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Abstract 

“Every natural number, with the exception of 0 and 1, can be written in a unique way as a 

linear combination of consecutive powers of 2, with the coefficients of the linear 

combination being -1 or +1”. According to this theorem we define the L/R symmetry of 

the natural numbers. The L/R symmetry gives the factors which determine the internal 

structure of natural numbers. As a consequence of this structure, an algorithm for the 

factorization of Fermat numbers is derived. Also, we determine a sequence of prime 

numbers, and we prove an essential corollary for the composite Mersenn numbers. 
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1    Introduction 

In this article, we start by proving the theorem: “Every natural number, with the exception 

of 0 and 1, can be written in a unique way as a linear combination of consecutive powers 

of 2, with the coefficients of the linear combination being -1 or +1”. As a consequence of 

this theorem we have two fundamental symmetries of natural numbers: the symmetry L 

and the symmetry R. There exists a transformation which confesses the symmetries L and 

R. In fact, we have a single L/R symmetry instead of having two different symmetries. 

    The L/R symmetry categorizes the natural numbers and reveals to us the factors which 

determine their internal structure. Every natural number belongs to one of the following 

categories: it has symmetry L or it has symmetry R or it is not symmetric. In the 

categorization of natural numbers according to L/R symmetry there exist three numbers 

each of them is a distinct category contained of exactly one number. These numbers are 0, 

1 and 3.  

    We prove an algorithm for the factorization of the asymmetric numbers. Fermat numbers 

are asymmetric, and therefore we can apply the algorithm for their factorization. Also, we 

prove that Fermat numbers 
0 1 2 3 4, , , ,F F F F F  cannot be composite numbers. 
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    In the region of numbers in the form of 22 ,
S

S  we determine intervals in the form 

of [p, P] where p, P are prime numbers, in which the magnitude of the difference P-p is 

known. In that way we determine a sequence of pairs of prime numbers (p, P). 

    In the last chapter we prove a corollary for the composite Mersenn numbers. 

 

2     Natural numbers as linear combination of consecutive powers of 2  

We prove the following theorem: 

Theorem 2.1.Every natural number, with the exception of 0, and 1, can be uniquely 

written as a linear combination of consecutive powers of 2, with the coefficients of the 

linear combination being -1 or +1.  

Proof. Let the odd number  as given from equation 

 
1

1 1 2 1 0 1

0

, 2 2 2 2 ........ 2 2 2 2 2

1, 0,1,2,........, 1

i

i i

i

i i


       

 




   



           

   





.       (2.1) 

From equation (2.1) for 0  we obtain 

1 02 2 2 1 3      . 

We now examine the case where * 1,2,3,...    . The lowest value that the odd 

number  of equation (2.1) can obtain is 

  1 1 1 1

min 2 2 2 2 ........2 1               

  1

min 2 1     .                                                                                        (2.2) 

The largest value that the odd number  of equation (2.1) can obtain is 

  1 1 1

max 2 2 2 ........2 1            

  2

max 2 1     .                                                                                       (2.3) 

Thus, for the odd numbers  , i    of equation (2.1) the following inequality holds 

 1 2

min max2 1 , 2 1i

          .                                                        (2.4) 

The number   , iN    of odd numbers in the closed interval 1 22 1,2 1       is 

  
   2 1

max min
2 1 2 1

, 1 1
2 2

iN

 

 

    
      

  , 2iN    .                                                                                              (2.5) 
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The integers , 0,1,2,........, 1i i    in equation (2.1) can take only two values,

1 1i i      , thus equation (2.1) gives exactly   2 , iN     odd numbers. 

Therefore, for every *  equation (2.1) gives all odd numbers in the interval
1 22 1,2 1      . 

     We now prove the theorem for the even numbers. Every even number  which is a 

power of 2 can be uniquely written in the form of *2 ,   . We now consider the 

case where the even number  is not a power of 2. In that case, the even number is 

written in the form of 

*2 , odd, 1,l l      .                                                                           (2.6) 

We now prove that the even number  can be uniquely written in the form of equation 

(2.6). If we assume that the even number can be written in the form of  

' '

' '

'

' *

'

2 2

( )

,

,

l l

l l l l

l l

odd

    

 

  



  

                                                                                                                       (2.7) 

the we obtain 

'

' '

2 2 '

2

l l

l l

  

  

 

which is impossible, since the first part of this equation is even and the second odd. Thus, 

it is 'l l  and we take that '   from equation (2.7). Therefore, every even number
that is not a power of 2 can be uniquely written in the form of equation (2.6). The odd 

number  of equation (2.6) can be uniquely written in the form of equation (2.1), thus 

from equation (2.6) it is derived that every even number   that is not a power of 2 can be 

uniquely written in the form of equation 

 
1

1

0

*

, , 2 2 2 2

,

1, 0,1,2,........, 1

l i

i i

i

i

l

l

i


     



 






 
    

 

 

   



                                                                         (2.8) 

and equivalently 

 
1

1

0

*

, , 2 2 2

,

1, 0,1,2,........, 1

l l l i

i i

i

i

l

l

i


     



 


   



   

 

   



.                                                           (2.9) 

      For1we take 
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01 2  

1 01 2 2   

thus, it can be written in two ways in the form of equation (2.1). Both the odds of 

equation (2.1) and the evens of the equation (2.8) are positive. Thus, 0 cannot be written 

either in the form of equation (2.1) or in the form of equation (2.8).  

     In order to write an odd number 1,3   in the form of equation (2.1) we initially 

define the *   from inequality (2.4). Then, we calculate the sum  

12 2   . 

If it holds that 12 2     we add the 12  , whereas if it holds that 12 2     then 

we subtract it. By repeating the process exactly   times we write the odd number  in 

the form of equation (2.1). The number of   steps needed in order to write the odd 

number   in the form of equation (2.1) is extremely low compared to the magnitude of 

the odd number  , as derived from inequality (2.4). 

Example 2.1. For the odd number 23   we obtain from inequality (2.4) 

1 22 1 23 2 1       

1 22 2 24 2      

12 12 2     

thus 3  . Then, we have 

1 4 32 2 2 2 24 23       (thus 22  is subtracted) 

4 3 22 2 2 20 23    (thus 12 is added) 

4 3 2 12 2 2 2 22 23     (thus 02 1  is added) 

4 3 2 12 2 2 2 1 23     . 

     Fermat numbers sF  can be written directly in the form of equation (2.1), since they are 

of the form min , 

 2 2 2 1 2 2 2 3 1

min2 1 2 1 2 2 2 2 ........ 2 1
s s s s ss

sF

s

            



.                (2.10) 

Mersenne numbers 
pM  can be written directly in the form of equation (2.1), since they 

are of the form 
max , 

  1 2 3 1

max2 1 2 2 2 2 ........ 2 1p p p p

pM p

p prime

           


.                          (2.11) 

     In order to write an even number   that is not a power of 2 in the form of equation 

(2.1), initially it is consecutively divided by 2 and it takes of the form of equation (2.6). 

Then, we write the odd number   in the form of equation (2.1). 

Example 2.2. By consecutively dividing the even number 368   by 2 we obtain 
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4368 2 23    . 

Then, we write the odd number 23   in the form of equation (2.1), 

4 3 2 123 2 2 2 2 1     , 

and we get 

 4 4 3 2 1368 2 2 2 2 2 1      

8 7 6 5 4368 2 2 2 2 2     . 

This equation gives the unique way in which the even number 368   can be written in 

the form of equation (2.9).  

From inequality (2.4) we obtain 

1 22 1 2 1       

1 1 2 22 2 1 2 1 2            

1 22 2    

   1 ln 2 ln 2 ln 2       

from which we get 

ln ln
1 1

ln 2 ln 2


 
     

and finally 

ln
1

ln 2


 
   

 
                                                                                                                          (2.12) 

Where
ln

ln 2

 
 
 

the integer part of
ln

ln 2


 . 

     We now give the following definition: 

Definition 2.1.We define as the conjugate of the odd 

 
1

1

0

*

, 2 2 2

1, 0,1,2,........, 1

i

i i

i

i i


   

 








    

   





                                                                                    (2.13) 

the odd * , 

 
1

* * 1

0

*

, 2 2 2

1, 0,1,2,........, 1

j

j j

j

i j


   

 








    

   





                                                                               (2.14) 
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for which it holds  

0,1,2,........, 1k k k       .                                                                         (2.15) 

     For conjugate odds, the following corollary holds: 

Corollary 2.1.For the conjugate odds  , i    and  * * , i    the following 

hold: 

1.  
*

*  .                                                                                                      (2.16) 

2. 
* 13 2     .                                                                                            (2.17) 

3.   is divisible by 3  if and only if * is divisible by 3 . 

4. Two conjugate odd numbers cannot have common factor greater than 3. 

Proof. 1. The 1 of the corollary is an immediate consequence of definition 4.1.  

2. From equations (2.13), (2.14) and (2.15) we get 

   * 1 12 2 2 2          

and equivalently 

* 13 2    . 

3. If the odd    is divisible by 3  then it is written in the form 3 ,x x odd   and from 

equation (4.17) we get * 13 3 2x      and equivalently  * 13 2 x    . Similarly we 

can prove the inverse 

4. If *,xy xz   , x, y, z  odd numbers, from equation (2.17) we have 

  13 2x y z      and consequently is 3x  .  

From corollary 2.1 we have that 3 the only odd number which is equal to its conjugate: 
* 0 13 3 2 3 3    . 

 

3 The L/R symmetry 

We now give the following definition: 

Definition 3.1. Define as “symmetry” every specific algorithm which determines the 

signs of 1, 0,1,2,........, 1i i      in equation (2.1): 

 
1

1 1 2 1 0 1

0

, 2 2 2 2 ........ 2 2 2 2 2

1, 0,1,2,........, 1

i

i i

i

i i


       

 




   



           

   





. 

In this article we study the symmetries L and R, which are determined by the following 

definition: 
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Definition 3.2.1. The odd number Π in the equation (2.1) has symmetry L when there 

exists an index L so that 


1 2 1 0

1

..... 1

1,2,3,..., 1

L

L L

L



   



 

 

     

 

.                                                                          (3.1) 

2. The odd number Π in the equation (2.1) has symmetry R when there exists an index R 

so that 


1 2 1 0

1

..... 1

1,2,3,..., 1

R

R R

R



   



 

 

     

 

.                                                                         (3.2) 

3. We will call asymmetric the odd numbers which have neither symmetry L nor 

symmetry R. 

4. For each even number α, 

*2 , odd, 1,l l       

we define as the symmetry of  α the symmetry of the odd Π. 

    We will note the symmetry of an odd Π by L=L(Π)=LΠ, or by R=R(Π)=RΠ. At first 

the L/R symmetry categorizes the odd numbers, and then the even numbers by 4 of 

definition 3.2. The odd number Π=1 cannot uniquely be written in the form of equation 

(2.1). So 1 and the powers of 2 are asymmetric numbers. 

    The odd numbers of the form 

  2 1,As As       

have 1 0,1,2,..., 1i i       in the equation (2.1), and so these are the only 

asymmetric odd numbers. From its definition we have that the Fermat numbers are 

asymmetric numbers. However, although 3 is a Fermat number it is asymmetric because 

of a different reason: It is the unique natural number which comes from equation (2.1) for 

ν=0, 

1 0 13 2 2 2 1,( 0)     .  

In the categorization of natural numbers according to L/R symmetry, 3 is a distinct 

category contained just one element, number 3. There are two other natural number with 

this property, 0 and 1. 

    The even numbers of the form 

*

2l As

l

  


 



8 
 

where As  is asymmetric number, as well as the powers of 2 are the asymmetric even 

numbers. The rest even numbers are symmetric (so the symmetric even numbers are more 

than the asymmetric ones). 

    The symmetry of an odd number can be found by writing it in the form of the equation 

(2.1). According to 4 of corollary 3.1, the factors, prime numbers or composites of 

Fermat numbers have symmetry L. Next, we have two examples: 

Example 3.1. The prime number Q= 45592577 is a factor of 1024

10 2 1F   . From the 

equation (2.12) we have ν+1=25, and then (see example 2.1) from the equation 2.1 we 

have 

25 24 23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1

Q              

           
. 

So the factor 45592577 of 10F has symmetry L 45592577=11. 

Example 3.2. The prime number 

Q=568630647535356955169033410940867804839360742060818433 is a factor of
4096

12 2 1F   . From the equation (2.12) we have ν+1=178, and then from equation 2.1 we 

have 

178 177 176 175 174 173 172 171 170 169 168 167 166

165 164 163 162 161 160 159 158 157 156 155 154 153 152

151 150 149 148 147 146 145 144 143 142 141 140 13

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Q             

             

             9 138

137 136 135 134 133 132 131 130 129 128 127 126 125 124

123 122 121 120 119 118 117 116 115 114 113 112 111 110

109 108 107 106 105 104 103 102 101 100 99

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2



             

             

           98 97 96 95

94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79

78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

62 61 60 59 58 57 56 55 54 53 52 51 50 49

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

   

               

               

              48 47

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

14 13 12 11 10 9 8 7 6 5 4 3 2 1

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

 

               

               

              

 

So the factor 568630647535356955169033410940867804839360742060818433 of 12F

has symmetry L 568630647535356955169033410940867804839360742060818433=14. 

    From Lucas theorem for the Fermat numbers [1] the following corollary is derived: 

Corollary 3.1. 1. The prime numbers factors of Fermat numbers have symmetry L. 

2. For the symmetry L of the prime numbers factors of a Fermat number 

22 1,
S

SF S                                                                                                                      (3.3)  
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holds 

 1, 2, 3,...SL S S S     .                                                                           (3.4) 

We have the following example. 

Example 3.5. For the known factors, prime numbers and composites of
 

4096

12 2 1F    we 

have: 

S=12 

L114689=13 

L26017793=15 

L63766529=15 

L190274191361=13 

L1256132134125569=13 

L568630647535356955169033410940867804839360742060818433=14 

L(C1133)=13 

where C1133 is a composite, non-factorized factor of 12F  with 1133 digits.  From the 

equations (3.3) we have 

23 16

24 16

36 14

15 14

1

2

3

4

49 14

5

6

114689 3 2 2 1 1

205 1

96949

26017793 3 2 2 13 1

63766529 3 2 2

190274191361 3 2 2

12561321341

7+1

3 2 2 26410994025569

5686306475353569551690334109408678048393

27

74

1

60

Q

Q

Q

Q

Q

Q



     



 



    

   

 

 



 

 



177 15 1847894375412404393111182934722332

206081843

463887459

3

94813 13 2 +2   

 

3761 141133 3 2 2 1C      

where Π is a negative number with 1128 digits. 

 

4    The basic study of the L/R symmetry 

In this chapter we prove the basic theorems for the L/R symmetry. 

Theorem 4.1.1. Every odd number Q with symmetry L can be written in the form 

 

1
1 1 1

1

1 1 1

3 2 2 2 1 3 2 2 1

ln
2 3 2 1 2 1, 1

ln 2

L
L L i L

i

i

L L L

Q

Q
K


  









 
    





   

          

 
           

 


.                                   (4.1) 
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The odd number * , 

1

1

2
L

L i

i

i





 

 





                                                                                                                   (4.2) 

has the same sign as 1 1    , and satisfies the inequality 

1 12 1 2 1L L         .                                                                                  (4.3) 

2. Every odd number D with symmetry R can be written in the form 

 

1
1 1 1

1

1 1 1

3 2 2 2 1 3 2 2 1

ln
2 3 2 1 2 1, 1

ln 2

R
R R i R

i

i

R R R

D

D
K


  









 
    





   

          

 
           

 


.                                   (4.4) 

The odd number * , 

1

1

2
R

R i

i

i





 

 





                                                                                                                   (4.5) 

has the same sign as 1 1     , and satisfies the inequality 

1 12 1 2 1R R        .                                                                                  (4.6) 

Proof. We prove the part 1 of the corollary. The proof of the part 2 is similar. If Q has 

symmetry L, from equation (2.1) we have  

 

 

1
1 1 2 1

1

1
1 2 1

1

1

1

1

1

2 2 2 2 2 2 ..... 2 1

3 2 2 2 2 2 ..... 2 1

3 2 2 2 2 1

3 2 2 1

L
i L L L

i

i

L
i L L L

i

i

L
i L L

i

i

L
i

i

i

Q

Q

Q

Q

 
























  

 


 

 



 



 

         

         

      

    









 

and taking into account that the highest power of 2 in the sum 
1

1

2
L

i

i

i 




 

  is 12L  we take 

the equation (4.1). From equation (4.1) we have for the odd number Π,  

1

1

2
L

L i

i

i





 

 





    
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which is the sum of successive powers of 2 with highest power 
1

1 2 L


 

  .  So the odd 

number Π has the same sign as 1 1    . Moreover, the minimum value of Π is 

1
1 1

min

1

2 2 1
L

L i L

i


 

 
    



       

and the maximum  

1
1 1

max

1

2 2 1
L

L i L

i


 

 
    



    .  

The following theorem concerns the symmetry of conjugate odd numbers.  

Theorem 4.2.1. For the odd number Q, with symmetry L, holds 

1 * 13 2 2 1 3 2 2 1L RQ Q

R L

          


.                                                (4.7) 

2. For the odd number D, with symmetry R, holds 

1 * 13 2 2 1 3 2 2 1R LD D

L R

          


.                                               (4.8) 

Proof. Theorem is an immediate consequence of definitions 3.2, 2.1 and transformation 

(2.17).  

From equations (4.7) and (4.8) we have 

 
2

* 1 22 1 9 2LQ Q                                                                                                     (4.9) 

 
2

* 1 22 1 9 2RD D       .                                                                          (4.10) 

These equations are independent from the transformation of the conjugation, which is the 

transformation (2.17). 

Now, we prove the following theorem: 

Theorem 4.3.1. For the odd numbers Q with symmetry L the equation 

1

3 2 1

2
L L

Q 



  
                                                                                                             (4.11) 

gives the value of L, and the equation 

1

3 2 1

2
R R

D 



  
                                                                                                            (4.12) 

gives R=0, and 

1

2

R
L L

 
  .                                                                                                     (4.13) 

2. For the odd numbers D with symmetry R the equation (4.12) gives the value of R, the 

equation (4.11) gives L=0, and 
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1

2

L
R R

 
  .                                                                                                     (4.14) 

Proof.  We prove the part 1 of the theorem. The proof of part 2 is similar. Trying to 

calculate the value of R, in case of an odd number Q with symmetry L in the form of 

equation (4.4), we get 13 2 2 1R

RQ       . Combining this equation with the equation 

(4.1) we have 

1 1

1 1

3 2 2 1 3 2 2 1

2 2 2

1 2 2

L R

L R

R L

R L

R L

R L

Q   

 

         

   

   

 

and finally 

     1 2 2 1 2 2R L R L R L

R L R L

           . 

These equations hold if and only if R=0 or L=0. Number Q has symmetry L, so R=0. 

Moreover we have 

1 2L R

R

    

and because R=0 we take the equation (4.13).  

As an example, we calculate again the L and Π for the number Q of example 3.2 by using 

the equations (4.11) and (4.12): 

Example 4.1.  For the odd number 

A=568630647535356955169033410940867804839360742060818433 we have ν=177 

from equation (2.5). Then, the equation (4.12) gives R=0. So number A has symmetry L. 

Then we observe that the equation (4.11) is verified for L=1, L=2, L=3, ..., L=14. For the 

maximum value of L=14 the equation (4.11) gives Π=184789 437541 240439 311118 

293472 233246 388745 994813. 

From theorem 4.2 we conclude that symmetries L and R commute from transformation 

(2.17). So we have L/R symmetry. Theorem 4.3 gives one of the pairs

   1 0 0 1L R L R        for every odd number, independently of its symmetry. 

So, it gives a pair for the Fermat numbers: 

 

 

22 1,

2 1

0

S

S

S

S

S

F S

L F

R F

  

 



.                                                                                             (4.15) 

    Now we prove the following corollary: 

Corollary 4.1.1. For every odd number D with symmetry R the next odd number D+2=Q 

has symmetry L, and holds 

         2 2 2L RD D L D R D D         .                              (4.16) 
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2. For every odd number Q with symmetry L the previous odd number Q-2=D has 

symmetry R, and holds 

         2 2 2R LQ Q R Q L Q Q         .                               (4.17) 

Poof. This corollary is an immediate consequence of theorem 4.1: 

 1 1 12 3 2 2 1 2 3 2 2 1 3 2 2 1R R L

R R LD Q                      , 

 1 1 12 3 2 2 1 2 3 2 2 1 3 2 2 1L L R

L L RQ D                      . 

    Theorem 2.1 makes a partition to the set of natural numbers contained of intervals of 

the form   1 2 *2 1,2 1 ,        . From corollary 4.1 we have that the L/R symmetry 

makes a partition of the odd numbers of these intervals in 12 , 1    pairs. We prove the 

following corollary: 

Corollary 4.2. There are four numbers in the interval 

  1 2 1 2

*

2 1,2 1 2 1,3 2 1 3 2 1,2 1     



                       



                  (4.18) 

with symmetry L/R=ν-1: 

1.  

   

       

1

1

1

1

1 2 1

1 2 1 1

S

S

A

L L A L





 

  





    

      
.                                                           (4.19) 

2. 

 

    
2

2

3 2 1

3 2 1 1

0R

R R







 

   

     

 

.                                                                                     (4.20) 

3. 

 

    
3

3

3 2 1

3 2 1 1

0L

L L







 

   

     

 

.                                                                                      (4.21) 

4. 

 

    

2

4

2

4

3 2 1

3 2 1 1R R







 





   

     
.                                                                    (4.22) 

Proof.  Corollary 4.2 is an immediate consequence of equations (4.11), (4.12).  
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    Using the last parts of equations (4.1), (4.4) Newton’s binomial theorem we can 

calculate the symmetry of the powers of the odd numbers.  

    Next, we list two examples. 

Example 4.2. The powers of 3=2+1 with even exponent have symmetry L. For the powers 

of the form 
23

S

the following equation holds 

 23
S

L S

S





. 

For the rest of the powers of 3 with even exponent the following equation holds 

 23 1

, , 1,

S

L S

S odd

  

    

 . 

The powers of 3 with odd exponent have constant symmetry R=1. 

Example 4.3. The powers of 261 2 15 1, 1L     have symmetry L. For powers of 61 with 

exponent being a power of 2 the following equation holds 

 261
S

L S

S





. 

 For the rest of the powers of 61 with even exponent the following equation holds 

 261 1

, , 1,

S

L S

S odd

  

    

. 

The odd powers of 61 have constant symmetry L=1. 

    Now, we prove the following corollary: 

Corollary 4.3. For the symmetric prime numbers A and B with symmetry L or R we have 

the following: 

1. L(A)<L(B)=>L(AB)=L(A). 

2. L(A)<R(B)=>R(AB)=L(A) 

3. R(A)<L(B)=>R(AB)=R(A). 

4. R(A)<R(B)=>L(AB)=R(A). 

5. Symmetry(A)= Symmetry(B)=> Symmetry(AB)> Symmetry(A)= Symmetry(B). 

6. The powers of odd numbers Π with even exponent, 
2 *, odd,l l     have symmetry 

L.  

Proof.  The corollary is derived from the last parts of equations (4.1) and (4.4), 

12 1LQ K

K odd

  


                                                                                                   (4.23) 
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12 1RD K

K odd

  


                                                                                                   (4.24) 

and equation 

  11 2 1,S SA A                                                                                 (4.25) 

for asymmetric numbers As.  

    We give two examples. 

Example 4.4. L(641)=6<L(114689)=13 =>L(641×114689)=6. 

Example 4.5. R(607)= 4<R(16633)=6 =>L(607×16633)=4. 

    From corollary 4.4 we can determine the L/R symmetry of at least of one composite 

odd number whose factors are unknown. Next, we list two examples. 

Example 4.6. From equation (2.12), for the number C1133 which is composite factor of 

12F  with 1133 digits, we get  1133 3761C  . Then, from equations (4.11), (4.12) we 

get L(C1133)=13. The factors of Fermat numbers have symmetry L, so from part 1 of 

corollary 4.3 we have that at least one of the factors of C1133 has symmetry L=13. 

Example 4.7. For RSA-232 = 

100988139787192354690956489430946858281823382195557395514112051620583102

133852854537436610975715436366491338008491706516992170152473329438927028

023438096090980497644054071120196541074755382494867277137407501157718230

5398340606162079, from equation (2.12)  we get that  232 766RSA   . Then, from 

equations (4.11), (4.12) we have R(RSA-232)=4. The only acceptable combination which 

is compatible with corollary 4.3 is the following: The one factor of the RSA-232 has 

symmetry L and the other has symmetry R, where 4L R   or 4 4L R    or 

4 4L R   . 

    Equations (4.23) and (4.24) provide the simplest way for the determination of the 

symmetry of a symmetric number. We give one example. 

Example 4.8. For number 18303 we have 

1

7

18303 1 2 9151

18303 1 2 143

  

  
. 

Therefore, is  18303 7 1 6R    . 

    We now prove the following corollary: 

Corollary 4.4. 1. Every composite asymmetric number has at least two factors the 

symmetries of which have equal values. 

2. Every composite Fermat number has at least two prime numbers factors 1 2Q Q  with 

   1 2L Q L Q . 

Proof.  1. Part 1 of corollary comes from the 1 and 5 of the corollary 4.3. 
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2. Part 2 of corollary comes from the 1 and 5 of the corollary 4.3, and additionally taking 

into account that Fermat numbers are asymmetric.  

 

5    One essential corollary for the asymmetric numbers 

    In this chapter we prove one essential corollary for the asymmetric numbers: 

Corollary 5.1. For every composite asymmetric number 

  2 1,S SA A                                                                                         (5.1) 

one of the following holds: 

1. There is a natural number L and odd numbers 
1 2 3, ,K K K  so that 

    1 1

1 22 1 2 1 2 1L L

SA K K                                                                 (5.2) 

1 1

1 2 1 22 2L L K K K K                                                                                      (5.3) 

1

1 2 32LK K K                                                                                                   (5.4) 

2 2

1 2 32 L K K K                                                                                                  (5.5) 

2 2 2 2

1 3 3 32 2 2L L LK K K K                                                                         (5.6) 

2 2 2 2

2 3 3 32 2 2L L LK K K K         .                                                               (5.7)                                                                                           

2. There is a natural number R and odd numbers 
1 2 3, ,K K K  so that 

    1 1

1 22 1 2 1 2 1R R

SA K K                                                                 (5.8) 

1 1

1 2 1 22 2R R K K K K                                                                                     (5.9) 

1

1 2 32RK K K                                                                                                (5.10) 

2 2

1 2 32 R K K K                                                                                                (5.11) 

2 2 2 2

1 3 3 32 2 2R R RK K K K                                                                       (5.12) 

2 2 2 2

2 3 3 32 2 2R R RK K K K         .                                                             (5.13) 

Proof.  From equation (4.19) and corollary 4.4 we have that every asymmetric number As 

can be written in the form      1 2 1 22 1 ,SA Q Q L Q L Q L       or in the form

     1 2 1 22 1 ,SA D D R D R D R      . In the first case part 1 of the corollary holds 

and for the second case part 2 holds. We prove part 1 of the corollary. The proof of the 

part 2 is similar. 
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    In case      1 2 1 22 1 ,SA Q Q L Q L Q L      , from the last part of equation (4.1) 

we have 

    
 

1 1

1 2

1 2 1 2

2 1 2 1 2 1

, , , , 2 1 , ,

L L

SA K K

L K K L K K odd



 

       

   
                                                      (5.14) 

and after some calculations we have 

1 1

1 2 1 22 2L L K K K K       .                                                                            (5.15) 

The sum 
1 2K K  is an even number so there is a natural number x  and an odd number 

3K  so that 

1 2 32xK K K   .                                                                                               (5.16) 

For 1x L   the one side of the equation (5.15) is an even number and the other is an 

odd number, so we have that 1x L  , and the equations (5.16), (5.15) take the form 

1

1 2 32LK K K    

2 2

1 2 32 L K K K     . 

Solving the system of equations (5.4), (5.5) we  obtain equations (5.6) and (5.7). 

    It is easy to prove that for the odd numbers 
1K  and 2K  it holds that    1 2L K R K  or 

   1 2R K L K ; in any other case, by simplifying using a proper power of 2 the one part 

of equations (5.3), (5.9) will be even and the other odd.  

    Next, we have two examples. 

Example 5.1. For  36SA  we have 

   
9

36 2 17 241 433 38737 387336 2 1 2 1 7 1 71 7400SA           

   1774001 338737L L   

4

41774001 2 11087

3873

5 1

2421 17 2

  

 
. 

Therefore is
1 236, 3, 110875, 2421L K K     , and from corollary 5.1 we obtain 

4

3

28

110875 2421 2 7081

7081

2 110875 2421 7081

K

  



  

. 

From equalities 
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 36 17 241 433 38737

(17 241 433) 38737

(17 433) (241 38737)

(17 241) (433 38737)

(17 38737) (241 433)

17 (241 433 38737)

(241 17) (433 38737)

433 (17 241 38737)

SA    

   

   

   

   

   

   

   

  

seven cases are derived by applying  corollary 5.1 for  36SA . 

Example 5.2.  

 

  11 1 2

1 2 3

7

(11) 2 1 3 683 (1 2 1)(171 2 1) ,

1, 171, 1, 43,

2 1 171 43

sA

K K R K

             

   

  

2 2
1 2 1 171 2 1

. 

    Equivalently, from equations (5.6), (5.7) and (5.12), (5.13) we get 

2 2 2 2 2

3 3

*

2 2

,

L LK K N

N N odd

     

 
                                                                              (5.17) 

2 2 2 2 2

3 3

*

2 2

,

L LK K N

N N odd

     

 
.                                                                             (5.18) 

The odd number 3K  can be written in the form of 4

3 4 4 4 42 1, , ,
x

K K x K K odd     or 

in the form of 4

3 4 4 4 42 1, , ,
x

K K x K K odd     . For known ν and L we can determine 

a term , , 3jK j j   of the sequence 

1

1

*

1 1 1

2 1

, ,

3,4,5,...

ix

i i

i i i

K K

x K K odd

i





  

  

 



                                                                                  (5.19) 

and in turn we can determine 3K  of equations (5.17), (5.18). 

    For Fermat numbers 
22 1,

S

SF S   the part 1 of corollary 5.1 holds, while 2S   

and  1, 2, 3,...L S S S    . Therefore, the factorization of Fermat numbers can be 

achieved by determining the terms of the sequence of odd numbers , 3,4,5,...iK i  . From 

Corollary 4.3 it is derived that for the Fermat numbers with more than two factors there 

exist more than one sets of three 
1 2 3, ,K K K . 

    For 1 2, 1K K   is 
1 2 1 2K K K K   and with equation (5.4) we obtain 
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1

3 1 22L K K K   .                                                                                                (5.20) 

From equation (5.3) we get 2 2

1 2 2 LK K     and with inequality (5.20) we obtain 

1 2 2

3 1 2

1 2 2

3

2 2

2 2

L L

L L

K K K

K





  

  

  

 
 

and finally we obtain 

3 3

3 2 LK    .                                                                                                      (5.21) 

From inequality (5.21) it is derived that 

3 3L   .                                                                                                         (5.22) 

From inequality (5.22), for 16

4 2 1F    we get 

4

16 1 3 3

5,6,7,...

L

L

  

 
 

which is impossible. Similarly it can be proven that 0 1 2 3, , ,F F F F  cannot be composite 

numbers. Inequality (5.22) holds only for Fermat numbers 
SF  with 5S  . 

 

6    A sequence of prime numbers 

    The following corollary provides a sequence of prime numbers: 

Corollary 6.1 (Conjecture) For every asymmetric number of the form 

  22, 2 ,
S

S S                                                                                              (6.1) 

exists an interval around this number, whose length is of order 

2S                                                                                                                    (6.2) 

and this interval does not contain any prime numbers.  

Because of the accumulation of small prime numbers close to 0 the part 1 of the corollary 

holds for these values of S which satisfy 5S  . 

    In equation (6.2) we know the length (6.2). This allows us to determine [2-6] prime 

numbers by using the equations 

2

2

2 1 2

2 1 2

2 ,

, , 5

S

S

S l

P x

P x

l

S x S

 

 

 

 

 

.                                                                                                 (6.3) 

From equation (6.3) for S=5, 6, 7, 8, 9 we get the first 10 prime numbers: 
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32 32

32 32

5

2 1 2 2 2 1 2 3

2 1 2 8

4294 967291

4294 96732 1 2 7

2 8 ( 2 2) 2

1

0

1

S

P

P





        

        

     

 

6 64

64 64

4

6

18 446744 073709 551557

2 1 2 7 2 1 2 6 18 446744 073709 551629

2 7 (

2 1 2 29 2 1 2 3

2 29)

0

72

P

S

P





        

  

    



 

 

 
 

128 128 12

128 128

8

7

340 282366 920938 463463 374607 431768 211297

2 1 2 26 2 1 2 25

340 282366 920938 463463 374607 431768 

2 1 2 79 2 1 2 79 2 1 2

211507

2 26 ( 2 79) 210

80

S

P

P







         

      



     

 


 

256 256

256 256

8

115792 089237 316195 423570 985008 687907 

853269 984665 640564 039457 

2 1 2 217 2 1 2 218

2 1 2 149 2 1

584007 913129 639501

115792 089237 316195 423570 985008 687907 

85326  

1

8

8

9

2 4

9

P

S

P







       



      

4665 640564 039457 584007 913129 640233

2 149 ( 2 217) 732      

 

512 512

9

2 1 2 284 2 1 2 285

13407 807929 942597 099574 024998 205846 127479 365820 592393 377723

 561443 721764 030073 546976 801874 298166 903427 690031 858186 486050

 853753 882811 946569 946433 64

S

P



       



512 512

9006 083527

2 1 2 38 2 1 2 37

13407 807929 942597 099574 024998 205846 127479 365820 592393 377723

561443 721764 030073 546976 801874 298166 903427 690031 858186 486050 

853753 882811 946569 9464

P        



33 649006 084171

2 38 ( 2 285) 646      

. 

For S    we obtain large prime numbers. 
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    An initial statistical investigation showed that for 
*3 ,S l l   and *3 2,S l l    

the range ε tends to 2S , taking larger values. For *3 1, , 3S l l l     the range ε tends 

to 2S , taking smaller values. A further investigation will allow us to determine with 

greater precision the primer number found in the limits of the intervals of corollary 6.1. 

 

7    One essential corollary for the Mersenn numbers 

    From equation (2.11) we get for the Mersenn numbers 

2 1

,

p

pM

p p prime

 

 
                                                                                                (7.1) 

that have symmetry R, 

   2 1 3p

pR R M R p     .                                                                         (7.2) 

Therefore, from corollary 4.3 it is derived that for the composite Mersenn numbers it 

holds 

     1 1 2 1

1 2 1 2

1 2 1

2 1 2 1 2 1 2 1 2 1

, , , ,

3

p R L p L

pM K K K K

L K K K K odd

R L p L

              

 

   

               (7.3) 

or 

  1 1

1 2

1 2 1 2

2 1 2 1 2 1

, , , ,

p x x

pM K K

x K K K K odd

       

 
.                                                           (7.4) 

Equation (7.3) is impossible: By conducting the calculations an equation is derived in 

which the one part is even number and the other is odd, due to inequality p<L+3. 

Therefore, for the composite Mersenn numbers equation (7.4) holds, from which the 

following corollary is derived: 

Corollary 7.1. For every composite Mersenn number  

2 1

,

p

pM

p p prime

 

 
 

there is a natural number x and odd numbers 
1 2 3, ,K K K , 

1 2 3, ,K K K   so that 

1 1

1 2 1 22 2p x x K K K K                                                                                     (7.5) 

2 2

1 2 3 32 ,p x K K K K                                                                                     (7.6) 

1

1 2 3 32 ,xK K K K                                                                                      (7.7) 

2 2 2 2

1 3 3 32 2 2x x p xK K K K                                                                        (7.8) 
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2 2 2 2

2 3 3 32 2 2x x p xK K K K                                                                       (7.9) 

2 2 2 2 2

3 32 2 , ,x p xK K N N N odd       .                                                  (7.10) 

Proof.  The proof is similar to the one of corollary 5.1.  

Next, we have one example. 

Example 7.1.   

 

   

29

29

4

4

1 2

3 4

29 6 2 21

26 21 2

2 1 1103 486737

1103=2 69 1

486737=2 30421 1

3, 69, 30421

69 30421
1897

2

2 2 69 30421 1897

2 1897 1897 2 15245

M

x K K

K

 

   

 

 

  


  

    

    

. 
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