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A stochastic model is presented for the Planck-scale nature of space-time. From it, many features
of quantum mechanics and relativity are derived. As mathematical points have no extent, the
stochastic manifold cannot be tessellated with points and so a granular model is required. For
Lorentz invariance, the grains cannot have constant dimensions but instead, constant volumes. We
treat both space and time stochastically and thus require a new interpretation of time to prevent
an object being in multiple places at the same time. As the grains do have a de�nite volume,
a mechanism is required to create and annihilate grains (without leaving gaps in space-time) as
the universe, or parts thereof, expands or contracts. A 'rolled-up' �fth dimension provides the
mechanism. As this is a 'root' model, it attempts to explicate phenomena usually taken for granted,
such as gravity and the nature of time.

PREFACE

The precursor of this paper appeared years ago in
Phys. Rev.[Ap.O]. The paper was highly cited and well
regarded, e.g. Siser Roy called it 'profound'[1], Steven
Miller 'Remarkable' [2], Luis de la Peña 'Pioneering work'
[3]. Since then, there has been much activity in the
stochastic approach, some of it spawned by the precursor
paper.
However, that earlier paper, being behind a pay-wall,

is not easily accessible. And also parts of it needed revi-
sions. Hence the revised and slightly abridged version is
included as the appendix to this paper.

OVERVIEW

Much of quantum mechanics may be derived if one
adopts a very strong form of Mach's Principle, requiring
that in the absence of mass, space-time becomes not �at
but fully stochastic, a state of maximum entropy, and
thus arguably providing no arrow of time. If one wanted
to be philosophical, the idea of no arrow of time might
suggest that in the absence of mass (and of photons),
space-time should have no properties at all. And that
might include the metric signature. In that case, the
idea of dimension would seem to have no meaning.
The stochasticity is manifested in the metric tensor

which is considered to be a collection of stochastic vari-
ables. The stochastic metric assumption is su�cient to
generate the spread of the wave packet in empty space.
The idea is that vacuum energy �uctuations imply mass
�uctuations which imply curvature �uctuations which
then imply �uctuations of the metric tensor. The metric
�uctuations are then taken as fundamental and a stochas-
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tic space-time is theorized. A number of results from
quantum mechanics are derived.
If one further notes that all observations of dynami-

cal variables in the laboratory frame are contravariant
components of tensors, and if one assumes that, locally,
a Lagrangian can be constructed, then one can derive
the uncertainty principle. Finally, the superposition of
stochastic metrics and the identi�cation of the negative
of the determinant of the metric tensor as the indicator
of relative probability yields the phenomenon of inter-
ference, as will be described for the two-slit experiment.
The above is from the precursor paper.

Addressing some of the di�culties of the precurser pa-
per, required an extension of the model: In so far as
the �uctuations are not in space-time but of space-time,
and points have no extent, a granular model was deemed
necessary. For Lorentz invariance, the grains have con-
stant 4-volumes. Further, as we wish to treat time and
space similarly, we propose �uctuations in time. In or-
der that a particle not appear at di�erent points in space
at the same time, we �nd it necessary to introduce a
new model for time where time as we know it is emer-
gent from an analogous coordinate, tau-time, τ, where
'τ -Time Leaves No Tracks' (that is to say, in the sub-
quantum domain, there is no 'history'). The model pro-
vides a 'meaning' of curvature as well as a (loose) deriva-
tion of the Schwartzschild metric without need for the
General Relativity �eld equations. In order to tessellate
the space-time manifold, it was necessary to introduce a
�fth dimension which is 'rolled-up' at the Planck scale.
The dimension is associated with mass and energy. Fur-
ther, the �fth dimension addresses other problems asso-
ciated with the granular space-time model.
The purpose of the Stochastic, Granular, 5-

dimensional model, 'SG5D', is to both fold the seem-
ingly incomprehensible behaviors of quantum mechanics
into the (one hopes) less incomprehensible properties of
space-time, and also to generate many of the phenomena
of relativity. We do this by working with space-time at
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the Planck scale.

I. INTRODUCTION

Although it is a remarkably reliable schema for de-
scribing phenomena in the small, quantum mechanics
has conceptual problems; e.g. How can entanglement
send information faster than light (without violating rel-
ativity)? What is happening in the two-slit experiment?
How can it be that the wave function can instantaneously
collapse? In what medium does the Ψ wave travel? Is the
E=hf wave (the Compton wave) the same as the Ψ wave?
What is the wave function? What explains superposi-
tion? Can the two-slit experiment (at least in theory) be
performed with macroscopic masses? Is 'The Cat' alive
or dead? (One should say at the outset that this stochas-
tic space-time theory is a DeBroglie-Bohm rather than a
Copenhagen model so Schrödinger's cat is not an issue;
Waves interfere. Particles do not.) And �nally, how can
quantum mechanics peacefully coexist with relativity.
The mathematics of quantum mechanics works exceed-

ingly well. What we attempt �rst in this paper is to pro-
vide a conceptual framework for the quantum phenomena
described by the mathematical formalism.
Granular space-time theories su�er from the problem

that if the grains have a speci�c size, then the theory can-
not be Lorentz invariant. Our grains though (which we
call 'venues' to distinguish them from point-like 'events'),
have constant 5-volumes (rather than constant dimen-
sions) and volumes are Lorentz invariant. [The �fth
dimension will be introduced later in this paper. But
external to a mass the �fth dimension is usually zero,
so for the most part we can consider 4 rather than 5-
volumes.] A venue then, is the smallest possible volume.
In empty space, with venues in a (average) rest frame, the
venues have dimensions of Planck length times Planck
length times Planck length times Planck time times c,
and with the �fth dimension included, times the Planck
length again.
And the stochasticity is exhibited by venues migrat-

ing through the space-time manifold (without leaving
gaps in the space-time). We required granularity since
the (stochastic) space-time must tessellate the manifold.
But point-like events have no volume which is to say
that multiple events could migrate to the same 'point'
in the manifold. (We will see though, that interior
to a Schwartzschild singularity gaps could occur if we
accept an interpretation of the Kruskal metric for the
Schwartzschild solution saying that the 'interior' of the
singularity is not in the space-time manifold.) A 'point'
then, is an idealization. So is a line. So the shortest pos-
sible length is also an idealization without any physical
meaning. We maintain, on the other hand, that a vol-
ume is 'real'. So the idea of a smallest possible volume is
likewise 'real'.
Another problem with stochastic space-time theories

is stochasticity in time. For covariance one would like to

treat time and space similarly. To do that, we then let the
stochasticity apply to both space and time. This leads to
an obvious problem: If a venue contains mass, then mi-
grations can position the mass so it appears at multiple
positions in space at the same time. E.g. A venue con-
taining mass could migrate one unit backward in time,
then one unit forward in, say, x, then one unit forward
in time, resulting in the mass being at both (x,y,z,t) and
(x+1,y,z,t). Preventing this necessitates a change in how
we view time.

First, let's consider the idea of the 'world-line'. Mov-
ing forward from the present, we are predicting the fu-
ture. And with quantum uncertainties (as well as with
the intervention of outside forces) that future cannot be
certain. And if there is no completely deterministic tra-
jectory going forward, neither is there one going back-
ward in time. The world-line then, seems to have limited
utility in quantum mechanics. Instead of a world-line, we
consider a 'world-tube', the diameter of which increases
as one moves forward or backward from the present.

We suggest that for the quantum world, t is not the
fourth dimension, and that t is an emergent quantity,
if not merely a human construct based on memory. The
time coordinate, t, is a de�ned quantity in the laboratory
frame whereas we suggest (below) another quantity, τ
(tau-time) is appropriate in the quantum domain.

We'd like to treat the time dimension, t, in the same
way as we treat spacial dimensions. But there is a big
di�erence between a space and time coordinate: Consider
the graphic below:

A particle (the black disk) starts at x=0, then moves
to x=1, then 2, then 3. (We are considering space-time
to be granular, hence the coordinate boxes.) There is a
single instance of the particle.

But time is di�erent:

A particle at rest is at t=0, then moves to t=1, etc.
But when it goes from t=0 to t=1, it also remains at
t=0. There are now two instances of the particle, etc. In
other words, a particle at a particular time is still there as
time advances, and the particle is at the advanced time
as well.

We de�ne then, a new quantity, τ (tau-time), that acts
much like the usual time, but in accord with the �rst
graphic, above. I.e. when the particle advances in time,
it erases the previous instance. That is to say, 'τ -Time
Leaves No Tracks'. Aside from �xing the problem of the
same mass appearing at an enormous number of di�erent
locations at the same time, in the section on 'Migrations
in Space and Time', τ will be seen to provide a solution
to the collapse of the wave-function problem.

The approach taken here considers a granular space-
time undergoing Brownian Motion in both space and
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time. A Wiener Process is our starting point in mod-
eling a granular, indeterminate space-time.

II. WIENER (AND WIENER-LIKE)
PROCESSES

First, we consider Wiener migrations of venues in
space.

A Wiener Process W is an idealization of Brownian
motion. It is a random walk of n steps where n ap-
proaches in�nity. (But, as we regard venues not to be
point-like but granular, we will not be taking the process
to in�nity.)

The ith step is de�ned as

Wi = Wi − 1 + X√
i

where X is a binary random variable (+ or - 1). As
n gets large, the distribution of Wi tends towards the
unit normal distribution. As can readily be seen, as i
goes to in�nity, the W graph is everywhere continuous
but nowhere di�erentiable. The graph is fractal (in that
it is scale independent). The graph is a 'space �lling'
curve with fractal dimension 1.5. Traversing between any
two points along the curve requires covering an in�nite
distance. However, in any �nite time interval, there are
found all �nite values of x. So in the case where a venue
can move, it can move to all values of x in an arbitrarily
small time interval, e.g. faster than light, which is not
a problem for venues not carrying mass. (Again though,
in this granular model, we do not let i go to in�nity.)
One should note here that there are two kinds of motion:
motion in the space-time, and motion of the space-time;
a mass can move partially with the venues and partially
through the venues and, as we will see, is prevented from
traveling faster than c.
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Wiener Process curve with measure=0.5. Note: 'mea-
sure' refers to the probability of a 'coin �ip' being heads.
E.g. a measure of 0.75 means there is a 75% probability
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And above is a 40000 point example.

Extended to in�nity, the variable i becomes a contin-
uous variable, generally represented as t (time). In our
granular model we do not extend to in�nity. The above
is for a 2-dimensional process (t vs x). To express t, x
and y, two coins are �ipped, one for x migration and the
other for y.
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An x measure greater than .5 causes a tendency to drift
up. Less than .5 tends downward

III. MIGRATIONS IN BOTH SPACE AND
TIME; TIME IN QUANTUM MECHANICS;

WORLD-TUBES

For reasons of covariance, we would like to treat time
and space similarly. And so we will consider di�usion in
space as well as in time.
Consider Graph 'A' (of 1000 points) below. (The ver-

tical and horizontal lines are artifacts of the graphing
software.) The graph represents the path of a a single
venue migrating in x with a measure of 0.5, and also for
a migration in t where the measure of t is 0.501 (mean-
ing that t will slightly tend upward). We can regard the
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graph as showing migration in x and also t, where the
coordinate axes are laboratory x and laboratory t.

Graph 'A'

There is an immediate problem:
Consider what this graph signi�es: At any given

laboratory-time t, the same venue will (simultaneously)
be at a very large number of x coordinates. If there were
mass/energy at the venue, this would be very problematic
as causality and conservation of mass would be violated.
This problem has been addressed (in the introduction)

by introducing τ (tau-time), and the 'τ-Time Leaves no
Tracks' idea.
We can still consider Graph 'A', but we'll interpret it

di�erently: If we take any (horizontal) time (τ) as a 'now',
A venue (containing a mass) stochastically �its forward
and back in time and space. So that at 'now' there is
one and only one particle. But where it is cannot be
predicted. However, the likelihood of the particle being
at a particular x (+/- dx) position is determined by the
relative number of times the particle is at that position.
In the case of Graph 'A', if we take as 'now' the τ -time
slice at -0.2, for example, we �nd (by examining the data)
the following probability curve:

This is analogous to Ψ*
Ψ. But the graph is a construct.

It represents, but is not actually, the particle. When the
particle is measured by, for example, being absorbed in
a detector, it freezes (no longer moves stochastically). It
no longer �its through time and space so the graph 'col-
lapses' to the measured position. (that position is only
determinable by the measurement.) This is analogous to
the collapse of the wave function, but here (as the graph
was merely a mathematical construct) there is no collapse

problem.

There are a few points/speculations to be made about
measurements. First, to be a true measurement, there
must be a latch/�ip-�op/memory so that the '�lm' can-
not be run backwards. As an example, consider the two
slit experiment with electrons. If a measurement device
is placed at a slit, there is no interference pattern. But
when an electron goes through a slit, the orbital elec-
trons in atoms of the wall of the slit will be distorted
by the passage of the electron. This distortion is almost
a measurement. But when the electron passes through
the slit, the orbital electrons become un-distorted. The
interference pattern is still produced because there is no
latching of measurement information. A latch could be
some mechanical contrivance, or even human (or non-
human) memory. A fruit-�y observing at the slit will kill
the interference pattern, but only for the fruit-�y. We
think the process should be transitive; A human observ-
ing the fruit-�y's memory will cause the interference to
be killed for the human as well. A measurement forges
a connection between the thing being measured and the
measurer�forcing them to have the same relative now.
In the macro-world, virtually everything observes (via
photons) everything else, forcing that macro-world (or
a portion thereof) to have the same relative now. And
measurements forces time to have tracks. Not that time
is frozen, but looking back to a particular time will show
uniquely what the world looked like at that time. E.g., if
one were to do high-speed �lming of particle 'tracks' in
a cloud chamber, one would see the time-tracks.

Observation, a crucial part of a measurement, is con-
ducted via photons. We speculate that all measurements
are via photons?

The time leaves no tracks concept implies that
there are multiple futures, and they all 'happen'.
(This is somewhat redolent of the Everett many-world
interpretation[4].) In SG5D, an observation from the lab-
oratory will select a particular future (making a track).

It should be remembered that the motion of a particle
is determined by two factors: the motion of the venues
in which the particle is embedded, and the non-quantum
dynamics of the particle, the dynamics, for example for-
bidding super-luminal velocity. So in the above, if the
particle were in a potential well with perfectly re�ecting
walls, the above graph would (after a time) represent the
probability density of �nding the particle at a particular
position in the well.

Again, the particle has always existed at only a sin-
gle venue, but the venue migrations happen roughly at
the rate of the Planck time, making the particle appear
(in some sense) to be at multiple positions at a particu-
lar time. Further, (because of the properties of Wiener
Processes) the particle appears to spread. If the particle
were not constrained by the well, (because time is mov-
ing forward and back) the graph would evolve (spread)
arbitrarily rapidly. In that case the curve would repre-
sent the relative probability density of �nding the particle
at a particular position once the particle (because of its
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dynamics) were able to be found there. The curve then
would represent DeBroglie's 'ghost waves that guide the
particle'.
Note: The jagged lines in the graph (as opposed to a

smooth curve) is an artifact of the binning algorithm in
the software.
By Statement 1.4 of the precursor paper (the appendix

of this paper), the particle location becomes less stochas-
tic as mass increases. There is a point where the stochas-
ticity ceases. At that point, (since it is not migrating
back and forth through τ-time), one can use the usual
t-time. So, we consider t-time (and also causality) to be
an emergent quantity. In the rest of this paper, when we
do not reference history, we will simply use t instead of τ.
Also, as a result of measurement, when the above graph
'collapses', the time is �xed, so measurement causes time
to 'leave tracks' causing τ to become t.
Now we can (brie�y) revisit Statement 3 of the precur-

sor paper: The metric probability postulate, P (x, t) =
−kg. A particle, by its mass, generates a local contri-
bution to the metric tensor at the observer's 'now'. The
particle will �it forward or backward in time. The local
metric contribution, being an extended �eld, will not �it
with it, and, for the same reason, will not instantaneously
decay. When the particle �its back to the observer's now,
it will be subject to that extended metric �eld. (This is
somewhat akin to quantum �eld theory where a parti-
cle interacts with the electromagnetic �eld created by its
own charge. Here, the particle interacts with the gravita-
tional �eld created by its own mass.) So P (x, t) = −kg.
can fully apply.
As the probability density is not stochastic while the

metric components are, that puts constraints on the met-
ric tensor, i.e. the determinant of the metric tensor
is constant while the metric components are not. So
(stochastic) changes in one or more components are com-
pensated by opposite changes in the others. This implies
that a venue is in constant �ux, its dimensions continu-
ously and unpredictably changing while the venue main-
tains a constant volume. This also implies that the met-
ric stochasticity is due to a single (and the same) random
variable in each non-zero metric component (That vari-
able will then drop out in the determinant.)

IV. ZITTERBEWEGUNG

The 'Standard Model' roughly says that 'stu�' is made
of fermions. And 'stu�' is held together by bosons�the
force carriers. SG5D is predominately about fermions.
Fermions are described by the Dirac equation. It is a
good equation but it predicts that fermions have an in-
stantaneous velocity of plus or minus c. Schrödinger,
wanting to believe the equation, suggested that the
fermions moved at a very high (and thus undetectable)
rate back and forth, the average motion being a drift.
He coined the word zitterbewegung [5] ('�icker-motion')
to describe that motion. SG5D describes mass motion in

much the same way, perhaps thus giving more credence
to the zitterbewegung idea.

V. VENUE MIGRATIONS IN EMPTY SPACE

Mach's Principle posits that the local properties of
space-time depend on the mass distribution in the uni-
verse. We'll adapt the principle to the SG5D model.
And we'll introduce another variable: 'Indeterminacy',
the probability that migrations will actually happen.
As with 'Measure', Indeterminacy is implemented with

a 'coin �ip'. And we'll suggest that outside of a mass, the
Indeterminacy decreases with decreasing distance from
the mass/energy (i.e. space becomes more determinate
as one approaches a mass). It will be seen that 'Measure
mainly in�uences quantum e�ects while Indeterminacy
in�uences relativistic e�ects. (Indeterminacy is likely re-
lated to the concept of inertia.)
The space-time Indeterminacy decreases as one ap-

proaches a mass. But this is underspeci�ed; masses can
have di�erent densities, so we wouldn't expect the Inde-
terminacy to necessarily vanish at the surface of a mass.
We suggest however, that venues can migrate into a mass
until, at some point the Indeterminacy vanishes. Yet we
do not want masses to be pulled apart by the space-time
so we'll posit that migrations of adjacent venues each
containing mass must stay adjacent. And in that case,
one could consider each of those venues having zero In-
determinancy compared to the others.
We'd expect that at some distance, Rs, from the center

of the mass, the venues, would be trapped, i.e. unable
to migrate away. This is highly suggestive of the event
horizon of the Schwarzschild solution. We'll assume Rs
(the Indeterminacy radius) and the Schwartzschild radius
are the same.
The concept of Indeterminacy decreasing with close-

ness to mass has an interesting possible consequence re-
lating to measurement: A measurement requires an ex-
change of energy between what is being measured and the
measurer (an energy that can't be transformed away).
But energy of this form (e.g. photons), being equivalent
to mass, possibly forces determinacy of the photon rela-
tive to the object that absorbs and/or emits the photon.
So, for example, if one were to place a measuring ap-

paratus at one slit in the two-slit experiment, activity
at that slit (at the time it is measuring if a particle
went through it) would be deterministic since the pho-
ton 'connects' the slit and the emitter (i.e. the labora-
tory). And therefore, since Indeterminancy=0 says that
the system behaves classically (as opposed to quantum-
mechanically), the interference pattern would not hap-
pen.
Insofar as measurements are accompanied by ex-

changes of photons, it's tempting to consider that pho-
tons are the carriers of causality.
Up to this point, we've considered the migration of just

a single venue. The model though, assumes space-time
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is completely tessellated (tiled) by venues, i.e. there are
no regions of space-time that are not fully covered by
venues. While we can justify the migration of a single
venue, migrations of venues in a completely tiled space-
time is more problematic. One might even doubt that
there can be any migrations at all in a fully-tiled space-
time. We are modeling the stochasticity of space-time
as a Wiener-like process on venues (grains). We assume
that the space-time completely tessellates the space-time
(i.e. there are no holes in the space-time). How then
can migrations occur in a fully tiled space-time? We
start by modeling any single venue as a Wiener-like pro-
cess. Other venues must then also migrate to preserve
the tiling.
The migration can proceed in one or two ways: The

�rst is like the circulation in a perfect �uid. The 'di�u-
sion' in that case, is via closed loops in the space-time.
The second way is the squishing-interchange of venues,

as shown below: The diagrams represent an idealized pair
of venues. The black and white venues continuously move
to interchange their positions while keeping their volumes
constant.

While the SG5D model is of a discrete, granular space-
time, the discreetness is expressed in the venue volumes.
So local continuous processes (between adjacent venues)
as the above are not disallowed.
The migration problem persists though, as can be seen

in Indeterminacy: Assume a spherical mass in an other-
wise empty space. Indeterminacy is assumed to decrease
as a venue migrates towards a mass. Even with Measures
= 0.5, a venue will at some point approach arbitrarily
close to the mass. But (letting R be the radial distance
to the mass) as Indeterminacy is the probability that the
venue will not migrate at the next coin �ip, the venue
will spend increasing amounts of 'time' as R decreases.
In the case of multiple venues, there will be proportion-
ally more of them in a volume element closer to the mass.
This results in the 'piling up' of venues as one gets closer
to the mass. How can this be? We don't want to re-
sort to venues 'pushing' against other venues since that
would imply that the venues are overlaid onto space-time
instead of them being space-time. Nor do we (yet) want
to employ higher dimensions. An answer (perhaps the
only answer) is curvature. But what is curvature? 't
Hooft has theorized[6] that curvature is an artifact of the
fact that we live in four dimensions but space-time is ac-
tually �ve dimensional (e.g. a two dimensional being on
a sphere can measure curvature, but with the sphere em-
bedded in a �at three dimensions, there is no curvature.)
We will take a di�erent approach: Venues are assumed to
have constant volume but not constant dimensions. Cur-
vature will be described, below, as the thinning of space
dimensions, (particularly the radial distance from a mass

dimension) while the time dimension thickens.
As for the translatory motion of the particle (as op-

posed to the rotational), the particle doesn't become
'fuzzy', but its location does begin to blur as the mass
decreases below the Planck mass. This results in an ef-
fectively larger grain size.
Two e�ects: like a smaller pollen grain in Brownian

motion: the smaller the grain, the more it stochastically
moves. But as the e�ective grain radius increases, the
movement decreases as there is a larger circumference
over which the movements can average.
Note then that the e�ective radius rate of increase de-

creases as the e�ective radius increases. To reiterate, this
is because, as the particle grows in e�ective size the av-
erage e�ect of the venue migrations against the particle
surface begin to average out (analogous to the case of
Brownian motion where the jitter of a large pollen grain
is less than that of a smaller grain).
We maintain that all physics that uses the radius

should use the e�ective radius. radius= rest-radius +
Radius Quantum Correction: r = rc+rqc. For an exam-
ple of the e�ective radius, see the Schwarzschild metric
derivation below.
One might consider the 'actual' radius as the covariant

(and hence unobservable radius) whereas the e�ective ra-
dius is the contravariant (in principle, observable) radius.
We explore now whether the model might indeed re-

produce the Schwarzschild metric.
A mass generates 'curvature', that is to say, a deforma-

tion of venues. While to a distant observer the venues are
deformed to be spatially concentrated around the mass,
to the venues near the mass there is no observable ev-
idence of such concentration as the space-time itself is
'deformed' (by way of the venues) so any 'observer' in a
venue would be unaware of the deformation.
Consider space-time with a single spherical mass m

with an Indeterminacy radius Rs. The Wiener graphs
are for some unde�ned unit of time. But as one increases
the number of coin �ips towards in�nity, the time interval
decreases to an in�nitesimal, dt. For a granular space-
time though, the number of coin �ips isn't in�nite and
the time interval, though small, isn't in�nitesimal. Once
again, Indeterminacy is the probability of, given that the
venue is at a position with that Indeterminacy, the venue
migrates from that position at the next coin �ip.
Since migrations slow as venues approach a mass, in-

determinacy then, expresses the slowdown in time and
the compression of space as the venue approaches Rs.
[As we'll be frequently employing Indeterminacy, we'll
represent it by the letter 'u' (from the German word for
indeterminacy, Unbestimmtheit)].
As a venue migrates in towards Rs, u decreases. The

probability density of the venue being at a particular
radial distance, r, therefore, increases. This results in
venues piling up as they approach Rs. But as the venues
'tile' space-time, the only way they can pile up is by
way of curvature (i.e. squishing in the radial dimension
and compensating by lengthening in the time dimension):
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To a distant observer, the venues would decrease in size
and migrate more slowly which is to say time would slow
down.
Recalling (see Statement 2) that the contravariant dis-

tance to a lack hole is
∫ r̄

0
dr = r̄, while the covariant

distance is
∫ r̄

0
d( r

1−2Gm/r ) =∞, we can (in Cartesian co-

ordinates) associate the contravariant distance with the
number of Planck lengths from the observer to the point
of observation and the covariant distance with the num-
ber of venues from the observer to the point of observa-
tion.
[This implies that local to the particle, space-time is

not stochastic. And there, a deterministic Lagrangian
can be de�ned. That 'local to the particle space-time'
coordinate system is covariant (as it is moving with the
particle). From another coordinate frame (e.g. the labo-
ratory frame) measurements on that local frame are sub-
ject to the intervening stochasticity, and because of that
stochasticity, the measurements are also stochastic, and
the measurements are contravariant, as can be seen by
the raising of the covariant coordinates by the stochastic
metric tensor).]
Now, near r = Rs, space-time becomes Q-classical (no

quantum e�ects, as opposed here to R-classical: no gen-
eral relativity e�ects) so a metric makes some sense.
Since the Measures (bias in the coin �ips) are presumed
not to be a function of location, we take the simplifying
assumption that the metric tensor does not depend on
the Measures, but only on the Indeterminacy, u. And,
for the moment, we'll ignore how a venue migrates in a
mass (when Rs is less than the mass radius).
Since for a mass, we have spherical symmetry, we can

let, ds2 = −f(u)dt2 + g(u)dr2 + r2dΩ2where f and g
are two (to be determined) functions of u, and dΩ2 ≡
dθ2 + sin2(θ)dϕ2is the metric of a 2-dimensional sphere.
Consider f(u) and g(u). We wish dt to lengthen and dr
to shorten as u decreases. ds can be thought of as the
time element in the frame of the venue. So, for example,
as u goes to zero, a big change in t will result in a small
change of s, and a small change in r results in a large
change in s. The simplest implementation of the above
suggests that f(u) is just u itself and g(u) is u−1i.e. ds2 =
−udt2 + u−1dr2 + r2dΩ2.
Now, as to u, note that,
at r = in�nity: u = 1,
at r = Rs : u =0, and
for r < Rs : u can become unphysical (u<0).
The simplest expression for u satisfying the above is,

u = (1− Rs
r ) which gives us

ds2 = −(1− Rs
r )dt2 + (1− Rs

r )−1dr2 + r2dΩ2

We have of course, as described earlier, equated the
Schwartzschild radius with the Indeterminacy radius.
This is the result Karl Schwartzschild derived from the

General Relativity �eld equations. One can easily go a
bit further by noting that Rs can only be a function of the
mass, and �nding a product of mass with some physical
constants to give a quantity with dimensions of length

suggests Rs = kGm
c2 where k is a constant. So we now

have (setting units so that c=1),
ds2 = −(1− kGms

r )dt2 + (1− kGms
r )−1dr2 + r2dΩ2.

We still need to determine the value of the constant,
k. But this is known territory. Rs was derived (by Karl
Schwarzschild and others) by requiring the metric to re-
produce the Newtonian result at large values of r and
small values of mass, and we need not reproduce the
derivation(s) here.
At �rst glance, there appears to be a problem with

Schwarzschild metric and stochastic granular space-time
theory in that masses can be arbitrarily smaller than the
Planck mass. And that would allow the Schwarzschild
radius to be vanishingly small, to the point of exposing
the 'naked singularity' at r=0. And that is something we
would like not to be possible.
But, as described earlier, any physical radius must be

the e�ective radius ( e�ective radius= rest-radius + Ra-
dius Quantum Correction). As a mass decreases to below
the Planck mass, quantum e�ects occur which increase
the e�ective radius. So a Schwarzschild radius of one
Planck length is the minimum possible Schwarzschild ra-
dius. Masses less than one mass then increases the (ef-
fective) Schwarzschild radius (until the rate of increase
decreases to zero). That the Schwarzschild radius of a
Planck mass is the Planck length is then consistent with
the granular hypothesis.

VI. STOCHASTIC GRANULAR SPACE-TIME
AND THE LORENTZ AETHER THEORY

We consider that our Stochastic Granular Space-time
(SG5D) theory is (or can be made to be) a super-set of
the Lorentz Aether Theory (LAT) where the aether is
space-time itself (speci�cally, the 'grains'/venues making
up the space-time). By doing so, we can appropriate the
LAT derivation of the constancy of the speed of light.
(We feel that any theory of space-time should contain an
explanation of that constancy.)
As is widely known[7], the Michelson-Morley experi-

ment failed to �nd the Lorentz aether, thus seemingly
invalidating the Lorentz Theory[8]. Less widely known
perhaps, is that the second version of Lorentz's theory
(with H. Poincairé as second author) reproduced Ein-
stein's Special Relativity (ESR) so well that there is no
experimental way to decide between the two theories[8].
The second LAT theory di�ers from the �rst in that it
posits that the aether is partially dragged along with
a moving body in the aether. This is akin to frame
dragging (e.g. the Lense-Thirring e�ect) in the Kerr
Metric[9]. We will posit frame dragging in SG5D as well,
i.e. the dragging along of venues by a moving object.
(Note that the Kerr metric itself 'breaks' the continuity
space-time. If it didn't, the frame dragging would 'wind-
up' space-time, and it doesn't[10]. One might take this as
an argument for a discrete space-time such as in SG5D.)
Although LAT derives the constancy of the speed of
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light whereas ESR takes it as a given, there are objections
to LAT:

1. There is an 'aether', the makeup of which is not
speci�ed.

2. There is a privileged, albeit unobservable, reference
frame where the aether is at rest (isotropic).

3. The (constant) velocity of light results from elec-
tromagnetic interactions with waves (and matter),
and not from properties of space-time.

SG5D can address these issues: As for 1, the makeup of
the aether, SG5D says the aether is the space-time itself.
And in 1922, Einstein himself said essentially the same
thing.
[Note: Einstein (translation)-�Recapitulating, we may

say that according to the general theory of relativity
space is endowed with physical qualities; in this sense,
therefore, there exists an ether. According to the general
theory of relativity space without ether is unthinkable;
for in such space there not only would be no propagation
of light, but also no possibility of existence for standards
of space and time (measuring-rods and clocks), nor there-
fore any space-time intervals in the physical sense. But
this ether may not be thought of as endowed with the
quality characteristic of ponderable media, as consisting
of parts which may be tracked through time. The idea
of motion may not be applied to it�]
2. A privileged reference frame, is also not an issue in

SG5D. The stochastic nature of space-time makes it im-
possible to de�ne a global rest frame. But we can consider
a local privileged reference frame where the correlation
region (the region where we can consider a background
privileged frame) is large compared to the region where
we are doing experiments.
3. The constancy of the speed of light not a result of

the properties of space-time, can be addressed as well.
While there is nothing wrong with the LAT derivation
of the constancy, we can give a qualitative geometrical
model as an alternate way of thinking about the con-
stancy:
We suggest (and this is highly speculative) that frame-

draging occurs whenever a mass (non-zero rest mass)
moves through space-time. Photons, as their rest mass is
zero, moves without frame-draging. This (as we will see)
allows an argument showing the constancy of c.

Consider an object (here, the black circle) moving at
high speed in the direction of the arrow. The object
moves through the venues (here represented by the white
rectangles). But due to venue frame dragging at high ve-
locities, the venues are pushed ahead of the moving ob-
ject. But venues are constant in volume, and the only
way that they can 'pile up' is by contracting in the direc-
tion of motion (and expanding in other dimensions). The

object must move through these venues. As the object's
speed increases, the contraction increases (rather in the
way a 'curvature well' becomes ever deeper). To an ex-
ternal observer (making contravariant observations), the
objects increase in velocity slows until it stops completely
where the venue dimension in the direction of motion ap-
proaches zero. To that observer (as can be seen in the
diagram above) the object is accelerating (which because
of the Equivalence Principle, is under the in�uence of
gravity). This establishes that a mass has a limiting ve-
locity.
We have postulated that a particle with non-zero rest

mass drags along (empty) venues as it moves, Photons,
having zero rest mass, do not drag venues.
So, if a particle moving with respect to the local priv-

ileged reference frame emits a photon, the photon does
initially travel with a velocity of c plus the velocity of
the particle. But the particle is dragging venues. As the
venue contracts in the direction of motion, since its vol-
ume is constant, it expands in the time dimension. And
this makes the time a photon takes to pass through the
venue constant. The photon has more venues to pass
through than it would have if the particle were not mov-
ing. Because of the additional distance (i.e. number of
venues) the photon needs to travel, its speed at the de-
tector, would be a constant, which is to say c.
If the detector were extremely close to the emitter (on

the order of Planck lengths) one would measure a value
of the velocity greater than c.
This length scale is too small to measure so the velocity

greater than c is unobservable. But other phenomena re-
lated to frame dragging might be large enough to detect.
A comet in an extremely elliptical orbit or a space-craft
'slingshotting' around a planet might exhibit a detectable
motion anomaly.
The SG5D model violates Galilean Relativity in that

motion is not (in this model) relative. LAT violates it as
well. This is allowed (in both cases) by having a privi-
leged reference frame.
With SG5D then, there is a new phenomenon at play:

'Velocity Induced Frame-draging'. So, in addition to
frame-draging being generated by mass (or acceleration),
it is also generated by an object's linear motion in the
space-time aether. One way of perhaps justifying this is
to consider the conservation of energy, as the sum of po-
tential and kinetic energy. The former is gravity depen-
dent while the other is motion dependent. Since gravity
yields curvature, perhaps velocity does as well. Potential
then, could be considered a result of Mach's Principle.
Frame-draging has much in common with curvature,

speci�cally Schwarzschild curvature. We might therefore
expect the metric tensors to be similar. Indeed, without
doing any calculations, we can guess at a metric for the
moving object. Consider the g11(the radial component
of the Schwarzschild metric) (1 − 2Gm

rc2 )−1. The velocity
induced model is not a function of mass, so m and G are
unlikely to be in g11. However, note that Gm/rc2 have

units of v2/c2, so we might expect g11 to be (1− k v
2

c2 )−1
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where k is a constant. We would expect a (coordinate)
singularity to occur when v = c, so that would make
k = 1. A similar argument can be made for g00(the time
component).

VII. BRIEF SUMMARY OF THE MODEL SO
FAR

The aim of 'Stochastic space-time' is to introduce
stochasticity into the structure of space-time itself, rather
than into the properties of the particles in the space-time.
This is a similar, geometrodynamic, approach to Nelson's
groundbreaking model[11] that indeed has matter mov-
ing stochastically in the space-time.

Mass reduces stochasticity as one approaches the mass.
And, insofar as stochasticity correlates to entropy which
establishes the arrow of time, the 'length' of that arrow
is not constant throughout space-time.

Because points have no extent, there seemed to be no
way to prevent events (points) migrating to the same
point. Therefore tessellating space-time would be prob-
lematic. So a granular model of space-time seemed neces-
sary. Further, whereas the only geometrical property of
an event is its coordinate location, grains, having extent,
can have di�erent values of ∆x, ∆y, ∆z, and ∆t. And
that allows an explanation of curvature within four di-
mensions (as opposed to explaining it by embedding the
four dimensional space-time manifold in a �ve dimen-
sional Euclidean space). And as long as the 4-volume of
the grains (which we call 'venues') is constant, we do not
violate Lorentz invariance.

In order that we treat time in the same way as we treat
space (and not to have particles appear at di�erent places
at the same time), we needed a new version of time, τ-
time. The implication is that our usual t-time is just a
human construct, not actually intrinsic to space-time.

VIII. THE FIFTH-DIMENSION

The are problems with the granular model: What hap-
pens when the universe (or a local region within it) ex-
pands or shrinks? How can venues increase or decrease
in number? Related to this is the question of the con-
stancy of the in�nitesimal volume element. The �eld
equations of General Relativity state that interior to a
mass (Tµν 6= 0) the Ricci tensor is not zero, and so the
volume element, the determinant of the metric tensor, is
not conserved. This creates a problem with the tessella-
tion of space-time.

To handle these (and other problems) we postulate a
�fth dimension. It is 'rolled-up' at the Planck scale.

A. Time-like or Space-like

We postulate a �fth dimension associated with mass.
But is it space-like or time-like? The Space-Time-Matter
consortium asserts it is space-like and the dimension is
mass[12] (and the dimension is not rolled-up).
Were the dimension time-like there would be di�cul-

ties. A characteristic of time is that it progresses. An
identi�cation of mass as the coordinate wouldn't work as
the coordinate couldn't progress (unless the mass were
continuously increasing). And a time-like �fth dimen-
sion wouldn't allow the annihilation/creation of venues
mechanism shown below in B4.
But there are advantages to a time-like, mass-

related dimension. It could provide a mechanism for
waves/periodicity and an explanation of the 720 degree
symmetry for quantum mechanical rotations (see section
B3 below). We (tentatively) suggest that the 5th di-
mension, which we call u, is both space-like or time-like
depending on whether a venue is hosting mass/energy or
not. If not u is space-like, otherwise it is time-like. And
when time-like, it also leaves no tracks.
The notion of a both time and space-like dimension

is not entirely new; for example, see the Braneworld
model[13].
Instead of a both time and space-like dimension, we

could obtain the same results by suggesting a space-like
5th dimension, and a time-like 6th dimension, also 'rolled
up'. For the moment we'll keep to just the �ve dimen-
sions.

B. The Utility of a Fifth Dimension

So then, a �fth dimension helps the model in many
ways. In particular, it gives us:
1- a way of achieving consistency with quantum me-

chanics and relativity,
2- an argument for the constancy of the volume ele-

ment,
3(highly speculative)- a mechanism for waves (without

the need for forces) (and the 720 degree symmetry for
Fermions),
4- a way of creating and annihilating venues,
5- a geometric interpretation of mass,
6- the Kaluza-Klein[14] formalism for bringing electro-

magnetism into the stochastic space-time model,
7- uniqueness of tessellation of the space-time by a

regular honeycomb,
Below, we brie�y expand on these topics.

1. Consistency of the model with Relativity and Quantum
Mechanics

In di�erential geometry, Loveridge[15] has pointed out
that the Ricci tensor governs the evolution of a small
volume element (i.e.

√
−g) as it travels along a geodesic.
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Following Loveridge, assume a very small spherical vol-
ume of dust o centered on point xµ(0) moving along a

direction Tµ. (Tµ ≡ dxµ

dτ ). One has that
D2

dτ2 o−
D2
flat

dτ2 o =
−oRµνTµT ν , where D is the covariant derivative along
the path. The equation applies for both three and four
dimensional volumes. The reason for subtracting the sec-
ond term is that the choice of coordinates could give an
apparent (not intrinsic) change of volume.
But in Special Relativity, the Ricci tensor is zero.

Which means that the volume element,
√
−g, is invariant.

(For Special Relativity, this is easy to see: In a Lorentz
transformation, as the length shrinks, time expands to
leave the volume unchanged.) In General Relativity, in
empty space-time, while the Riemann tensor is not zero,
the Ricci tensor is. So, in empty space (i.e. exterior to a
mass), the volume element is also invariant.
But for quantum mechanics, our stochastic space-time

model postulates that the volume element,
√
−g, is non-

constant and proportional to Ψ*Ψ. This would seem to
be a contradiction.
To address this, what we would like is a mechanism

where, in a region of space-time where the wave function
Ψ does not vanish, the volume element is not constant.
And, ideally, that mechanism would be a function of the
space-time geometry.
We propose then, that there is a �fth dimension and

that the �ve-dimensional volume element is everywhere
constant (see 2 below). We take it that the �fth dimen-
sion coordinate is zero except when in a mass or where the
wave function Ψ is non-zero or where an electro-magnetic
�eld is present.
The wave function itself is postulated to be propor-

tional to the 4 -dimensional volume element. And exter-
nal to a mass, the General Relativity �eld equations, i.e.
Rµν = 0, still hold (for both 4 and 5 dimensions, i.e. μ
and ν range from 0 to 3, or from 0 to 4).
In order that the 5-dimensional line element not be

observably di�erent from the 4-dimensional line element,
we adopt the Kaluza-Klein idea that the �fth dimension
is 'rolled-up'. (See 7 below.)

2. Constancy of the Volume Element

While the global invariance of the �ve-dimensional vol-
ume could be seen as a simplifying and/or unifying con-
cept, the idea seems important for being able to tessellate
space-time without leaving holes in the space-time fabric.
It is di�cult to fully cover space-time with venues

where the venues do not have a constant volume; if a
venue's volume were less than a neighbor's, the neigbor-
ing volumes would need to become larger. But, while
this is possible, this is a stochastic space time model; i.e.
the venues migrate throughout the space-time (and in-
deed they are the space-time). It is di�cult to see how
venues of di�erent volumes could migrate while still tiling
space-time.

In order that venues continue to be able to tessellate
the space-time manifold, we postulate a �fth dimension
where the volume element is always conserved, but in
�ve dimensions. As in 1 above, that �fth dimension is
not zero only where mass or energy (or Ψ) is present.
This is similar to the idea that the �fth dimension is
mass, as proposed by Mashhoon & Wesson[16] and the
Space-Time-Matter consortium[12]. SG5D di�ers in that
the �fth dimension is an indicator of mass (and energy),
where their's is mass.
We need the �fth dimension to hold the 'over�ow'

from a single venue's 4-dimensional contraction. And as
a venue's volume is at the Planck scale, the dimension
needs to hold very little. It can be well represented by a
rolled up dimension at a Planck length 'circumference'.
E.g., if, say, the x coordinate were to go from 1 to zero,
the �fth dimension would go from 0 to 1.
We could not �nd any other method for venues to tes-

sellate space-time other than the idea of an invariant vol-
ume element made possible by a �fth dimension. In that
sense, it was forced on us.
The invariant volume element has a value of 1 Planck

length (for the x coordinate) times 1 Planck length (for
the y coordinate) times 1 Planck length (for the z coor-
dinate) times 1 Planck time times c (for the t [or τ ] coor-
dinate) times 0 Planck time (for the u coordinate). It is
0 for the u coordinate because it is a rolled up dimension
with a circumference of 1 Planck time, and a coordinate
value of 1 Planck time is the same as 0 Planck time.

3. A Mechanism for Waves (without the need of forces),
and the 720 Degree Fermion Symmetry (without recourse to

spinors)

In the stochastic space-time model, the motion of
an object can be broken down into two parts: motion
through the space-time, and motion due to the migrations
of the space-time. Analogously to the way a Brownian
pollen grain moves under the collective collisions with wa-
ter molecules, the more the object is at the quantum scale
the more the motion is due to motions of the space-time.
We expect then, that the rotational motion of an elemen-
tary particle is due mainly to the rotations of venues in
the space-time manifold.

We begin by seeking a mechanism for generating a par-
ticle's rotational frequency (as a function of mass) with
respect to u-time (the �fth dimension as a time) and then
seek a mechanism for τ -time (the fourth dimension time).
We postulate that mass sets the relative rate of pro-

gression between the 4th and the 5th dimensional time.
So, for example, if a venue contains no mass or energy,
the 5th dimensional time is (and remains at) zero. In-
creasing amounts of mass in a venue increases the rate
of 5th dimensional time with respect to the 4th. Since
we regard the 5th dimension, u, as rolled-up, one might
visualize the situation by imagining a clock face. The
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more mass in a venue, the more rapidly the minute hand
goes around.
The di�erent rates of the two times is analogous to

Special Relativity where the rates of time between two
inertial frames in relative motion are dependent on their
relative speed V.
Mass seems to come in chunks. In any case, mass does

not seem to have a continuous range of values. And if
mass is a discrete quantity, then so too is u-time. And it
is not unreasonable to assume τ-time is discrete as well.
This time discreteness could be the reason an orbital elec-
tron can transition 'instantaneously' between orbits.
From the laboratory frame, consider observing a dis-

tant venue containing a small mass. u-time at a venue is,
by hypothesis, associated with the mass in a venue. In
particular, the increment of u is so associated.
Masreliez[17] and Mukhopadhyay[18] among others

have suggested that a mass oscillates at its Compton
frequency, (and without such oscillation, there would
be no DeBroglie wave, or indeed a Ψ). We accept that
suggestion. The Compton frequency ,fc, is de�ned as

fc = mc2

h Hz.
We �rst convert Hz to cycles/Planck time.
fc√
khG
c5

= mc2

h where k is a constant that equals either

1
2π for reduced Planck units, or 1 for unreduced Planck
units (The reason we do this will be seen soon.)
Now we'll convert m from kilograms to Planck mass,

mp.
fc√
khG
c5

= mc2

h

√
khc
G

Simplifying, we have fc = kmp.
Depending on k, this gives either fc = m

2π or fc = mp.
The k = 1 case, fc = mp, is compelling. It implies

that if the mass in a venue is zero, (from the viewpoint
of the laboratory observer) the u time does not advance.
The more mass in a venue, the more 'rapidly' u advances
until at a maximum venue mass of one Planck mass, the
frequency has increased to one cycle per Planck time.
This also argues that the Planck units should be de�ned
using Planck's constant rather than (as is usually done)
the reduced Planck's constant, h/2π. Henceforth, we'll
then use the unreduced Planck units.
'Time' then can be considered made up of two charac-

teristics: a coordinate (t) going from minus to plus in�n-
ity, and u, the �fth dimensional time, representing an or-
dering schema as described by H. Reichenbach[19]. Feasi-
ble time-like extra dimensions (in the context of Kaluza-
Klein theory) have been discussed by Aref'eva[20] and
Quiros[21] (among others).
The rolled-up �fth dimension has proven quite useful.

As mentioned in Section II, the 5th dimension was in-
voked for the idea that the volume element is constant in
�ve dimensions.
[Note: The idea of a constant volume element has an

interesting corollary: In the presence of mass, external
to the mass, the 4-dimensional volume element is also
constant. The evolution of the 4-dimensional volume el-

ement is governed by the Ricci tensor. So, if the volume
element is constant, the Ricci tensor is zero, i.e. Rµν = 0,
which are the mass-free General Relativity �eld equa-
tions. If then, Einstein had never achieved his theory
of relativity, we would still have the empty-space �eld
equations. Karl Schwarzschild could have taken it from
there.]

(We are used to the concept of complex phase. Perhaps
that �fth dimension is represented by the complex phase
in quantum wave equations.)

We consider a space-time occupied by a single (indivis-
ible) mass. We can impose a coordinate system centered
on the mass. We consider its rotation. We take migra-
tions (coin �ips) for rotations about the three coordinate
axes and (optionally) for time. Note that the particle is
(in this model) rotating in all directions (reminiscent of
spin).

In a mass, migrations in time allow an easy interpre-
tation: A '�ip' from forward to backward in τ time is
evidenced by the space 'measures' (mx,y,z) (probabilities
of moving clockwise) going from m to 1-m.

Consider the following idealized graph:

There is no reason the rate of space �ips (here an-
gle �ips) and time �ips must be the same. We de�ne
Þ (Icelandic/Old-English 'thorn') as the ratio of space
vs. (τ) time �ips. In the graph, we, for example, have
set the time measure mt=0.5, Þ equal to 10 and the an-
gle measure equal 1. The graph shows a typical cycle
produced as follows: Assuming that initially, τ time is
progressing forward, at successive time steps tp (unit of
Planck time), the angle increases. When ten (Þ) steps
have occurred, time has a 50 percent chance of �ipping
backwards. Here we assume it has done so. At that point,
the angle measure goes to 0 (meaning that the angle con-
tinually decreases) until another 10 steps occur. This is
an idealized case which we'll generalize further below.

In the above graph, note that the wavelength is 2Þ. (1
cycle = 2Þ) the frequency f is then 1/(2Þ) cycles/Planck
time.

In the graph below, we've let the angle measure be less
than unity. This, of course has resulted in a noisier graph,
but the above dominant wavelength is still evident.
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As Þ increases, the frequency of this (torsional) os-
cillation decreases until, as the mass goes to zero, the
oscillations cease, leaving only the migrations of the cen-
ter of mass. As Þ decreases, the frequency increases and
the graph gets noisier. We ask now when will the dom-
inant frequency get lost in the noise. We expect that
will happen when Þ is at or slightly above 2 (because
wavelength=2Þ).
Below are some graphs showing how the frequency gets

'lost in the noise' as Þ decreases:
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As in the case of u time, we also assume that with τ
time the frequency is proportional to the mass.
The u time case had fc = mp. And that �ts very well

to the stochastic space-time model.
But the u time case is very di�erent than that of τ time:

the u time argument is for rotations in a one degree of
freedom plane whereas with τ time, one has oscillations
of a sphere, which is two degrees of freedom (latitude and
longitude). And as rotations don't commute, it is hard
to see how the rotations in the two degrees of freedom
can occur at the same time. This might suggest that the
u rotations go at twice the rate of the τ oscillations, i.e.
there are two cycles for u for every one of τ . In this sce-
nario, the Planck mass is the limiting mass for quantum
mechanics i.e. particles heavier than the Planck mass
behave classically, and, the u frequency is half the τ fre-
quency which says that the particle must rotate through
720 degrees before returning to its initial state.
This allows us to claim:
the Planck length is the smallest possible length,
the Planck time is the smallest possible time, and
the Planck mass is the smallest possible purely classical

(i.e. not subject to quantum mechanics) mass. Further,

it supports the argument that waves are intrinsic to this
model.
As the mass increases, the 'waves' sub-harmonics grow
in intensity until the composite wave is indistinguishable
from the foam�resulting in a vanishing of the wave. So
in contrast to conventional QM where a massive parti-
cle is presumed to have a wave function (that is perhaps
beyond the current measurement threshold), if Ψ is in-
timately related to the Compton wave, the SG5D model
predicts that there isn't a wave function for a su�ciently
large, spherical (non-interacting) mass. And that limit-
ing mass is (very close to) the Planck mass. So, even in
principle, the two slit experiment cannot be done with
bee-bees, or marbles, or cannonballs.
The above was a simpli�cation where time changed di-

rection every Þ Planck times. SG5D though, says that ev-
ery Þ Planck times, a coin �ip determines if time changes
direction. The argument still holds as the signal still gets
lost in the noise, but less smoothly.
The above takes the Planck length and time as the

smallest possible in free space, i.e. the quantum of space
and time. But what is the smallest possible mass, the
quantum of mass? The Planck mass is the upper bound
for quantum masses. What is the lower bound? SG5D
can't say. But that mass must be smaller than anything
in nature. The mass of a neutrino isn't known, but it
is in the order of 10-36kg. The mass di�erence between
the types of neutrinos will be smaller still. We can say
then, that the quantum of mass is less than 10-28 Planck
masses.
If, re�ective of venues, masses can oscillate and ro-

tate, it is reasonable to expect that volume-preserving
pulsations (like squeezing jelly-babies) also occur. But
whereas rotations of a mass do not necessarily disturb
nearby venues, pulsations propagate through space-time.
Each mass in the space-time manifold can generate pul-
sations, causing a stochastic/chaotic foam in the space-
time. This may well be the genesis of the vacuum energy.
As to forces, this model doesn't currently consider

forces. It is concerned with 'stu�', which is composed
of Fermions. The force carriers, i.e. Bosons, will be ad-
dressed in a future paper.

4. Creating and Annihilating Venues

A problem with a space-time of granules (with con-
stant volumes) rather than of points is how to handle an
expanding or contracting space-time or region of space-
time. We need a mechanism to create and annihilating
empty venues (venues not containing mass) without leav-
ing gaps in the space-time manifold. Either the constants
c, G, and/or h depend on the size of the universe and so
change the Planck units in such a way as to preserve the
number of venues, or the Susskind landscape model[22]
is applicable and in addition the overall volume of the
multiverse is constant and venues can migrate between
universes, or there is a mechanism for the creation and
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annihilation of venues. We suggest the following:
The 'rolled-up' (here, space-like since we're considering

venues thst do no hold mass) 5th dimension provides that
mechanism as follows: Consider a space-time contraction
in one direction (x).
Initially the 5th dimension is zero as there is no mass

in the venue. And as a result, there is no 5th dimension
frequency.
The following diagrams show coordinates x and υ, and

a rectangular solid representing a venue.

As the x coordinate of the venue contracts, to preserve
the 5-volume, the 5th dimension must expand.
At some point, the contraction coordinate, x, ap-

proaches zero while the 5th dimension, u, approaches its
circumference.

At the point where the contraction reaches zero, the
5th dimension component 'rolls over' to zero. The 5-
volume is then zero and the venue blinks out of existence.
Creation of venues is similar: When a venue (outside

a mass) expands, it subtracts from the �fth dimension
(which due to vacuum �uctuations can be slightly greater
than zero).
When it so subtracts, the �fth dimension 'rolls over' to

its maximal value. This pushes the venue's 5-volume vol-
ume to an even larger value which violates the constant
5-volume. The venue then splits in two across one co-
ordinate. Each half contains half the maximal 4-volume
and half the maximal dimension �ve value, again pre-
serving the constant 5-volume of each new venue. The
new venues equilibrate by a reduction of the �fth dimen-
sion and increase of the 4-volume thus accommodating
the expansion (that required a new venue).
At no point then, is the space-time manifold not fully

tessellated.
However, expansion/contraction would occur not in a

single coordinate direction, but in all four. But because
venues are in a constant state of volume-preserving pul-
sations, at any instant, the expansion/contraction would
be e�ectively in a single (albeit random) direction, so the
above, single direction argument would still hold.
Although the mechanism allows for both venue cre-

ation and annihilation, perhaps only creation is relevant;
Since venue migration is a di�usion process, if the uni-
verse is not in�nite, the di�usion will increase the size of
the universe. Which is to say, the granular, stochastic
space-time model predicts an ever expanding universe.

5. Geometric Properties of Mass

The SG5D model doesn't attempt to say what mass is,
but instead examine the geometric properties pertaining
to the mass.

The principal function of mass is (in the model) the
stabilization of space-time, i.e, one would like the �uctu-
ations in/of space-time not to rip apart masses. In par-
ticular, a mass causes adjacent mass-containing venues,
because of stabilization, to act as a single larger venue
(which is why E(mass)=hf works).

In empty space, in particular, the venues' dimension
coordinates �uctuate (and this is required for the cre-
ation and annihilation of empty venues). The �uctuating
mass can be associated with vacuum energy �uctuations
and metric tensor �uctuations. The idea of metric ten-
sor �uctuations was the initial idea behind our stochastic
space-time theory.

Since the �fth dimension is associated with mass and
energy, venue �uctuations imply mass(energy) �uctua-
tions. That is to say that energy is not strictly con-
served. But since the �uctuations occur at Planck-
time time scales, on short-time average energy e�ec-
tively is conserved. However, because of the venue cre-
ation/annihilation mechanism (4 above) during space-
time expansion or contraction (either of the universe or
a region thereof), energy is not conserved. It is conceiv-
able that some of this energy of expansion/contraction
can be extracted.

In (the usual interpretation of) General Relativity,
mass causes 'curvature'. But what is curvature? Ar-
guably, it is merely an artifact of describing space-time
with one too few dimensions. For example, if a (two di-
mensional) ant were wandering on the surface of a sphere,
he could measure curvature and determine that his envi-
ronment was non-Euclidean. A three-dimensional (ignor-
ing time) being would say the space(-time) was Euclidean
and the ant was not able to see that third dimension. G.
't. Hooft has made a similar argument, as has

J. Beichler. (And, of course, 'Campbell's Embedding
Theorem'[23] states that any n-dimensional Riemannian
manifold can be embedded locally in an n+1-dimensional
Ricci-�at manifold.) But for us, rather than using a full
extra dimension to explain curvature, we describe cur-
vature as an artifact of the four-dimensional contraction
or expansion of venue volumes, the 5-volume constancy
provided by a rolled-up �fth dimension.

The idea that in a mass dimension 5 is time-like and
associated with that mass is an attractive notion. If, as
with τ-time, u-time, goes forward, this gives a frequency
proportional to the mass in the venue. This would ex-
plain e=hf.

The problem is that it works only with an isolated
venue (and a venue is about 20 orders of magnitude
smaller than the size of a proton). If adjacent venues
have mass, each venue would have a frequency propor-
tional to the mass in that venue. What we need is for the
frequency to be the sum of the frequencies in each venue.
We postulate then, that adjacent venues containing mass
act as one larger venue (except that the venues may still
be able to migrate). This encapsulates the idea that mass
stabilizes space-time. The postulate might be a result of
forces (the strong force, in particular) between the mass-
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containing venues. (Forces are outside the scope of this
paper.)
Note: As for the translatory motion of a mass (as op-

posed to the rotational), the mass doesn't become 'fuzzy',
but (because of migration external to the mass) its loca-
tion does begin to blur as the mass decreases below the
Planck mass. This results in an e�ectively larger mass
diameter.
Two e�ects: like a smaller pollen grain in Brownian

motion: the smaller the grain, the more it stochastcally
moves. But as the e�ective grain radius increases, the
movement decreases as there is a larger circumference
over which the movements can average.
Note then that the e�ective radius rate of increase de-

creases as the e�ective radius increases. To reiterate, this
is because, as the particle grows in e�ective size the av-
erage e�ect of the venue migrations against the particle
surface begin to average out (analogous to the case of
Brownian motion where the jitter of a large pollen grain
is less than that of a smaller grain).
We maintain that where quantum mechanics uses the

radius, it should use the e�ective radius. radius= rest-
radius + Radius Quantum Correction: r = rc+rqc.
One might consider the 'actual' radius as the covariant

(and hence unobservable radius) whereas the e�ective ra-
dius is the contravariant (in principle, observable) radius.
A quantum particle moving with venues e�ectively

spreads. So, in some sense, the mass is spread through
the space-time. And the �eld equations act on the spread
mass. And (since inside a mass, the Ricci tensor is not
zero) the space-time near a quantum particle has a non-
constant 4-volume element.
In short then, there is relationship between a particle's

mass and its radius; the higher the mass, the shorter the
radius.

6. Mass and Gravity

Whilst Newton and Einstein described the action of
gravity, a mechanism for gravity was not explained.
SG5D, on the other hand, does suggest a mechanism:
When venues are near a large mass (from outside the
mass), their 3-volumes are compressed. The constancy of
the volume is maintained by a corresponding expansion
of the time coordinate. The space compression continues
when a venue is interior to the mass. Here the �fth di-
mension is important and is non-zero. As one approaches
The Schwarzschild radius, (at least one of) the venue's
dimensions approaches zero while at the same time, the
�fth dimension (which has expanded to maintain a con-
stant 5-volume) rolls over to zero. The venue thus an-
nihilates. A venue then comes in to take its place. So
there is a continuous stream of venues approaching the
Schwarzschild radius and annihilating. Venue creation in
the space-time at large makes up for the loss of venues.
If a venue has a test mass (small compared to the 'large'
mass), it will fall in to the surface of the large mass. The

speed (as a function of the radial distance from the cen-
ter from the large mass) can easily be calculated (and
the result of the calculation compared with the Newto-
nian result):
Consider a spherical shell at some distance from a

mass. As the venues at the shell migrate in toward the
mass, the number of venues at the shell do not change,
so as the shell's radius changes the venues must compress
in the two dimensions perpendicular to the radial direc-
tion. To keep the volume constant, the time component
must expand as the square of a coordinate perpendicular
to r (because of the two space coordinate compressions).
Venues are being annihilated at a constant rate. So if one
uses a stopwatch to monitor how fast a venue (containing
a test particle) is falling toward the surface of the mass,
it will appear to go faster as it approaches because of
the slowing of the stopwatch. So the distance covered by
the falling venue will go as the square of the rate of the
slowing of time. This is to say that, v2 = constant

r . There
is also a contraction of the venue in the r direction, but
that is a relativistic e�ect that we will ignore for the mo-
ment. The velocity equation from Newtonian physics is,
v2 = 2GM

r . The constant is (related to) the rate at which
venues are annihilated, so we can associate that rate with
2GM which gives a connection of SG5D to 'physics'. Fur-
ther, since the Newtonian description of an object falling
under the in�uence of gravity is a conversion of poten-
tial to kinetic energy, the SG5D derivation of the fall of
gravity provides the link to kinetic and potential energy.
More importantly though, it might explain the concept
of energy in terms of SG5D
Note: Carlo Rovelli states that relativity's the slowing

of time is the source of gravity[24]. SG5D says the anni-
hilation of venues is the source of gravity and the rate of
fall due to gravity is determined by the slowing of time.

7. A Note on the Geometric Interpretation of
Electromagnitism (Kaluza-Klein)

Theodor Kaluza and Oskar Klein's not entirely un-
successful uni�cation of General Relativity and electro-
magnetism is well-trod territory. Kaluza-Klein theory is
not, per se, part of our Stochastic, Granular Space-time
model. But the Kaluza-Klein model and our Stochastic
Space-time model both employ a �fth dimension that is
rolled-up at the Planck scale. So, for free so to speak,
our Stochastic Space-time model can take in electromag-
netism.
There is a di�erence, however. The (usual) Kaluza-

Klein �fth dimension is space-like whereas ours is some-
times time-like. Researchers have considered a time-like
rolled up �fth dimension, but rejected it due to the pre-
diction of tachyons and (bad-)ghosts (unphysical solu-
tions, e.g. negative probability states).
Other more recent work (e.g Aref'eva & Volovich[20],

Quiros[21], Koci«ski & Wierzbicki[25]) suggests that a
time-like dimension can work after all, if one has con-
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straints imposed on the dimension.
We have also had the tachyon problem when we al-

lowed both space and time migrations. The 'time leaves
no tracks' interpretation of time was postulated to pre-
vent particles to be at di�erent places at the same time
(and to prevent tachyons). The time-like Kaluza-Klein
ghosting problem also seems resolved with the 'time
leaves no tracks' hypothesis. So we postulate that both
τ-time and u-time each leave no tracks.

8. Uniqueness of Tessellation by a Regular Honeycomb

Far from any masses, we would expect the venues tes-
sellating 5-dimensional space-time, on average (temporal
and positional), to be identical.
In two dimensions (i.e. the plane) regular tessellation

can be accomplished with squares, equilateral triangles,
or regular hexagons. In four dimensions, there are three
regular tessellations (honeycombs). But in �ve dimen-
sions, there is only one: the 5-cubic honeycomb[26] (the
order-4 penteractic honeycomb).
It would be awkward were there more then a single

regular honeycomb possibility. Di�erent types of regular
honeycombs can not be mixed (for complete tessellation).
And the stochastic space-time model would be hard put
to assure that di�erent regions of space-time would use
the same type of honeycomb. Five-dimensional space-
time then, can be tessellated only with �ve-dimensional
cubes. This is an argument (albeit a weak one) for the
existence of �ve rather than four dimensions.

IX. ROTATIONS IN AND OF THE
SPACE-TIME MANIFOLD (HIGHLY

SPECULATIVE)

In general, with a stochastic space-time, there are two
ways in which a particle can move: it can move through
the space-time manifold, or it can move as a result of the
venues at the particle's position migrating.
Rotations in a discrete space-time has a possible prob-

lem: A 'point' near the axis of rotation could rotate to
another point within the same venue. And that seems
to con�ict with the idea that a venue cannot have any
internal structure.
As an alternative, we'll consider that for an elemen-

tary particle, its rotations are entirely the result of venue
migration. This is somewhat akin to frame-dragging in
the Kerr metric, except rather than the rotating particle
dragging the space-time, the rotating space-time is drag-
ging the particle. And, if the particle were charged, it
would not radiate since not the particle but the space-
time is rotating.
There is however a particular issue with (rigid) par-

ticle rotations in a granular manifold. We are mindful
however, that in Special Relativity, there are no rigid ob-
jects. We are interested in whether granular space-time

theory also does not allow rigid objects.
The diagram below shows a mass with the dark circle

indicating its circumference. It is sitting on a background
of venues (the squares). It also shows an arc length of
one Planck length.

If the particle, rather than the space-time were ro-
tating, then when the particle rotates through the one
Planck length arc, a point close to the origin would ro-
tate far less than a Planck length, leaving the point in
the same venue. But, by hypothesis, a venue has no in-
ternal structure; e.g. there can't be two distinct points
in a venue.
So with the above diagram, rigid rotations of the par-

ticle cannot happen.
In the case of the space-time itself rotating, it is also

di�cult to see how the grid of venues could rotate.
We'll address this by assuming the particle is subject

to General Relativity.
Earlier in this paper curvature was described as not a

property of space-time, but merely an expression of the
compression of venues. (E.g. a venue could compress
in space dimensions while expanding in the conventional
time dimension).
Consider the diagram below.

Here the particle (circle) is set against a grid of venues
distorted by the particle's mass.
We consider that the space-time exterior to the parti-

cle is discribed by the usual Schwartzschild metric and
the interior by the Schwartzschild, perfect �uid interior
solution:

c2ds2 = 1
4

((
1− 2Gm

c2rm

) 1
3 −

(
1− r22Gm

c2r3m

))2

c2dt2 −(
1− 2Gmr2

c2r3m

)−1

dr2 − r2
(
dΘ2 + sin2Θdφ2

)
where rm is

the radius of the mass.
Notice that the 'curvature' increases as one approaches

the surface from the exterior, and decreases as one pro-
ceeds from the radius towards the center. And, as long
as the Schwartzschild radius is less than the particle ra-
dius, there is no Swartzschild singularity. Further, be-
cause venues are not points, there is no singularity at
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the center either. The rotation now is like a 'pizza slice'
or wedge, no point on any venue rotates into the same
venue.
(Note that if we truly consider rotations, the Kerr met-

ric would be more appropriate. But as we consider the
rotations as going in all directions at the same time, Kerr
would also not be the appropriate metric.)
There are however (at least) two reasons why the above

schema doesn't work: First, while the argument seems
reasonable in two dimensions, it does not work in three.
For a spherical particle rotating as above, a point on a
venue on the surface on the axis of rotation would rotate
in the same venue. Second, if the Swartzschild interior
metric is roughly appropriate, then at the center of the
particle, the 'curvature' would vanish. That is to say that
the venues near the center would be minimally distorted.
And, especially as in the schema, the number of venues
circling the particle at any radius is the same, the venues
near the center would be extremely distorted. We con-
clude then, that rotations are not rigid. Can we explain
how even non-rigid rotations can be explained?
We can modify the above schema. First, we let the cir-

cling venues at any radius can circle the particle indepen-
dently of the circling venues at any other radius. This,
incidentally, would allow zero total angular momentum
if the various rotating circles of venues were rotating in
opposite directions. And second, we can allow rotations
to occur simultaneously in any plane containing the cen-
ter of the particle. This gives a geometric interpretation
of particles rotating simultaneously in all directions and
is suggestive of spin.

X. QUIDDITY, ENTANGLEMENT, THE
TWO-SLIT EXPERIMENT

A. Information & Quiddity : Pilot-waves &
Entanglement

===
There are two forms of information at play: one of

which is restricted to travel at no greater than the speed
of light and the other (e.g. collapse of the wave func-
tion, entanglement and the like) not so restricted. These
are very di�erent processes, and so using the word 'infor-
mation' for the both of them is confusing. We'll reserve
'information' for the �rst case, and 'quiddity' for quan-
tum information. (Quiddity means the inherent nature
or essence of something. And the �rst three letters, qui,
make it easy to remember QUantum Information.)
Information is carried by photons or mass (energy).

Quiddity, as it travels faster than light (and therefore
can also travel backward in time), can not be carried by
energy. In Stochastic Granular Space-time theory then,
what can carry quiddity? The only thing left is empty
venues. While a venue has an invariant 5-dimensional
volume, it can vary in its individual dimensions. As de-
scribed earlier, the 4-dimensional volume is related to the

probability density, Ψ*
Ψ. So that probability density is

a type of quiddity.
The wave function acts as a 'pilot wave' (as proposed

by Louis de Broglie), moving well in advance of a quan-
tum particle. When the particle 'catches up' to a place
where the pilot wave is, that wave then determines the
particle's probability density.
Entanglement seems to work the same way: by the

superluminal propagation of probability densities. En-
tanglement then is not an extremely strange peripheral
property of quantum theory, but a necessary and central
component of the theory. An entangled set of particles
then could interract superluminaly, but an observer in
the laboratory frame could not observe the result of the
interaction until a time later, when a classical (sublumi-
nal) signal could have reached the interaction.
Arguably, Entanglement is a process requiring super-

position plus faster than light quiddity, and SG5D pro-
vides for both.
Our aim in the following is not to provide a the-

ory/mechanism for entanglement, but to argue that
Stochastic Granular space-time Theory allows for it,
within the con�nes of �ve dimensions.
Bell's theorem[27] requires that to have entanglement,

we must abandon 'objective reality' and/or 'locality'.
Dropping locality means that things separated in space
can in�uence each other instantaneously. Dropping ob-
jective reality means that a physical state isn't de�ned
until it is measured (e.g. is the cat dead or alive?).
Weak measurement experiments[28�30] building on the

work of Yakir Aharonov and Lev Vaidman[31] imply that
there is objective reality in quantum mechanics[31, 32]
(in contradiction to the Copenhagen interpretation of
quantum mechanics). By objective reality, we mean a
particle does have a path (blurred somewhat by space-
time �uctuations) regardless of whether it is being ob-
served or not.
We're left then, with non-locality. SG5D is non-local.

The issue, of course, is how to have non-locality whilst
not violating Einstein's prohibition of information trav-
eling faster than light. We slightly re-interpret that pro-
hibition by positing that it is energy (as opposed to in-
formation) that can't travel faster than light.
Empty venues carry no energy, and so (as we have seen)

can migrate through space-time arbitrarily rapidly. The
hope then is that we can �nd a way that empty venues
can carry quiddity. (The Time Leaves No Tracks idea
will help with that.)
A single empty venue seems not to ful�ll that hope

as a single empty venue's only quiddity is the fact of
its existence, and since number of (empty) venues is not
conserved, that fact doesn't seem to be able to explain
entanglement.
We suggest though, that through some unknown mech-

anism (which is why this is a suggestion and not a the-
ory) that a number of empty venues can be bound to-
gether can migrate collectively through space-time (e.g.
spiraling through space-time) they would then carry a
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more complex quiddity. So, for instance, two created en-
tangled particle would carry this quiddity with them as
they spread out (as a link between them). And through
another unknown mechanism, a measurement of one par-
ticle forces the state of the other and then dissolves the
link.
Again, this discussion is not an explanation of entan-

glement, but just an attempt to show that SG5D can
contain such entangled states.

B. The Delayed-choice Two-slit Experiment

The diagram shows the 'delayed choice two-slit exper-
iment': A low-intensity source directs electrons to a box
containing two slits (slit 1 and slit 2). The beam inten-
sity is such that there is only one electron traveling in the
box at any time. As expected, an interference pattern is
gradually produced on the screen at the back of the box.
If a particle detector is introduced at slit 2 to determine
which slit an electron passed through, then there will be
no interference produced. One can arrange that the de-
tector is optionally turned on only when the electron has
passed by slit 1. If the detector is on at that point, then
again, there will be no interference pattern produced. So
it seems that when the electron gets to slit 2 and �nds
that the detector is on, it goes back in time to tell the
electron to go through, or not go through slit-1.
How does the Granular Stochastic Space-time model

explain this?
First, we introduce the concept of an 'ephemeral'

measurement: An electron has an associated electro-
magnetic �eld. As it goes through a slit, that �eld will
interact with the electrons in the wall of the box at the
slit. The box electrons then can tell if an electron has
passed through a slit. And this could be considered a
measurement; the box electrons could be considered a
particle detector. But the interference pattern still oc-
curs in this case. The di�erence is that the box electrons
measurements are ephemeral; After the moving electron
passes through the slit, the box electrons return to their
undisturbed state, retaining no 'memory' of the measure-
ment. The measurement is not preserved. The �lm can
be run backward and it would be a valid physical situ-
ation. For there to be a true measurement then, there
must be a mechanism to 'remember' the measurement �
a latch or �ip-�op of sorts. And that would mean the
�lm could not be run backward. We regard measure-
ment then, as a breaking of time-reversal symmetry. In
the macro-world, everything is a measurement of sorts
(viewing a scene gives an estimate of positions, etc.) and
hence we can't run macro-world scenes backwards.

With quiddity (in this case, the pilot wave) able to
move superluminaly as well as to move backward in time,
there isn't much to explain. The pilot wave precedes the
electron going into the box. The pilot wave determines
the probability of the electron being found at any point
in the box at any time. If (at any time) the detector is
switched on, that would change the geometry and hence
the wave (at all points, future and past). The electron
would continue its motion, catching up with the revised
pilot wave and then moving accordingly. (This is much
like the mechanism of entanglement).

XI. DISCUSSION

General relativity is a theory relating the large scale
structure of space-time to the masses in it. Similarly, the
stochastic space-time model relates the micro-structure
of space-time to the behavior of masses at the quantum
level. One says for general relativity, mass tells space how
to bend. Space tells mass how to move. And in SG5D, we
say mass tells space how to jell. Space tells mass how to
jiggle. The model is neither one of quantum mechanics
nor General Relativity. It requires both theories in its
development.
In the model, particles move (in an indeterminate man-

ner) due to the space-time �uctuations exterior to the
particle (similar to the way a Brownian Motion pollen
grain moves). But unlike with Brownian motion, time
(as well as space) �uctuates.
In free-space, there is no meaning in retracing a tra-

jectory as, because of the space �uctuations, there is no
well-de�ned 'place'. Inside a mass, it is di�erent. In par-
ticular, going backwards in time doesn't mean a system
goes to a well-de�ned earlier place in time. If there is
a time reversal, it is evidenced only by the reversal of
global quantities (such as direction of rotation).
A previous paper[33] suggested that quantum oscilla-

tions of particles could be described as torsional vibra-
tions occurring simultaneously in all directions It a model
whereby such oscillating particles could pass through a
polarizer admitting �fty percent throughput rather than
just those particles aligned perfectly with the polarizer.
The object of the present model is to provide a con-

ceptual basis for quantum mechanics�to show that the
'quantum weirdness' can be explained in terms of the be-
havior of space-time. And indeed, SG5D has managed
to replicate some of the fundamental processes in con-
ventional quantum theory.
But the model is incomplete: It doesn't explain the

electro-weak force nor the strong force. But it should. A
description of the world in terms of venues might be ex-
pected to provide those explanations. And there is room
in the model to provide those; We've shown many at-
tributed of quantum mechanics and relativity in terms of
venue placement. But we've not considered an individual
venue's orientation and/or rotation, or soap-bubble-like
vibrational modes. We expect these to provide an expla-
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nation, at least, for electromagnetism. And �nally, we've
not provided an overarching mathematical formalism for
the SG5D model.

We recognize that this paper contains some unusual
ideas. But they were forged in a chain (a long chain)
of logic from the initial conjecture that space-time is
stochastic. In addition, this paper jumps around between
topics. For that, I apologize. The problem was that the
concepts are so interconnected that I could not �nd a sin-
gle, compelling, logical order in which to present them.

POSTSCRIPT

For the better part of a century, researchers have
sought an understanding of the physical nature of quan-
tum mechanics. Perhaps then, a mathematical solution
to the problem is impossible and it is an example of the
Gödel incompleteness theorem[34]. Does Gödel imply
that there is no mathematical solution, or perhaps there
is one but it can not be derived? Roger Penrose, Herman,
Weyl, among others, felt that the theorem shows that we
can never know many, if not most, of the physical laws
of the universe.
The SG5D model is (at the moment) more phenomeno-

logical than mathematical; it is an assemblage of inter-
connected (hopefully self-consistent) phenomena-�a scaf-
fold onto which quantum phenomena can be attached.
Each phenomenon attached to the sca�old might well
be describable by mathematics, but the entire populated
sca�old, because of Gödel, might not be. (and including
a mathematical treatment of the accessible phenomena
described would have made this paper far to big.)
While the mathematical description is thus far from

complete, the model is speci�ed su�ciently to allow
(super)computer simulations. And perhaps, because of
Gödel, computer simulations are the best we can do.
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APPENDIX

THE ORIGINAL STOCHASTIC SPACE-TIME

AND QUANTUM THEORY PAPER
(REVISED)

INTRODUCTION

When considering the quantum and relativity theo-
ries, it is clear that only one of them, namely relativity,
can be considered, in the strict sense, a theory. Quan-
tum mechanics, eminently successful as it is, is an op-

erational description of physical phenomena. It is com-
posed of several principles, equations, and a set of in-
terpretive postulates[Ap.1]. These elements of quan-
tum mechanics are justi�able only in that they work.
Attempts[Ap.2, Ap.3] to create a complete, self-contained
theory for quantum mechanics are largely unconvincing.
There are, in addition, a number of points where quan-
tum mechanics yields troubling results. Problems arise
when considering the collapse of the wave function, as
in the Einstein-Podolsky-Rosen paradox[Ap.4]. Prob-
lems also arise when treating macroscopic systems, as
in the Schrödinger cat paradox[Ap.5] and the Wigner
paradox[Ap.6]. And quantum mechanics is not overly
compatible with general relativity[Ap.6].
One way of imposing some quantum behavior on gen-

eral relativity is the following: The uncertainty relation
for time and energy implies that one can �borrow� any
amount of energy from the vacuum if it is borrowed for a
su�ciently short period of time. This energy �uctuation
of the vacuum is equivalent to mass �uctuations which
then gives rise to metric �uctuations via the general-
relativity �eld equations.

An alternative approach is to impose, ab initio, an
uncertainty on the metric tensor, and to see if by that,
the results of quantum mechanics can be deduced. As
this paper will shoe, with a few not particularly unrea-
sonable assumptions, a large segment of the formalism of
quantum theory can be derived and, more importantly,
understood.
Mathematical spaces with stochastic metrics have been
investigated earlier by Schweizer[Ap.7] for Euclidian
spaces, and by March[Ap.9, Ap.10] for Minkowski space.
In a paper by Blokhintsev[Ap.11], the e�ects on the
physics of a space with a small stochastic component are
considered. It is our goal, however, not to show the ef-
fects on physical laws of a stochastic space, but to show
that the body of quantum mechanics can be deduced
from simply imposing stochasticity on the space-time.
Our method will be to write down (in Section II) a num-
ber of statements (theorems, postulates, etc.). We will
then (in Section III) describe the statements and indicate
proofs where the statements are theorems rather than
postulates. Finally (in Section IV) we will derive some
physical results, namely, the spread of the free particle
(in empty space), the uncertainty principle, and the phe-
nomenon of interference. The paper concludes (Sec. V)
with a general discussion of the approach and a summary
of results.

THE STATEMENTS

Statement 1. Mach's principle (Frederick's version).
1.1. In the absence of mass, space-time becomes not

�at, but stochastic.
1.2. The stochasticity is manifested in a stochastic

metric gµν .
1.3. The mass distribution determines not only the
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space-time geometry, but also the space-time stochastic-
ity.
1.4. The more mass in the space-time, the less stochas-

tic the space-time becomes.
1.5 At the position of a mass �point�, the space-time is

not stochastic.
Statement 2, the contravariant observable theorem.
All measurements of dynamical variables correspond

to contravariant components of tensors.
Statement 3. The metric probability postulate.
P (x, t) = f

√
−g, where for a one particle system

P (x, t) is the particle probability distribution. f is a real-
valued function and g is the determinant of the metric.
[But see ‡ in the description of the statements, below,
for a revised interpretation.]
Statement 4. the metric superposition postulate.
If at the position of a particle the metric due to a

speci�c physical situation is gµν(1) and the metric due
to a di�erent physical situation is gµν(2) then the metric
at the position of the particle due to the presence of both
of the physical situations is gµν(3),
gµν(3) = 1

2 [gµν(1) + gµν(2)].
This is the case where the probabilities, P1and P2, of

the two metrics are the same. In general though, State-
ment 4 becomes,
gµν(3) = P1gµν(1) + P2gµν(2).

Statement 5. The metric Ψ postulate.
There exists a local complex diagonal coordinate sys-

tem in which a component of the metric at the location
of the particle is the wave function Ψ.

DESCRIPTION OF THE STATEMENTS

Statement 1, Mach's principle, is the basic postulate
of the model. It should be noted that requirement 1.5,
that at the position of a mass point the space-time be not
stochastic, is to insure that an elementary mass particle
(proton, quark, etc.) is bound.
In our interpretation, a charged particle in stochas-

tic motion does not radiate because it is the space�time
rather than the particle which is stochastic. (This is in
contrast to Nelson's formulation where the particle [when
it's position is time-dependent] is simply posited not to
radiate.)
Similarly, local to the particle, space-time is not

stochastic. And there, a deterministic Lagrangian can
be de�ned. That 'local to the particle space-time' coor-
dinate system is covariant (as it is moving with the par-
ticle). From another coordinate frame (e.g. the labora-
tory frame) measurements on that local frame are subject
to the intervening stochasticity (due to the stochasticity
of the metric tensor), and because of that stochasticity,
the measurements are also stochastic (and the measure-
ments are contravariant [as can be seen by the raising of
the covariant coordinates by the stochastic of the metric
tensor]).

Statement 2, the contravariant observable theorem, is
also basic. It is contended, and the contention will be
weakly proved, that measurements of dynamical vari-
ables are contravariant components of tensors. By this
we mean that whenever a measurement can be reduced to
a displacement in a coordinate system, it can be related
to contravariant components of the coordinate system.
Of course, if the metric gµν is well known, one can calcu-
late both covariant and contravariant quantities. In our
model however, the quantum uncertainties in the mass
distribution imply that the metric cannot be accurately
known, so that measurements can only be reduced to con-
travariant quantities. Also, in our picture, the metric is
stochastic, so again we can only use contravariant quan-
tities. We will verify the theorem for Minkowski space
by considering an idealized measurement. Before we do,
consider as an example the case of measuring the dis-
tance to a Schwarzschild singularity (a black hole) in the
Galaxy. Let the astronomical distance to the object be
r̄(≡ ξ̄1). The covariant equivalent of the radial coordi-
nate r is ξ1, and
ξ1 = g1νξ

ν= g11ξ
1 = r

1−2Gm/r ,

so that the contravariant distance to the object is

distance=
∫ r̄

0
dr = r̄,

while the covariant distance is
ξ̄1 =

∫ r̄
0
d( r

1−2Gm/r ) =∞.

It is clear that only the contravariant distance is observ-
able.
Returning to the theorem, note that when one makes

an observation of a dynamical variable (e.g. position, mo-
mentum, etc.), the measurement is usually in the form of
a reading of a meter (or meter-stick). It is only through
a series of calculations that one can reduce the datum
to, say, a displacement in a coordinate system. For this
reduction to actually represent a measurement (in the
sense of Margenau[Ap.12]) it must satisfy two require-
ments. It must be instantaneously repeatable with the
same results, and it must be a quantity which can be used
in expressions to derive physical results (i.e., it must be
a physically �useful� quantity). It will be shown that for
Minkowski space, the derived �useful� quantity is con-
travariant.
Note �rst (Fig. 1) that for an oblique coordinate sys-

tem, the contravariant coordinates of a point V are given
by the parallelogram law of vector addition, while the
covariant components are obtained by orthogonal pro-
jection onto the axes[Ap.13].
We shall now consider an idealized measurement in

special relativity, i.e., Minkowski space. Consider the
space-time diagram of Fig. 2.
We are given that in the coordinate system x

′
,t
′
, an ob-

ject (m,n) is at rest. If one considers the situation from
a coordinate system x, t traveling with velocity v along
the x

′
axis, one has the usual Minkowski diagram[Ap.14]

with coordinate axes Ox and Ot and velocity v = tan(α)
(where the units are chosen such that the velocity of light
is unity). OC is part of the light cone.
Noting that that the unprimed system is a suitable
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Figure 1. Covariant and contravariant components in oblique
coordinates.

Figure 2. An idealized measurement.

coordinate system in which to work, we now drop from
consideration the original x

′
, t
′
coordinate system.

We wish to determine the �length� of the object in
the x, t coordinate system. Let it be arranged that at
time t(0) a photon shall be emitted from each end of
the object (i.e., from points F and B). The emitted
photons will intercept the t axis at times t(1) and t(2).
The observer then deduces that the length of the object
is t(2) − t(1) (where c = 1). The question is: What
increment on the x axis is represented by the time interval
t(2)− t(1)? One should note that the arrangement that
the photons be emitted at time t(0) is nontrivial, but
that it can be done in principle. For the present, let it

Figure 3. Analysis of the idealized measurement.

simply be assumed that there is a person on the object
who knows special relativity and who knows how fast the
object is moving with respect to the coordinate system.
This person then calculates when to emit the photons so
that they will be emitted simultaneously with respect to
the x, t coordinate system.
Consider now Fig. 3, which is an analysis of the mea-

surement. Figure 3 is just �gure 2 with a few addi-
tions: the contravariant coordinates of F and B, x1and
x2 respectively. We assert, and it is easily shown, that
t(2) − t(1) = x2 − x1. This is seen by noticing that
x2−x1= line segment B,F , and that triangle t(2), t(0), Z
is congruent to triangle B, t(0), Z. However, if we con-
sider the covariant coordinates, we notice that x2−x1 =
x2−x1. This is not surprising since coordinate di�erences
(such as x2 − x1) are by de�nition (in �at space) con-
travariant quantities. To verify our hypothesis we must
consider not coordinate di�erences which automatically
satisfy the hypothesis, but the coordinates themselves.
Consider a measurement not of the length of the object,
but of the position (of the trailing edge m) of the object.
Assume again that at time t(0) a photon is emitted at F
and is received at t(1). The observer would then deter-
mine the position of m at t(0) by simply measuring o�
the distance t(1) − t(0) on the x axis. Notice that this
would coincide with the contravariant quantity x1. To
determine the corresponding covariant quantity x1, one
would need to know the angle α (which is determined by
the metric).
The metric gµν is de�ned as ēµ · ēν , where ēµand ēν are
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the unit vectors in the directions of the coordinate axes
xµ and xν . Therefore, in order to consider an uncertain
metric, we can simply consider that the angle α is uncer-
tain. In this case measurement x1 is is still well de�ned
[x1 = t(1)− t(0)], but now there is no way to determine
x1 because it is a function of the angle α. In this case
then, only the contravariant components of position are
measurable. [It is also easy to see from the geometry that
if one were to use the covariant representation of t(0), t0,
one could not obtain a metric-free position measure of
m.]
Statement 3, the metric probability postulate, can be

justi�ed by the following: Consider that there is given a
sandy beach with one black grain among the white grains
on the beach. If a number of observers on the beach had
buckets of various sizes, and each of the observers �lled
one bucket with sand, one could ask the following: What
is the probability that a particular bucket contained the
black grain? The probability would be proportional to
the volume of the bucket.
Consider now the invariant volume element dVI in Rie-

mann geometry. One has that[Ap.15]

dVI =
√
−|g|dx1dx2dx3dx4.

It is reasonable then, to take
√
−|g| as proportional to

the probability density (Ψ∗Ψ) for free space.
See ‡ below for major revisions to Statement 3 (not in

the original paper).
Note that the metric gµν is stochastic while the determi-
nant of the metric is not. This implies that the metric
components are not independent.
Consider again, the sandy beach. Let the black grain

of sand be dropped onto the beach by an aircraft as it
�ies over the center of the beach. Now the location of
the grain is not random. The probability of �nding the
grain increases as one proceeds toward the center, so that
in addition to the volume of the bucket there is also a
term in the probability function which depends on the
distance to the beach center. In general then, we expect
the probability function P (x, t) to be P (x, t) = A

√
−|g|

where A is a function whose value is proportional to the
distance from the center of the beach.

‡ Major changes from the original paper re-

garding Statement 3

Again, the metric probability postulate, can be justi�ed
by the buckets on a beach argument. And again, the prob-
ability that a particular bucket contained the black grain
would be proportional to the volume of the bucket.
Consider the invariant volume element dVI in Rie-

mann geometry. One has that
dVI =

√
−|g|dx1dx2dx3dx4.

(From here on, we'll represent the determinant of gµν by
g rather then by |g|.)
At �rst sight then, it might seem reasonable to take√
−|g| as proportional to the probability density for free

space.
The arguments above apply to the three-dimensional

volume element. But we left out the other determinant
of the probability density, the speed of the particle (the

faster the particle moves in a venue, the less likely it is
to be there.) And therefore, the larger the ∆t the more
likely the particle is to be found in the venue. So indeed
(it seems as if ) it is the four-dimensional volume element
that should be used.
The metric probability statement above, as it stands,

has problems:
First, if one considers the 'particle in a box' solu-

tion, one has places in the box where the particle has
zero probability of being. And if P (x, t) = k

√
−g= 0,

that means the determinant of the metric tensor is zero
and there is a space-time singularity at that point. We
address this problem by noting that the metric tensor
is composed of the average, non-stochastic, background
(Machian) metric gMµν and the metric due to the Parti-

cle itself gPµν . We say then that the probability density is

actually P (x, t) = k(
√
−gT−

√
−gM ) where gT is the de-

terminant of the composite metric. In this case, P (x, t)
can be zero without either gTµν or gPµν being singular.

A second problem is that P (x, t) = k
√
−g describes the

probability density for a test particle placed in a space-
time with a given (average) metric due to a mass, with
determinant g. What we want, however, is the probabil-
ity of the particle (not the test-particle) due to the metric
contribution of the particle itself. Related to this is that
P (x, t) = k

√
−g doesn't seem to replicate the probability

distributions in quantum mechanics in that the probability
distribution, Ψ*Ψ, is the square of a quantity (assuring
that the distribution is always positive). But the di�er-
ential volume element, dV =

√
−g dxdydzdt is not the

square of any obvious quantity. Further, P (x, t) = k
√
−g

is something of a dead end, as it gives Ψ*Ψ but no hint
of what Ψ itself might represent. It would be nice if the
probability density were proportional to the square of the
volume element rather than to the volume element it-
self. With that in mind we'll again look at the proba-
bility density. (Multiple researchers[Ap.16, Ap.17] have
agreed with Part A's P (x, t) = k

√
−g and it is therefore

with some trepidation that we consider that the probabil-
ity density might be subject to revision.)
The initial idea was that, given a single particle, if

space-time were �lled with 3-dimensional boxes (venues),
then the probability of �nding a particle in a box would be
proportional to the relative volume of the box. That was
extended to consider the case where the particle was in
motion. The probability density would then also depend
on the relative speed of the particle. We will however, now
argue that P (x, t) 6= k

√
−g, but instead P (x, t) = −kg

(essentially the square of the previous). But this will ap-
ply only when the quantum particle is measured (a con-
travariant measurement) in the laboratory frame. If how-
ever, one considers the situation co-temporally (i.e. co-
variantly) with the quantum particle, then P (x, t) does
equal k

√
−g, which is to say that the probability density

is [co- or contra-variant] frame dependent.
There is another argument, but it assumes the main

body of this paper, relating to a time-like �fth dimension
we call tau.
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Consider a quantum particle at a τ-time slice at, say,
τ=now. And also consider a static quantum probability
function (e.g. a particle in a well) at τ=now+1. (That
function is a result of the quantum particle's migrations
in time and space,) Then if we take a negligible mass test
particle at τ=now, it will have a probability of being found
at a particular location at τ=now+1 equal to that static
probability function. And that function is proportional to
the volume element (the square root of minus the deter-
minant of the metric tensor). But what we're interested
in is the probability function of the quantum particle as τ
goes from now to now+1. We are considering the proba-
bility function at τ+1 as static. But it is the result of the
migrations of the particle. At tau=now, it would then be
the same probability function. So, as we go from now to
now plus one, we would need to multiply the two (equal)
probability functions. This results in the function being
proportional to the determinant of the metric tensor (not
its square root). This is rather nice as it allows us to sug-
gest that the volume element is proportional to Ψ while
the probability density is proportional to Ψ*Ψ. Note that
this result is due to a mass interacting with the gravita-
tional �eld it itself has generated. (This is analogous to
the quantum �eld theory case of a charge interacting with
the electromagnetic �eld it itself has created.)

As yet another approach, consider the spread of proba-
bility due to the migration of venues. In the absence of a
potential, the spread (due to Brownian-like motion) will
be a binomial distribution in space (think of it at the mo-
ment, in a single dimension and time). But there is also
the same binomial distribution in time. This, for exam-
ple, expresses that the distant wings of the space distribu-
tion require a lot of time to get to them. The distribution
then seems to require that we multiply the space distribu-
tion by the time distribution. The two distributions are
the same so the result is the square of the binomial dis-
tribution. (The argument can be extended to the three
spacial dimensions.) In the laboratory frame, time ad-
vances smoothly, which is to say that the time probability
density distribution is a constant, so we do not get the
square of the binomial distribution..

It seems then that there are both the distribution and
its square in play. It might be that the covariant rep-
resentation, i.e. the distribution 'at' the particle, is the
binomial while a distant observer where time advances
smoothly (not in the quantum system being observed) ob-
serves (i.e contravariant measurements) the square of the
binomial distribution.

So now we have P (x, t) = −kg, which is to say that
the probability density is proportional to the square of the
volume element. This is rather nice as it allows us to
suggest that the volume element is proportional to Ψ while
the probability density is proportional to Ψ*Ψ. (We will
in a later paper suggest that the imaginary component of
Ψ represents an oscillation of space-time.)

Statement 4, the metric superposition postulate, is
adopted on the grounds of simplicity. Consider the met-
ric (for a given set of coordinates) gs1µν(x) due to a given

physical situation s1 as a function of position x. Also
let there be the metric gs2µν(x) due to a di�erent physical
situation s2 (and let the probabilities of the two metrics
be the same). What is the metric due to the simultane-
ous presence of situations s1 and s2? We are, of course,
looking for a representation to correspond to quantum
mechanical linear superposition. The most simple as-
sumption is that
gs3µν(x)= 1

2 [gs1µν(x) + gs2µν(x)].
However, this assumption is in contradiction with gen-
eral relativity, a theory which is nonlinear in gµν . The
linearized theory is still applicable. Therefore, the metric
superposition postulate is to be considered as an approx-
imation to an as yet full theory, valid over small distances
in empty or almost empty space. We expect, therefore,
that the quantum-mechanical principle will break down
at some range. (This may eventually be the solution to
linear-superposition-type paradoxes in quantum mechan-
ics.
Statement 5, the metric Ψ postulate, is not basic to

the theory. It exists simply as an expression of the fol-
lowing: There are at present two separate concepts, the
metric gµν and the wave function Ψ. It is the aim of this
geometrical approach to be able to express one of these
quantities in terms of the other. The statement that in
some arbitrary coordinate transformation, the wave func-
tion is a component of the metric, is just a statement of
this aim.

PHYSICAL RESULTS

We derive �rst the motion of a test particle in an other-
wise empty space-time. The requirement that the space
is empty implies that the points in this space are indis-
tinguishable. Also, we expect that, on the average, the
space (since it is mass-free) is (in the average) Minkowski
space.
Consider the metric tensor at point Θ1. Let the met-

ric tensor at Θ1 be g̃µν (a tilde over a symbol indicates
that it is stochastic). Since g̃µν is stochastic, the metric
components, do not have well-de�ned values. We cannot
then know g̃µν but we can ask for P (gµν) which is the
probability of a particular metric gµν . Note then that for
the case of empty space, we have PΘ1 (gµν)= PΘ2 (gµν)
where PΘ1 (gµν) is to be interpreted as the probability of
metric gµν at point Θ1.
If one inserts a test particle into the space-time, with

a de�nite position and (ignoring quantum mechanics for
the moment) momentum, the particle motion is given by
the Euler-Lagrange equations,

ẍi +
{
i
jk

}
ẋj ẋk = 0,

where
{
i
jk

}
are the Christo�el symbols of the second

kind, and where ẋj ≡ dxj/ds where s can be either
proper time or any single geodesic parameter. Since g̃µν
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is stochastic, these equations generate not a path, but an
in�nite collection of paths, each with a distinct probabil-

ity of occurrence from P (gµν). (That is to say that
{
i
jk

}
is stochastic;

˜{
i
jk

}
.)

In the absence of mass, the test particle motion is easily
soluble. Let the particle initially be at (space) point Θ0.
After time dt, the Euler Lagrange equations yield some
distribution of position D1(x). [D1(x) represents the
probability of the particle being in the region bounded
by x and x + dx.] After another interval dt, the result-
ing distribution is D1+2(x). From probability theory[? ],
this is the convolution,

D1+2(x) =

∫ ∞
−∞

D1(y)D1(x− y)dy.

but in this case, D1(x) = D2(x). This is so because the
Euler-Lagrange equation will give the same distribution
D1(x) regardless of at which point one propagates the
solution. This is because
gµν(x)≡{gµν(x1), gµν(x2), gµν(x3)....}

are identically distributed random variables.
Thus,

Di(x) ≡ {D1(x), D2(x), ...}
are also identically distributed random variables. The
motion of the test particle(the free particle wave func-
tions) is the repeated convolution D1+2+....(x), which by
the central limit theorem is a normal distribution. Thus
the position spread of the test particle at any time t > 0
is a Gaussian. The spreading velocity is found as follows:
After N convolutions (N large), one obtains a normal
distribution with variance σ2 which, again by the central
limit theorem, is N times the variance of D1(x). Call the
variance of D1(x), a.

V ar(D1) = a.
The distribution D1is obtained after time dt. After N
convolutions then,

∆x = V ar
(
D∑n

0 i

)
= Na.

This is obtained after N time intervals dt. One then has,

∆x

∆t
=
Na

N
,

which is to say that the initially localized test particle
spreads with a constant velocity a. In order that the re-
sult be frame independent, a = c, and one has the results
of quantum mechanics. At the beginning of this deriva-
tion it was given that the particle had an initial well-
de�ned position and also momentum. If for the bene�t
of quantum mechanics we had speci�ed a particle with
a de�nite position, but with a momentum distribution,
one would have obtained the same result but with the dif-
ference of having a di�erent distribution D1 due to the

uncertainty of the direction of propagation of the parti-
cle.
In the preceding, we have made use of various equa-

tions. It is then appropriate to say a few words about
what equations mean in a stochastic space-time.
Since in our model the actual points of the space-time

are of a stochastic nature, these points cannot be used
as a basis for a coordinate system, nor, for that reason,
can derivatives be formed. However, the space-time of
common experience (i.e., the laboratory frame) is non-
stochastic in the large. It is only in the micro world
that the stochasticity is manifested. One can then take
this large-scale non-stochastic space-time and mathemat-
ically continue it into the micro region. This mathemat-
ical construct provides a non-stochastic space to which
the stochastic physical space can be referred.
The (physical) stochastic coordinates x̃µ then are

stochastic only in that the equations transforming from
the laboratory coordinates xµ to the physical coordinates
x̃µ are stochastic.
For the derivation of the motion of a free particle we

used Statement 1, Mach's principle. We will now use
also Statement 2, the contravariant observable theorem,
and derive the uncertainty principle for position and mo-
mentum. Similar arguments can be used to derive the
uncertainty relations for other pairs of conjugate vari-
ables. It will also be shown that there is an isomorphism
between a variable and its conjugate, and covariant and
contravariant tensors.
We assume that we're able to de�ne a Lagrangian, L.

One de�nes a pair of conjugate variables as usual,

pj =
∂L

series∂q̃j
.

Note that this de�nes pj a covariant quantity. So that a
pair of conjugate variables so de�ned contains a covariant
and a contravariant member (e.g. pjand q

j). But since pj
is covariant, it is not observable in the laboratory frame.
The observable quantity is just,

p̃j = g̃jνpν ,

but g̃jν is stochastic so that p̃j is a distribution. Thus if
one member of an observable conjugate variable pair is
well de�ned, the other member is stochastic. By observ-
able conjugate variables we mean not, say, pj , q

j derived
from the Lagrangian, but the observable quantities p̃j , qj

where p̃j = g̃jνpν ; i.e. both members of the pair must be
contravariant.
However, we can say more. Indeed, we can derive an

uncertainty relation. Consider

4q14p1 = 4q14
(
pν g̃

ν1
)
.

What is the minimum value of this product, given an
initial uncertainty 4q1? Since pj is an independent vari-
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able, we may take 4pj = 0 so that

4p1 = 4
(
pν g̃

ν1
)

= pν4g̃ν1.

In order to determine 4g̃ν1 we will argue that the vari-
ance of the distribution of the average of the metric over
a region of space-time is inversely proportional to the
volume,

V ar

(
1

V

∫
v

g̃µνdv

)
=
k

V

In other words, we wish to show that if we are given a vol-
ume and if we consider the average values of the metric
components over this volume, then these average values,
which of course are stochastic, are less stochastic than
the metric component values at any given point in the
volume. Further, we wish to show that the stochasticity,
which we can represent by the variances of the distribu-
tions of the metric components, is inversely proportional
to the volume. This allows that over macroscopic vol-
umes, the metric tensor behaves classically (i.e. accord-
ing to general relativity).
For simplicity, let the distribution of each metric com-

ponent at any point Θ be normal.

fg̃µν (gµν) =
1√
2πσ

e−
1
2 ( gµνσ )

2

.

Note also that if f(y) is normal, the scale transformation
y −→ y/m results in f(y/m) which is normal with

σ2
(y/m) =

σ2
y

m2

Also,for convenience, let
fgµνat e1(gµν) ≡ fΘ1

(gµν).
We now require

V ar(f((Θ1+Θ2+....+Θm)/m) ≡ σ2
((Θ1+Θ2+....+Θm)/m),

where f(Θ) is normally distributed. Now again, the con-
volute f(Θ1+Θ2)(gµν) is the distribution of the sum of gµν
at Θ1 and gµν at Θ2,

f(Θ1+Θ2) =

∫ ∞
−∞

fΘ1
(g1
µν)fΘ2

(g1
µν − g2

µν)dg2
µν ,

where g1
µν is de�ned to be gµν at Θ1. Here, of course,

fΘ1
= fΘ2

as the space is empty so that,

f(Θ1+Θ2)/2 = f(gµν/2atΘ1+gµν/2atΘ2)

is the distribution of the average of gµν at Θ1 and gµν
at Θ2. σ

2
(Θ1+Θ2+....Θm) is easily shown from the theory of

normal distributions to be,

σ2
(Θ1+Θ2+....+Θm) = mσ2

Θ.

Also, f(Θ1+Θ2....+Θm) is normal. Hence,

σ2
((Θ1+Θ2+....+Θm)/m) =

mσ2
Θ

m2
=
σ2

Θ

m
,

or the variance is inversely proportional to the number
of elements in the average, which in our case is pro-
portional to the volume. For the case where the dis-
tribution f(gµν) is not normal, but also not 'pathologi-
cal', the central limit theorem gives the same result as
those obtained for the case where f(gµν) is normal. Fur-
ther, if the function f(gµν) is not normal, the distribution
f((Θ1+Θ2+....+Θm)/m) in the limit of large m is normal,

f((Θ1+Θ2+....+Θm)/m) −→ f
((
∫
V

˜gµνdV )/V ).

In other words, over any �nite (i.e. non-in�nitesimal)
region of space, the distribution of the average of the
metric over the region is normal. Therefore, (anticipat-
ing Part B) in so far as we do not consider particles to be
'point' sources, we may take the metric �uctuations at
the location of a particle as normally distributed for for
each of the metric components g̃µν . Note that this does
not imply that the distributions for any of the metric
tensor components are the same for there is no restric-
tion on the value of the variances σ2 (e.g., in general,
f(g̃11) 6= f(g̃22). Note also that the condition of normally
distributed metric components does not restrict the pos-
sible particle probability distributions, save that they be
single-valued and non-negative. This is equivalent to the
easily proved statement that the functions

f(x,α,σ) =
1√
2πσ

e

(
− 1

2 ( x−ασ )
2
)

are complete for non-negative functions.
Having established that,

V ar

(
Θ1 + Θ2 + ....+ Θm

m

)
=
σ2

Θ

m
,

consider again the uncertainty product,
4q14p1 = pν4q14g̃ν1.
4q1 goes as the volume [volume here is V 1 the one-
dimensional volume]. 4g̃ν1 goes inversely as the vol-
ume, so that pν4q14g̃ν1 is independent of the volume;
i.e. as one takes q1 to be more localized, p1 becomes
less localized by the same amount, so that for a given
covariant momentum pj (which we will call the proper
momentum),pν4q14gν1 = a constant k. If also pν is
also uncertain,

pν4q14gν1 ≥ k .
The fact that we have earlier shown that a free particle
spreads indicates the presence of a minimum proper mo-
mentum. If the covariant momentum were zero, then the
observable contravariant momentum pν = gνµpµwould
also be zero and the particle would not spread. Hence,
pνmin 4 q1 4 g1ν = kmin.
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or in general,

4q1 4 (pνming
ν1) = 4q1 4 p1 > kmin,

which is the uncertainty principle.

With the usual methods of quantum mechanics,
one treats as fundamental, not the probability density
P (x, t), but the wave function Ψ [Ψ∗Ψ = P (x, t) for the
Schrödinger equation]. The utility of using Ψ is that Ψ
contains phase information. Hence, by using Ψ the phe-
nomenon of interference is possible. It might be thought
that our stochastic space-time approach, as it works di-
rectly with P (x, t), might have considerable di�culty in
producing interference. In the following, it will be shown
that Statements 3 and 4 can produce interference in a
particularly simple way.

Consider again the free particle in empty space. By
considering the metric only at the location of the particle,
we can suppress the stochasticity by means of Statement
1.5. Let the metric at the location of the particle be gµν .
We assume, at present, no localization, so that the prob-
ability distribution P (x, t)=constant. P (x, t) = −Ag by
Statement 3. Here A is just a normalization constant so
that −g = constant. We can take the constant to be
unity.

Once again, the condition of empty space implies that
the average value of the metric over a region of space-
time approaches the Minkowski metric as the volume of
the region increases.

Now consider, for example, a two-slit experiment in
this space-time. Let the situation s1 where only one slit
is open result in a metric gs1µν . Let the situation s2 where

only slit two is open result in a metric gs2µν . The case
where both slits are open is then by statement 4,

gs3µν = 1
2

(
gs1µν + gs2µν

)
.

Let us also assume that the screen in the experiment
is placed far from the slits so that the individual proba-
bilities −|gs1| and −|gs2| can be taken as constant over
the screen.

Finally, let us assume that the presence of the two-slit
experiment in the space-time does not appreciably alter
the situation that the metrics gs1µν and gs2µν are in the
average ηµν (that is to say that the insertion of the two-
slit experiment does not appreciably change the geometry
of space-time).

Now we will introduce an unphysical situation, a 'toy'
model, the utility of which will be seen shortly

It is of interest to ask what one can say about the
metric gs1µν . Around any small region of space-time, one
can always diagonalize the metric, so we'll consider a di-
agonal metric. If the particle is propagated in, say, the
x3 direction and, of course, the x4 (time) direction. We
might expect the metric to be equal to the Minkowski
metric, ηµν save for g33 and g44. (Here, we'll suppress
the metric stochasticity for the moment, by, for exam-
ple, averaging the metric components over a small region
of space-time.) We will then, for the moment, take the
following:

g̃s1µν =

∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 s 0
0 0 0 −t

∥∥∥∥∥∥∥ , and so |̃g
s1

µν | = −st,

where s and t are as yet unde�ned functions of position.

In order that |̃g
s1

µν | be constant, let s = t−1 so that
∣∣gs1µν∣∣ =∣∣ηµν∣∣ = −1.

Now we will introduce an unphysical situation, the util-
ity of which will be seen shortly.
Let s = eiαwhere α is some unspeci�ed function of

position. Consider the following metrics:

gs1µν =

∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 −e−iα

∥∥∥∥∥∥∥,

gs2µν =

∥∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 eiβ 0
0 0 0 −e−iβ

∥∥∥∥∥∥∥∥ ,
where β is again some unspeci�ed functions of position;
(−|g̃s1µν |)1/2 = (−|g̃s2µν |)1/2 = 1

(Note | 12Aµν | =
1
16 |Aµν |),

(−|g̃s3µν |)1/2 = (− 1
16 |g̃

s1
µν + g̃s2µν |)1/2

= [−1
16 (2 + ei(α−β) + e−i(α−β))]1/2

(−|g̃s3µν |)1/2 = 1
2abs[cos

1
2 (α− β)].

This is, of course, the phenomenon of interference. The
metrics gs1µν , g

s2
µν , and g

s3
µν describe, for example, the two-

slit experiment described previously. The analogy of the
function eiα and e−iα with Ψ and Ψ∗ (the free particle
wave functions) is obvious. The use of complex functions
in the metric, however, is unphysical. The resultant line
element ds2 = g̃µνdx

µdxν would be complex and hence
unphysical. The following question arises: Can we repro-
duce the previous scheme, but with real functions? The
answer is yes, but �rst we must brie�y discuss quadratic-
form matrix transformations[Ap.18].
Let,

X =

∥∥∥∥∥∥∥
dx1

dx2

dx3

dx4

∥∥∥∥∥∥∥, and again let G = |gµν |.

Then XtGX = ds2 = gµνdx
µdxν , where Xt is the trans-

pose of X. Consider transformations which leave the line
element ds2 invariant. Given a transformation matrixW,

X
′

= WX
and

XtGX = X ′tG′X ′ = (Xt(W t)−1)G′(W−1X).
[Note: (WX ′)t = X ′tW ′t.] However, XtGX ≡
(Xt(W t)−1)(W tGW )(W−1X)
so that G′ = W tGW.
In other words, the transformation W takes G into
W tGW. Now in the transformed coordinates, a metric
g̃s1µν ≡ Gs1 goes to W tGs1W. Therefore,

Ψ∗1Ψ1 = −|W tGs1W |
= −|W t| |gs1µν | |W |,

Ψ∗3Ψ3 = − 1
16 |W

tGs1W +W tGs21W |.
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= − 1
16 |W

t(Gs1 +Gs2) W |.
= − 1

16 |W
t| |Gs1 +Gs2| |W |.

If we can �nd a transformation matrix W with the
properties,

(i) |W | = 1,
(ii) W is not a function of α or β,
(iii)W tGW is a matrix with only real components,

then we will again have the interference phenomenon
with g

′

µν real, and again Ψ∗1Ψ1 = Ψ∗2Ψ2 = 1, and

Ψ∗3Ψ3 = 1
2abs

(
cosα−β2

)
. The appropriate matrix W

is,

∥∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 −i√

2
1√
2

0 0 1√
2
−i√

2

∥∥∥∥∥∥∥∥ = W.

If, as previously,∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 −e−iα

∥∥∥∥∥∥∥ ≡‖ g̃s1µν ‖,
then,∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 −cosα sinα
0 0 sinα cosα

∥∥∥∥∥∥∥ =‖ g̃′s1µν ‖= W tg̃s1µνW,

so that in order to reproduce the phenomenon of inter-
ference, the stochastic metric g̃µν will have o�-diagonal
terms. Incidentally, coordinates appropriate to g̃s1µνare,

x1′ = x1,
x2′ = x2,
x3′ = −i√

2
x3 + 1√

2
x4,

x4′ = 1√
2
x3 − i√

2
x4,

which is to say that with an appropriate coordinate
transformation (which is complex), we can treat the free
space probability distribution Ψ∗Ψ in a particularly sim-
ple way. Since the components xµ do not appear in pre-
dictions (such as Ψ∗Ψ), we may simply, as an operational
convenience, take g̃µν to be diagonal, but with complex
components.

DISCUSSION

Having recognized that quantum mechanics is merely
an operational calculus, and also having observed that
general relativity is a true theory of nature with both an
operational calculus and a Weltanschauung, we have at-
tempted to generate quantum mechanics from the struc-
ture of space-time. As a starting point we have used a
version of Mach's principle where in the absence of mass,
space-time is not �at, but unde�ned (or more exactly,
not well de�ned) such that PΘ(gµν) = −k|gµυ| (where
k is a constant) is, at a given point Θ, the probability
distribution for gµν (in the Copenhagen sense[Ap.19]) .
From this, the motion of a free (test) particle was

derived. This is a global approach to quantum theory.
It should be noted that there are two logically distinct
approaches to conventional quantum mechanics: a lo-
cal, and a global formulation. The local formalism re-
lies on the existence of a di�erential equation (such as
the Schrödinger equation) describing the physical situ-
ation (e.g. the wave function of the particle) at each
point in space-time. The existence of this equation is
operationally very convenient. On the other hand, the
global formulation (or path formulation, if you will) is
rather like the Feynman path formalism for quantum
mechanics[Ap.20], which requires the enumeration of the
�action� over these paths. This formalism is logically
very simple, but operationally it is exceptionally com-
plex. Our approach is a local formalism. Statement 3,
P (x, t) = −Ag, is local and provides the basis for the
further development of stochastic space-time quantum
theory. Statements 1 and 3 are then logically related.
The remaining Statements 2, 4, and 5 are secondary in
importance.

The conclusion is that with the acceptance of the state-
ments, the following can be deduced:
(i) the motion of a free particle, and the spread of the

wave packet,
(ii) the uncertainty principle,
(iii) the nature of conjugate variables,
(iv) interference phenomena,
(v) an indication of where conventional quantum me-

chanics might break down (i.e. the limited validity of
linear superposition).
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