
version1.0 Snark 1

The Snark, a counterexample for Church's thesis ?

Hannes Hutzelmeyer

Summary

In 1936 Alonzo Church put forward his thesis that recursive functions comprise all effectively

calculative functions. Whereas recursive functions are precisely defined, effectively calculative

functions cannot be defined with a rigor that is requested by mathematicians. There has been a

considerable amount of talking about the plausibility of Church's thesis, however, this is not relevant

for a strict mathematical analysis. The only way to end the discussion is obtained by a counterexample.

The author has developed an approach to logics that comprises, but goes beyond predicate logic. The

FUME method contains two tiers of precise languages: object-language Funcish and metalanguage

Mencish. It allows for a very wide application in mathematics from recursion theory and axiomatic set

theory with first-order logic, to higher-order logic theory of real numbers and so on.

The concrete calcule LAMBDA of natural number arithmetic with first-order logic has been defined by

the author. It includes straight recursion and composition of functions, it contains a wide range of so-

called compinitive functions, with processive functions far beyond primitive recursive functions. All

recursive functions can be represented in LAMBDA too. The unary Snark-function is defined by a

diagonalization procedure such that it can be calculated in a finite number of steps. However, this

calculative function transcends the compinitive functions and presumably the recursive functions. The

defenders of Church's thesis are challenged to show that the Snark-function is recursive. Another

challenge asks for an example of a recursive function that cannot be expressed as a compinitive function,

i.e. without minimization.

They sought it with thimbles, they sought it with care;

They pursued it with forks and hope;

They threatened its life with a railway-share;

They charmed it with smiles and soap.

The Hunting of the Snark (An Agony in Eight Fits), Lewis Carroll 1876

Contact: Hutzelmeyer@pai.de

https://pai.de

 Copyright

All rights reserved. No reproduction of this publication may be made without written permission.

Any person who does any unauthorized act in relation to this publication may be liable to

criminal prosecution and civil claims for damages.

mailto:Hutzelmeyer@pai.de
https://pai.de/

version1.0 Snark 2

1 FUME system of object-language and metalanguage

The author has put forward FUME a precise system of object-language Funcish and metalanguage

Mencish that overcomes certain difficulties of predicate logic and that extends to a full theory of types.

In order to describe an object-language one needs a metalanguage. According to the author's principle

metalanguage has to be absolutely precise as well, normal English will not do. There are at least three

levels of language:

English supralanguage natural talks about everything

Mencish metalanguage formalized precise talks about object-language

Funcish object-language formalized precise language of mathematics

The essential parts of a language are its sentences. A sentence is a string of characters of a given

alphabet that fulfills certain rules. This means that metalanguage talks about the strings of the object-

language. The essential parts of the metalanguage are the metasentences (that are strings of characters

as well). It is important to realize that the metalanguage talks about the strings of the object-language

and nothing but. If one wants to comment on a certain mathematical system that is realized with the use

of an object-language one has to take refuge to the supralanguage. As supralanguage is not a formal,

precise language, there are no restrictions. One can comment on mathematical systems and one can talk

in supralanguage specifically about metasentences, just as metalanguage talks about object-language.

On first sight Funcish and Mencish look familiar to what one knows from predicate-logic. However,

they are especially adapted to a degree of precision so that they can be used universally for all kind of

mathematics. And they lend themselves immediately to a treatment by computers, as they have perfect

syntax and semantics. It is not the place to go into details. Both Funcish and Mencish have essentially

the same syntax. Mencish, however, has strictly first-order logic. The fonts-method allows to

distinguish between object-language (Arial and Symbol, normal, e.g. 1), metalanguage (Arial and

Symbol, boldface italics e.g. Axiom) and supralanguage English (Times New Roman).

Notice that Funcish and Mencish have a context-independent notation, which implies that one can

determine the category of every language element uniquely from its syntax, 'wherefore by their words

ye shall know them' (fruits according to Mathew 7.20). The reader may be puzzled by some expressions

that are either newly coined by the author or used slightly different from convention. This is done in

good faith; the reason for the so-called Bavaria notation is to avoid ambiguities.

There are some hints on the front of the author's homepage https://pai.de/ . You will find some a short

description in chapter 1. of the pdf-download GeoO1.1.pdf that can be started from 'Geometries of O'

on the homepage. There is also a description in the pdf.download GoodbyeAlonzo.pdf hat can be started

from 'Church's thesis …' on the homepage. This publication from 2006, however, is not quite up to date

in other respects. A complete description of Funcish and Mencish is forthcoming.

'Calcule' is the name given to a mathematical system with the precise language-metalanguage method

FUME . 'Calcule' is an expression coined by the author in order to avoid confusion. The word 'calculus'

is conventionally used for real number mathematics and various logical systems. As a German

translation 'Kalkul' is proposed for 'calcule' versus conventional 'Kalkül' that usually corresponds to

'calculus'. Calcules are given names using some convention that relates to the Greek sort names of a

calcule, e.g. concrete calcule LAMBDA with sort .

A concrete calcule talks about a codex of concrete individuals (given as strings of characters) and

concrete functions and relations that can be realized by 'machines' (called calculators). An abstract

calcule talks about nothing. It only says: if some entities exist with such and such properties they also

have certain other properties. Essentially there are only 'if-then' statements. E.g. 'if there are entities that

obey the Euclid axioms the following sentence is true for these entities'.

https://pai.de/

version1.0 Snark 3

Mencish ih the language of the corresponding metacalcules, metasentences talk about sentence and other

strings of Funcish calcules. It containns many metaproperties that classify strings of Funcish, but there

are some metafunctions too. In section 5 it will be made use of metafunction string-replacement

where 123 gives the result of replacing all suitable appearances of the second string

2 in the first string 1 by the third string 3 . Furthermor there is a binary metarelation  where

12 states that the string 2 is suitably contained in string 1 .

Mencish allows for a precise defintion of what is usually called an Axiom scheme or schema. It is

preferred to talk about a sentence mater. In sections 2 and 5 the metalingual expression scheme will

be introduced and treated with a completely different meaning. As mentioned before, so-called Bavaria

notation has been chosen for good reasons. Although it may put up some hardship for the reader in the

beginning, it will finally be realized that it gives so much more clarity.

Funcish allows for higher-order logic by means of type strings, e.g. function-type or property-type

that one could e.g. put into1 or 1 where the function-variable 1and the

relation-variable 1 appear.

It is not absolutely correct to say that first-order logic is sufficient for calcule LAMBDA . Like for many

other calcules one needs the implicit definition of functions . To this end one has to make a little detour

to second-order logic, but one can return from that detour anytime. The detour means that one makes

use of the purely logical Implicition-axiom matres allowing for the implicit definition of functions. They

state the unique existence of functions so that they can be given names (i.e.extra-function-constant

strings); subsequently these functions can be used in normal fashion. Afterwards there occur no

omnications with 1or entications with 3 and therefore one again is in the safe world of

first-order logic The method is based on UNEX-formulo1) strings, that have to be introduced now.

As opposed to a formula that must not include the variable 0 a formulo must include the variable 0 .

UNEX-norm-formulo2) strings define relations that hold for exactly one value 0 for every booking of

the input variable strings 1 , 2 , … according to the arity of the UNEX-formulo . It is metadefined as

follows in the unary case. This is the first appearance of a metasentence; remember that the boldface

italics fonts belong to Mencish that talks about strings of Funcish that uses normal fonts. You also see

that the same logic syntax is used in both Funcish and Mencish. Requiring the string 011  to

be a sentence means that 1 is a formulo with exactly the free variable strings 0 and 1. The second

condition means that variable 2 does not appear bound in 1 .

1sentence011 sentence0121 

UNEX-norm-unary-formulo1

TRUTH101 2102203)

Talking about the arity of UNEX-formulo strings the variable 0 is not counted. A nullary UNEX-formulo

string has no other variable , a unary UNEX-formulo string has one free, a binary UNEX-formulo string

has two other free variable strings and so on.

Logical Axiom4) of implicit definition of unary functions by UNEX-formulo

1sentence011 sentence0121 

Axiom1012102 20

111011 211021 21

1) the capital letters indicate that UNEX-formulo is not a metaproperty that is effectively decidable like e.g. formulo
2) norm means variable strings 0 and consecutive 1 , 2 , 3 …
3) the capital letters indicate that TRUTH is not a metaproperty that is effectively decidable like e.g. sentence
4) the only initial capital letter indicates that metaproperty Axiom is related to TRUTH but decidable

version1.0 Snark 4

2. Concrete calcule LAMBDA for pinitive functions

Concrete calcule LAMBDA of decimal pinitive arithmetic uses the following alphabet which is not the

shortest possible one, but it is tried keep as close to conventional logic language as possible:

Arial 8, petit-number for variables Arial 12, normal size numbers for decimal individuals

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Symbol 12, general logic symbols, special calcule symbols

                  

List of 38 (plus 1 extra) characters for ontological basis of calcule LAMBDA

sort:: 

sort-array:: sort ¦ sort-array  sort

decimal:: number :: 0 ¦ 1 ¦ 2 ¦ … correct definition see section 5

basis-ingredient:: sort ¦ decimal ¦ basis-function-constant ¦ basis-relation-constant

basis-function-constant::  ¦ sort-array ¦  pinitive functions, decimal synaption

basis-relation-constant:: ¦     pinity, minority

pinon-catena :: pinon ¦ pinon-catena pinon

pinon-array :: pinon ¦ pinon-array ; pinon
pinon :: 0 ¦ 1 ¦ 2 pinon pinon ¦ 8 pinon pinon-catena 9 only 4 cases

pinon strings are natural numbers that code primitive functions, when they replace  in basis-function-

constant string  or sort-array resp. : 0 codes the zero function, 1 the succession function. The

third case 2 pinon pinon codes straight recursion, where the left pinon of intrinsic arity m gives the initial

value and the right pinon of intrinsic arity n gives the iteration function (the intrinsic arity of the new

pinon is max(m+1,n-1)). The last case 8 pinon pinon-catena 9 codes composition of functions with any

intrinsic arity: the left pinon is the function where the pinon strings of the pinon-array are plugged in.

The PINITOR calculator that does the calculating is not described here, neither the basic true sentences.

The basis-function-constant gives the decimal synaption of two strings, which is basically

concatenation, except that no leading 0 is admissible. Actually the definition among the basis-ingredient

strings is redundant, as could be given by a pinon .The same is true for basis-relation-constant strings

 and  as they can be defined using some pinon strings piny1) and emiy resp. .

Primitive recursive functions are obtained by pinon strings, these precede as codes the basis-function-

constant strings  and sort-array . If a number is not a pinon string the primitive function with

this code is simply put to 0 for all input.. Very few examples for coding of primitive recursive functions

by decimal numbers are given here (they will be contained in a full publication on the concrete calcule

LAMBDA). It is a funny observation that pinitive functions have a Janus face. They have been designed

to represent primitive recursive functions

2201112 the addition of two numbers with pinon add22011 e.g. 22011112

But the following is defined too and gives a funny function:

10   the value for all codes at 0 where the result is put to 0 if 1 is not a pinon code.

The strange functions that can be obtained by putting variables into code position can be generalized to

so-called processive functions. One realizes that scheme strings that are obtained from function-

constant strings by inserting number and variable strings and compositions thereof represent functions

(conventionally they are called general terms). The world of processive functions is very rich, e.g. it

comprises straightforwardly Ackermann function and other hyperexponentiations.

The fact that one does not need minimization for the construction of non-primitive effectively calculative

function encouraged the author to look for a counter-example for Church's thesis.

1) one can introduce number-constant as names by adding a medium-letter-word subscript to the constant  ; a

string a pinon can be referred to both in Mencish and Funcish, e.g.by upr orupr resp.

version1.0 Snark 5

3. Primitive and minimitive recursive functions

Concrete calcule LAMBDA of decimal pinitive arithmetic allows to define what is meant by a recursive

unary function by its representation as a UNEX-recursive-norm-unary-formulo1. A UNEX-norm-unary-

formulo1 contains exactly variable strings 0 and 1 and fulfills the condition UNEX wich means that

for every 0 there exist exactly one 1 ; uniqueness is obtained by choosing the smallest possible value

(minimization). It is called recursive if its either primitive or minimitive :

1UNEX-primitive-norm-unary-formulo12 pinon21021

1UNEX-minimitive-norm-unary-formulo1

23 pinon2 pinon3 TRUTH122120

1221203213023032

It was shown by Kleene that one minimization suffices. The definition of UNEX-minimitive-norm-unary-

formulo strings shows that they are denumerable (as finite strings of characters) but not enumerable

(meaning effectively denumerable), as it cannot be decided in general if the primitive recursive function

scheme212has a zero 2for all arguments 1 . Therefore recursive functions are not enumerable

- and thus do not lend themselves to diagonalization. However, one can say e.g. 'for all unary minimitve

functions' as they are given by 3 and 4 with unary-regularity-condition 123120

It is sufficient to consider UNEX-minimitive-norm-unary-formulo strings as UNEX-primitive-norm-unary-

formulo with a pinon 3 can be expressed as UNEX-minimitive-norm-unary-formulo strings with the

trivial choice: 2 8220120220120122012012019 (that is pinonjsub for the primitive function

subtraction x-y) and the given 3 .

Onr can define corresponding minimitive functions with a minimitive-norm-unary-function-constant

using the logical Axiom of implicit definition of unary functions by a UNEX-norm-unary-formulo .

4. Church's thesis

Church's thesis says that all effectively calculative functions are recursive. Whereas recursive functions

are precisely defined (as they were defined in the two preceding sections) so that the definition fulfills

the criteria of every mathematician, effectively calculative functions are not defined with the precision

that is requested by mathematicians, they are not defined within FUME . Church's thesis is not a sentence

that belongs to either object-language or metalanguage. It is a suprasentence, meaning that it belongs to

supralanguage (in our case English1)).

One can talk about the plausibility of Church's thesis in (unprecise) supralanguage English. But this is a

never-ending story; as long as only plausibility reasons for the thesis or for its negation are discussed.

To make the story ending one has to leave supralanguage. The only way is to put forward a counter-

example (one way or the other) for whose correctness all mathematicians can agree on upon. It must

obey the criteria that guarantee that a calculation comes to an end after a finite number of steps (but keep

in mind, that the steps have no general definition either).

Say, somebody has put forward a counter-example by a function  , then a special contradiction of

Church's thesis reads:

1UNEX-minimitive-norm-unary-formulo1

TRUTH10101

It is funny to note that one cannot write down Church's thesis in FUME in general nor its general

negation. But one can write it down for a special counterexample. This is what is meant in the beginning

of this section: the never-ending story can be cut short by one counterexample, that can be expressed in

proper FUME .Now the full power of FUME is applied to construct a counter-example function.

1) or what the author considers to be English, as his native language is German

version1.0 Snark 6

5. The Snark

Concrete calcule LAMBDA contains compinitive functions, i.e. primitive and processive functions.

The Snark-function  is constructed along the idea of outdiagonalizing the compinitive functions.

This can be done as the set of compinitive functions is enumerable, meaning effectively denumerable

(by the way as opposed to the set of recursive functions that are not enumerable as was mentioned in

section 3) . One has to start with an exact definition of norm-unary-scheme strings.

nu-pattern :: number ¦ 1 ¦ nu-pattern   ¦ nu-pattern  nu-pattern-array

nu-pattern-array :: nu-pattern ¦ nu-pattern-array nu-pattern

1 norm-unary-scheme1 nu-pattern11 1

A norm-unary-scheme is built from 13 characters 0 1 2 3 4 5 6 7 8 9   and the14th part 1 ; it can

be considered as a quadro-decimal string constructed from 14 parts: 0 and 13 deq-cipher characters.

deq-cipher :: 1 ¦ 2 ¦ 3 ¦ 4 ¦ 5 ¦ 6 ¦ 7 ¦ 8 ¦ 9 ¦  ¦  ¦  ¦ 1

nonneg-deq :: deq-cipher ¦ nonneg-deq deq-cipher ¦ nonneg-deq 0
quadro-decimal :: 0 ¦ nonneg-deq 
de-cipher :: 1 ¦ 2 ¦ 3 ¦ 4 ¦ 5 ¦ 6 ¦ 7 ¦ 8 ¦ 9 
nonneg-de :: de-cipher ¦ nonneg-de de-cipher ¦ nonneg-de 0
decimal :: 0 ¦ nonneg-de

Quadrodecimal numbers can be mapped bijectively to decimal numbers. There are two metafunctions

Gödel-dedeq-translation and Gödel-dedeq-cislation  between decimal and quadro-

decimal strings. Only very few quadro-decimal strings actually corerspond to norm-unary-scheme

strings. There is a characteristic1) primitive function with pinon unsy 2) that specifies norm-unary-

scheme strings. One has to describe the synaption for the norm-unary-scheme strings as given above

using 14 parts now for decimal numbers that are coding quadrodecimal numbers.

1number1TRUTHunsy1 0norm-unary-scheme1

TRUTHunsy1 1norm-unary-scheme1

A choice for the Boojum-function  where the first position is input and the second codes the

norm-unary-scheme is metalingually defined so that it gives the calculation of this scheme for the input:

123number1number2number3

TRUTHunsy203211unsy2130

TRUTH1 23

One can construct a function that cannot be given by a norm-unary-scheme string. The Snark-function

 out-diagonalizes all functions that are given by norm-unary-scheme strings, as it gives the successor

of the diagonal. Therefore it is not a compinitive function.

111(11  For the Snark was almost a Boojum, you see.



And everything was envisaged by Lewis Carroll in his poem The Hunting of the Snark of 1876:

In the midst of the word he was trying to say,

In the midst of his laughter and glee,

He had softly and suddenly vanished away—

For the Snark was a Boojum, you see.

1) a characteristic function has only values 0 and 1 representing truth and falsehood or the corresponding relation
2) one of these days I perhaps will write down pinon unsy in full beauty as a decimal . It will be relatively complicated

 programming, needing many auxiliary functions. Forgive me for being too lazy to do it now.

version1.0 Snark 7

6. Two challenges

Hello defenders of Church's thesis! You are challenged to show that you can calculate the Snark-

function  . With the definition of recursive functions in Kleene normal form you have to show:


First challenge:

231421405215045134

The best thing would be to write down such pinon strings 2 and 3 . But a proof of existence of 2

and 3 would do as well.

The situation of Church's thesis can be best demonstrated in the following diagram. The metacursive

functions are those that can be generated for calcule LAMBDA by metalingual methods. The

transcursive functions are those that can be generated in some calculative fashion for calcule LAMBDA

without taking refuge to implicit definitions via UNEX-formulo strings, which is necessary for

minimitive functions, but including metalingual methods. The progressive functions are those that can

be represented in calcule LAMBDA including implicit definitions via UNEX-formulo strings.

One should be honest: the expressions metacursive and transcursive are just heuristic ones like

calculative, as they are not precisely defined as the good ones: primitive, minimitive, processive,

recursive, pinitive, compinitive and progressive.

calculative functions

recursive

primitive

A

minimitive

B

minimitive and processive

C

processive

D

metacursive

E

transcursive

compinitive

progressive

Classification of calculative functions with respect to concrete calcule LAMBDA

One can formulate in Mencish the metasentence that all minimitive functions are processive, meaning

that B would be empty. However, the answer to this is besides Church's thesis which is the present topic.

Church's thesis has two meanings in the actual context, that

- there are no metacursive functions E is empty, the Snark is in B

- there are no processive functions that are not minimitive D is empty

Hello again defenders of Church's thesis! You are challenged to show that D is empty.

Second challenge:

Put forward a pinon 2with intrinsic arity 2 and the proof that it has a zero for all input 1 as it is

necessary for the definition of a unary minimitive function (see section 3) . And prove that no scheme

exists in LAMBDA to allow for the calculation of that minimitive function.

2pinon2TRUTH122120

1unary-norm-scheme1TRUTH12110

Nomini Alonzo Church satiram non scribere difficile est. Why, for heaven's sake, has Church this

ecclesiastical name ? And Gödel's name has a certain proximity to divinity too. God bless.

