=3.2""" —2".184789437541240439311118293472233246388745994813+1
C1133=3-2""% 4+ 2% .T1+1

where IT is a negative number with 1128 digits.

4 The basic study of the L/R symmetry
In this chapter we prove the basic theorems for the L/R symmetry.
Theorem 4.1.1. Every odd number Q with symmetry L can be written in the form

v—L-1
Q=32 +2"1. ) g 27 41=3.2" 425 1T+

i=1

=t -(3-2“’l +H)+1: 2" K+lLv+1l= PH_Q}
In2

(4.1)



The odd number T1€7Z",

v-L-1

=3 f-27" (4.2)

has the same sign as S, , =1, and satisfies the inequality

2 i< 2 (4.3)
2. Every odd number D with symmetry R can be written in the form

v—R-1

D=3.2"+2%. Y g 27 F —1=3.2"+ 27111
i=1

(4.4)
R+1 V—R-1 R+1 InD
=27 (3-2" " 4 T) - 1=2% K —L v +1=| ——
In2
The odd numberITeZ’,
v—R-1 .
n=> g -27" (4.5)
i=1
has the same sign as S, , =£1 , and satisfies the inequality
R 1< <2 R (4.6)

Proof. We prove the part 1 of the corollary. The proof of the part 2 is similar. If Q has
symmetry L, from equation (2.1) we have

L+1
Q=2"4+2"+ ) B 24282122 -2 -1
i=v-1
L+1 .
Q=3-2"+) B-2'+2" (2" +2" 2 4.+ 2" +1)
i=v-1
L+l .
Q=3-2"+) B-2'+2" (2" -1)
i=v-1
L+1 .
Q=3-2"+> p-2'+1

i=v-1

L+1

and taking into account that the highest power of 2 in the sum z B -2"is 2- we take

i=v-1

the equation (4.1). From equation (4.1) we have for the odd number IT,

v—-L-1

n-"y g2
i=1

10



which is the sum of successive powers of 2 with highest power 3, -2, So the odd

number IT has the same sign as £, ; =£1. Moreover, the minimum value of IT is
v—L-1 _
Hmin — Z _2v—Lflfl — _2v—Lfl +1

i=1
and the maximum

v—L-1

Hmax — Z 2v—L—1—i — 2v—L—l _1. O
i=1

The following theorem concerns the symmetry of conjugate odd numbers.
Theorem 4.2.1. For the odd number Q, with symmetry L, holds

Q=3-2"+2" MM+l Q =3-2" —2%1.11-1

4.7)
R=L
2. For the odd number D, with symmetry R, holds
_2.9v R+L _ *_Q.9v _ oL+
D=3-2"+2""-11-1<D =3-2"-2 H+1. (4.8)

L=R

Proof. Theorem is an immediate consequence of definitions 3.2, 2.1 and transformation
(2.17). o

From equations (4.7) and (4.8) we have

Q-Q +(2-*-m+1) =9.2% (4.9)

D-D"+(2%! - T1+1) =9-2%. (4.10)

These equations are independent from the transformation of the conjugation, which is the

transformation (2.17).
Now, we prove the following theorem:
Theorem 4.3.1. For the odd numbers Q with symmetry L the equation

H:HL:M (4.11)

2 L+1

gives the value of L, and the equation

D-3.-2"+1
H:HR :T (412)
gives R=0, and
I, -1
IT, :%. (4.13)

2. For the odd numbers D with symmetry R the equation (4.12) gives the value of R, the
equation (4.11) gives L=0, and

11



I, -1
2R

Proof. We prove the part 1 of the theorem. The proof of part 2 is similar. Trying to

calculate the value of R, in case of an odd number Q with symmetry L in the form of

equation (4.4), we get Q =3-2" +2%**.T1, —1. Combining this equation with the equation
(4.1) we have

Q=3-2"+2"" 11, +1=3-2" + 2% .11, -1

2=2%1 11, -2 .11,

1=2%.T1,-2" .11,

I, = (4.14)

and finally
(1=2% (T 2511 ))v (1=2" (27T, -1, ).

These equations hold if and only if R=0 or L=0. Number Q has symmetry L, so R=0.
Moreover we have

1=TI,-2"R.T1
and because R=0 we take the equation (4.13).o

As an example, we calculate again the L and IT for the number Q of example 3.2 by using
the equations (4.11) and (4.12):

Example 4.1. For the odd number
A=568630647535356955169033410940867804839360742060818433 we have v=177
from equation (2.5). Then, the equation (4.12) gives R=0. So number A has symmetry L.
Then we observe that the equation (4.11) is verified for L=1, L=2, L=3, ..., L=14. For the
maximum value of L=14 the equation (4.11) gives 11=184789 437541 240439 311118
293472 233246 388745 994813.

From theorem 4.2 we conclude that symmetries L and R commute from transformation
(2.17). So we have L/R symmetry. Theorem 4.3 gives one of the pairs

(L>1AR=0)v(L=0AR=>1) for every odd number, independently of its symmetry.
So, it gives a pair for the Fermat numbers:
F, =2 +1,5eN
L(F)=2°-1 . (4.15)
R(Fs)=0

Now we prove the following corollary:

Corollary 4.1.1. For every odd number D with symmetry R the next odd number D+2=Q
has symmetry L, and holds

v(D+2)=v(D)=L(D+2)=RATl, (D+2)=T,(D). (4.16)

12



2. For every odd number Q with symmetry L the previous odd number Q-2=D has
symmetry R, and holds

v(Q-2)=v(Q)=R(Q-2)=LAIl,(Q-2)=I1,(Q). (4.17)
Poof. This corollary is an immediate consequence of theorem 4.1:
D+2=(3-2"+2%" I, —1)+2=3-2" + 2% .T1, +1=3-2" + 2" .T1, +1=Q,
Q-2=(3-2"+2"* 11, +1)-2=3-2"+2"" .11, ~1=3-2" +2%* .11, -1=D.
Theorem 2.1 makes a partition to the set of natural numbers contained of intervals of

the form [2”1 +1,2"2 —1],v e N". From corollary 4.1 we have that the L/R symmetry

makes a partition of the odd numbers of these intervals in 2", v >1 pairs. We prove the
following corollary:

Corollary 4.2. There are four numbers in the interval

Q(v)=[2"+1,2"2 -1 =[2"+1,3-2" -1|U[3-2" +1,2"* ~1]

veN

with symmetry L/R=v-1:

1.

O, (v)=A(v+1)=2"+1

L(@,(v))=L(A (v+1))=L(2" +1)=v-1

2.

®,(v)=3-2"-1

R(®,(v))=R(3-2"-1)=v-1. (4.20)
0

(4.18)

(4.19)

I—IR

3.

®,(v)=3-2"+1

L(®;(v))=L(3-2"+1)=v-1. (4.21)
I, =0

4

D, (v)=3-2""-1

R(0,(v))=R(3:2% 1) =v-1 422

Proof. Corollary 4.2 is an immediate consequence of equations (4.11), (4.12). o

13



Using the last parts of equations (4.1), (4.4) Newton’s binomial theorem we can
calculate the symmetry of the powers of the odd numbers.

Next, we list two examples.
Example 4.2. The powers of 3=2+1 with even exponent have symmetry L. For the powers
of the form 3 the following equation holds

L(37)=s,

SeN

For the rest of the powers of 3 with even exponent the following equation holds
L(3"")=5+1 |

S,ITeN,IT#1TII=odd

The powers of 3 with odd exponent have constant symmetry R=1.

Example 4.3. The powers of 61=2%-15+1 L =1 have symmetry L. For powers of 61 with
exponent being a power of 2 the following equation holds

L(61")=5s

SeN

For the rest of the powers of 61 with even exponent the following equation holds

L(617")=5+1
S,ITeN,IT#1IT=o0dd
The odd powers of 61 have constant symmetry L=1.

Now, we prove the following corollary:

Corollary 4.3. For the symmetric prime numbers A and B with symmetry L or R we have
the following:

1. L(A)<L(B)=>L(AB)=L(A).

2. L(A)<R(B)=>R(AB)=L(A)

3. R(A)<L(B)=>R(AB)=R(A).

4. R(A)<R(B)=>L(AB)=R(A).

5. Symmetry(A)= Symmetry(B)=> Symmetry(AB)> Symmetry(A)= Symmetry(B).

6. The powers of odd numbers 77 with even exponent, TT1*,T1 = odd, | € N have symmetry
L.

Proof. The corollary is derived from the last parts of equations (4.1) and (4.4),
Q=2""K+1
K =odd

(4.23)

14



D=2"".K-1

K = odd 429
and equation
A :AS(V+1):2”1+1,V€N (4.25)

for asymmetric numbers As. o

We give two examples.
Example 4.4. L(641)=6<L(114689)=13 =>L(641x114689)=6.
Example 4.5. R(607)= 4<R(16633)=6 =>L(607x16633)=4.

From corollary 4.4 we can determine the L/R symmetry of at least of one composite
odd number whose factors are unknown. Next, we list two examples.

Example 4.6. From equation (2.12), for the number C1133 which is composite factor of
F, with 1133 digits, we get v(C1133)=23761. Then, from equations (4.11), (4.12) we

get L(C1133)=13. The factors of Fermat numbers have symmetry L, so from part 1 of
corollary 4.3 we have that at least one of the factors of C1133 has symmetry L=13.

Example 4.7. For RSA-232 =

100988139787192354690956489430946858281823382195557395514112051620583102
133852854537436610975715436366491338008491706516992170152473329438927028
023438096090980497644054071120196541074755382494867277137407501157718230

5398340606162079, from equation (2.12) we get that v(RSA— 232) =766. Then, from

equations (4.11), (4.12) we have R(RSA-232)=4. The only acceptable combination which
is compatible with corollary 4.3 is the following: The one factor of the RSA-232 has
symmetry L and the other has symmetry R, where L=R <4 or L=4AR>4 or
L>4AR=4.

Equations (4.23) and (4.24) provide the simplest way for the determination of the
symmetry of a symmetric number. We give one example.

Example 4.8. For number 18303 we have
18303-1=2'x9151
18303+1=2"x143
Therefore, is R(18303)=7-1=6.
We now prove the following corollary:

Corollary 4.4. 1. Every composite asymmetric number has at least two factors the
symmetries of which have equal values.

2. Every composite Fermat number has at least two prime numbers factors Q, # Q, with
L(Q)=L(Q.)-

Proof. 1. Part 1 of corollary comes from the 1 and 5 of the corollary 4.3.
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2. Part 2 of corollary comes from the 1 and 5 of the corollary 4.3, and additionally taking
into account that Fermat numbers are asymmetric. o

5 One essential corollary for the asymmetric numbers

In this chapter we prove one essential corollary for the asymmetric numbers:
Corollary 5.1. For every composite asymmetric number

A=A (v)=2"+LveN (5.1)
one of the following holds:

1. There is a natural number L and odd numbers K, K,, K, so that

A (v)=2"+1=(2"" K, +1) (2" K, +1) (5.2)
27 =2 KK, +K +K, (5.3)
K, +K, =2""K, (54)
27 = KK, +K, (5.5)
K, = 2" Ky =27 K2 + K, -2 2 (5.6)
K, =25 K, +4/2% K2+ K, 272, (5.7)

2. There is a natural number R and odd numbers K, K,, K, so that

A (v)=2"+1=(2" K, -1)(2"*-K, -1) (5.8)
2RI R KK, — K, —K, (5.9)
K, +K, =2%".K, (5.10)
2R = KK, - K, (5.11)
K, =28 Ky =22 K2 — K, —2" 22 (5.12)
K, = 28 - Ky 4422 K2 — K —2" 22, (5.13)

Proof. From equation (4.19) and corollary 4.4 we have that every asymmetric number As
can be written in the form A (v)=2"+1=QQ,,L(Q,)=L(Q,) =L or in the form
A (v)=2"+1=D,D,,R(D,)=R(D,)=R. In the first case part 1 of the corollary holds

and for the second case part 2 holds. We prove part 1 of the corollary. The proof of the
part 2 is similar.
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Incase A, (v)=2"+1=QQ,,L(Q,)=L(Q,)=L, from the last part of equation (4.1)
we have

A (v)=2"+1=(2"" K, +1)(24"- K, +1)

(5.14)
v,LLK, K, eN,v> 2(L+1), K,, K, =odd
and after some calculations we have
27 =2 KK, +K +K,. (5.15)

The sum K, +K, is an even number so there is a natural number x and an odd number
K, so that
K, +K,=2"-K,. (5.16)

For x = L+1 the one side of the equation (5.15) is an even number and the other is an
odd number, so we have that x =L +1, and the equations (5.16), (5.15) take the form

K, +K,=2""K,
2722 = KK, +K,.
Solving the system of equations (5.4), (5.5) we obtain equations (5.6) and (5.7).

It is easy to prove that for the odd numbers K, and K, it holds that L(K,)=R(K,) or
R(Kl) = L(KZ) ; in any other case, by simplifying using a proper power of 2 the one part
of equations (5.3), (5.9) will be even and the other odd. o

Next, we have two examples.

Example 5.1. For A (36) we have

A, (36)=2% +1=(2?) +1=17x241x 433x 38737 = 1774001x 38737
L(1774001) = L(38737) =3
1774001= 2" x110875 +1

38737 =2*x2421+1
Therefore isv =36, L =3, K, =110875, K, = 2421, and from corollary 5.1 we obtain

110875+ 2421 =2* x 7081
K, =7081 .
2% =110875x% 2421+ 7081
From equalities
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A, (36) =17 x 241x 433x 38737
= (17x 241x 433) x 38737

— (17 x 433) x (241x 38737)

— (17 x 241) x (433x 38737)

= (17x38737) x (241x 433)
—17x (241x 433x 38737)

— (241x17) x (433x 38737)

— 433x (17 x 241x 38737)

seven cases are derived by applying corollary 5.1 for A, (36).

Example 5.2.
A1) =2" +1=3x683 = (1x2' +1)(171x 2* ~1) = (1x 2* ~1)(171x2° - 1),
K,=1K,=17,R=1K, =43,
2" =1x171-43
Equivalently, from equations (5.6), (5.7) and (5.12), (5.13) we get
22t K24 K, —2""2=N?

; (5.17)
NeN ,N=odd

22L . K32 _ K3 _2v—2L—2 — N2
? . (5.18)
NeN,N=odd

The odd number K, can be written in the form of K, =2%-K, +1,x,,K, e N,K, =odd or
in the form of K, =2%-K, -1,x,,K, e N,K, =odd . For known v and L we can determine
aterm K;, j €N, j >3 of the sequence

K, =2% K. +1
%, K., eN,K, , =odd (5.19)
1=3,4,5,...

and in turn we can determine K, of equations (5.17), (5.18).

For Fermat numbers F; = 27 +1,S e Nthe part 1 of corollary 5.1 holds, while v =2°
and Le{S +1,S+2,S+3,...}. Therefore, the factorization of Fermat numbers can be

achieved by determining the terms of the sequence of odd numbers K.,i=3,4,5,.... From

Corollary 4.3 it is derived that for the Fermat numbers with more than two factors there
exist more than one sets of three K,,K,,K,.

For K;,K, #1is K +K, <K K, and with equation (5.4) we obtain

18



241K, < KKK, . (5.20)
From equation (5.3) we get KK, <2"*% and with inequality (5.20) we obtain
2L+l i K3 < K1K2 < 2V*2L*2
2L+l X K < 2V—2L—2

3
and finally we obtain
K, <272, (5.21)
From inequality (5.21) it is derived that
v>3L+3. (5.22)
From inequality (5.22), for F, = 2" +1 we get
16-1>3L+3
Led,={56,7,.}

which is impossible. Similarly it can be proven that F,, F,,F,,F, cannot be composite
numbers. Inequality (5.22) holds only for Fermat numbers F, with S >5.

6 A sequence of prime numbers
The following corollary provides a sequence of prime numbers:
Corollary 6.1 (Conjecture) For every asymmetric number of the form

®(2,5)=2",5eN (6.1)
exists an interval around this number, whose length is of order

e=25 (6.2)
and this interval does not contain any prime numbers.

Because of the accumulation of small prime numbers close to 0 the part 1 of the corollary
holds for these values of S which satisfy S >5.

In equation (6.2) we know the length (6.2). This allows us to determine [2-6] prime
numbers by using the equations

P=27 31-2x
_n25 _
P=2 +1+2x' (6.3)
e=2°"1eR
S,xeN,S>5
From equation (6.3) for S=5, 6, 7, 8, 9 we get the first 10 prime numbers:
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S=5

P=2%_1-2.2=2%41-2.3=4294 967291
P=2%_1+2.8=2%4+1+2.7=4294 967311

£=2-8—(-2-2)=20

S=6

P=2%_-1-2.29=2%4+1-2.30=18 446744 073709 551557
P=2%_1+2.7=2%+1+2-6=18 446744 073709 551629
£=2-T—(-2-29)=72

S=7

P=2%_1-2.79=2"®_1-2.79=2"%41-2.80

=340 282366 920938 463463 374607 431768 211297
P=2"_-1+2.26=2"+1+2.25

=340 282366 920938 463463 374607 431768 211507

£=2-26—(-2-79)=210

S=8

P=2%_1-2.217=2%41-2.218

=115792 089237 316195 423570 985008 687907

853269 984665 640564 039457 584007 913129 639501
P=2%_1+2.149=2%°1+1+2.148

=115792 089237 316195 423570 985008 687907

853269 984665 640564 039457 584007 913129 640233

£=2-149—-(-2-217) =732

S=9

P=2"%_1-2.284=2°"24+1-2.285

=13407 807929 942597 099574 024998 205846 127479 365820 592393 377723
561443 721764 030073 546976 801874 298166 903427 690031 858186 486050
853753 882811 946569 946433 649006 083527
P=2"%_1+2.38=2"%41+2.37

=13407 807929 942597 099574 024998 205846 127479 365820 592393 377723
561443 721764 030073 546976 801874 298166 903427 690031 858186 486050
853753 882811 946569 946433 649006 084171

& =2.38—(~2.285) = 646

For S — 4o we obtain large prime numbers.
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An initial statistical investigation showed that for S=3I,1eN" and S=31+2,1eN"
the range ¢ tends to 2°, taking larger values. For S=3l+11eN",| >3 the range ¢ tends

to 2°, taking smaller values. A further investigation will allow us to determine with
greater precision the primer number found in the limits of the intervals of corollary 6.1.

7 One essential corollary for the Mersenn numbers
From equation (2.11) we get for the Mersenn numbers
M =2°-1
P _ (7.1)
peN, p=prime

that have symmetry R,
R=R(M,)=R(2°-1)=p-3. (7.2)

Therefore, from corollary 4.3 it is derived that for the composite Mersenn numbers it
holds

M, =2° —1=(2%"-K, -1)(2"" K, +1) =(2°?-K, -1)(2""- K, +1)

L, K, K, eN,K,,K =odd (7.3)
R<L< p<L+3

or

M, =27 -1=(2 K, -1)(27- K, +1) (7.4)
X, K, K, eN,K,,K, =odd

Equation (7.3) is impossible: By conducting the calculations an equation is derived in
which the one part is even number and the other is odd, due to inequality p<L+3.
Therefore, for the composite Mersenn numbers equation (7.4) holds, from which the
following corollary is derived:

Corollary 7.1. For every composite Mersenn number
M, =2"-1
peN, p=prime

there is a natural number x and odd numbers K, K,,K,, K,K, e N, K, €Z so that

20 = 21 K K, + K, — K, (7.5)
272 =K K, +K,,K, eZ (7.6)
K,—K,=2""K,,K, eZ (7.7)
K, = 2% Ky +22 K2 - K, +27 22 (7.8)
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K, = 2" K, =22 - KZ - K, +27 22 (7.9)
2% KZ-K,+2"7?=N?NeN,N=odd . (7.10)
Proof. The proof is similar to the one of corollary 5.1. o

Next, we have one example.

Example 7.1.

M,, =2% —1=1103x 486737

1103=2*-69-1

486737=2"-30421+1

x=3,K, =69,K, =30421

~ 69-30421
=

K, = 1897

262 _ 2% _ 69.30421 + (1897
2°.(1897)" —(~1897) + 2% =15245
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