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Abstract In this paper a proof of the existence of an infinite number of Sophie Germain primes, is
going to be presented. In order to do that, we analyze the basic formula for prime numbers and decide
when this formula would produce a Sophie Germain prime, and when not. Originally very difficult
problem (in observational space) has been transformed into a simpler one (in generative space) that
can be solved. First, it has been shown which numbers cannot be used for generation of Sophie
Germain primes. After that it is going to be shown that that number is smaller than the number of
numbers that are used for generation of composite odd numbers. Since it is well known that exist
infinite number of numbers that are used for generating the prime odds, it is easy to conclude that

the number of numbers that can be used for generating Sophie Germain primes is infinite, too.

1 Introduction

A prime pis a Sophie Germain prime if 2p+ 1 is prime, too [1]. In that case the prime number
2p + 1 is called safe prime. These special primes have applications in public key
cryptography, pseudorandom number generation, and primality testing; see, for example, [2,
4, 6]. Originally, they have been used also in the investigation of cases of Fermat's last
theorem [3]. It has been conjectured that there exist infinitely many Sophie Germain primes,

but this was unproven (see for instance, [5]).



In this paper it is going to be proved that exists an infinite number of Sophie Germain primes.
The problem is addressed in generative space, which means that prime numbers are not
going to be analyzed directly, but rather their representatives, in the other space, that can be

used to produce them.

Remark: Prime numbers 2 and 3 are in a sense special primes, since they do not share some
of the common features of all other prime numbers. For instance, every prime number, part
from 2 and 3, can be expressed in the form 6/ + 1 or 61 - 1, where | € N. So, in this paper most
of the time we analyze prime numbers bigger than 3. It has to be said that both 2 and 3 are

Sophie Germain primes, but that has no impact on the conclusion of this paper.

2 Proof

[t is easy to check that any prime number (apart form 2 and 3) can be expressed in the
form 6/4+1 or 6s-1 (J se N). Having that in mind, it is easy to check that numbers in the

form 6/+ 1, could never be Sophie Germain primes since the safe prime is in the form

2(6/+ 1) +1=12/+3 =3(4/+ 1),

and that is composite number divisible by 3. So, the prime number that can potentially be
Sophie Germain prime must be in the form 6s- 1 and then the safe prime is going to be in
the form 6(2s) - 1.

We denote any composite number (that is represented as a product of prime numbers bigger

than 3) with CPN5. Also, we mark with mp/a number in the form 6/+ 1, and with mps a
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number in the form 6s- 1 (/ se N). In that case, it is easy to check that any composite number
CPN5 can be expressed in the form mpl x mpl, mps x mps or mpl x mps.

So, if we have a number in the form 6 4- 1 that is composite number it must hold

_CPN5+1
N 6

Since CPN5 should be in the mpsform, CPN5 can be generally expressed as a product mp/x
mps, or

mpl/=6x+1and mps=6y-1(x, ye N),
which leads to

CPN5 = mplx mps=6(6xy-x+y) -1, (2.2)
or, due to symmetry

mpl/=6y+1and mps=6x-1,

which leads to

CPN5 = mplx mps=6(6xy+ x-y) -1, (2.3)
So, if we replace (2.2) or (2.3) in (2.1) we obtain forms of kthat potentially cannot produce
a Sophie Germain prime number. Those forms are expressed by the following equation

k=(6x—1)y+x (2.4a)
k=(x+1)y—x (2.4b)

where x; y € N, and they are equivalent (they will produce the same numbers). Having that

in mind, it is possible to use one or the other form interchangeably.
Also, we know that safe prime which is generated by 2 k cannot be composite if we would
like to have Sophie Germain pair. If the safe number is composite the following equation

must hold



__ CPN5+
6%2

k

(2.5)

where CPN5 is composite number in the mpsform. Using the same analysis as in the previous
case, and replacing for instance (2.2) in (2.5), we obtain additional cases in which &k cannot
be used to produce Sophie Germain prime pairs, and they are defined by the following
equation

(6x — 1y + g, X is even
k= _ 2.6
(6x—1)y+3x+x71, x is odd (26)

where x; ye N. Alternatively, it is possible to use the equation (2.3) and replace it in (2.5). In
that case we can obtain different equations that produce the same numbers as the equation
(2.6).

Equations (2.4b) and (2.6) (alternatively (2.4a) and (2.6) give a sufficient and necessary
condition for k% so that it cannot be used for generation of the prime pairs in the form (p; 2p
+ 1). In order to prove that there are infinitely many prime pairs in the form (p, 2p+ 1) we
need to prove that exists infinitely many A that cannot be expressed in the form (2.4b) or

(2.6). First, we will check the form of (2.4b, 2.6) for some values of x.

Casex=1 Casex=2 Case x=3 Case x=4
k=7y-1 k=13y-2 k=19y-3 k=5(5y-1)+1
=5y+3 k=11y+2 k=17y+10 =23y+2
Case x=5 Casex=6 Casex=7 Case x=8
k=31y-5 k=37y-6 k=43y-7 k=7(7y-1)-1
k=29%+17 k=5(7y)+3 k=41y+24 k=47y+4




So, we can see that kis represented by the threads (series of numbers) that are defined by
prime numbers bigger than 3. From examples, we can see thatif (6 x- 1) or (6x+ 1) represent
a composite number, kthat is represented by that number has also representation by one of
the prime factors of that composite number. This can be easily proved in the general case, by
direct calculation, using representations similar to (2.2, 2.3). Here only one case is going to

be analyzed. All other cases can be analyzed analogously. In this case we assume

(x—1)=(6l+1)(6s—1)
where (/ se N), we have
x=6ls—1+s.

Having that in mind, and selecting one representation of k that includes form (6x- 1), we

have

k=06x—-—1y+x=(6l+1)(6s—1)y+6ls—1+s

or

k=(6x—1)y+x=(6l+1)(6s—Dy+s6l+1)—1=(6l+1)((6s—Dy+s)—1

which means

k=(6l+1)f —1

and that represents already existing form of the representation of kfor factor (6/4+1), where

f=(6s—1)y+s.

Here we used the equivalency of the equations (2.4a) and (2.4b). That was also the case for

the Case x=4 that was presented in the previous table.



It can be seen that all patterns for k that potentially result in composite number, include
prime numbers. Now, it is going to be proved that the number of Athat cannot be represented
by the models (2.4b, 2.6) is infinite.
In order to do that, we are going to analyze the formula for the odd numbers and formula for
the odd composite numbers. It is well known that odd numbers a can be represented by the
following formula

a=2n+1,
where n € N. It is not difficult to prove that all composite odd numbers accould be presented
by the following formula

a.=2Qij+i+N+1=2(2j+1i+j)+1, (2.7)

where j je N Itis clear that prime numbers bigger than 3 are odd numbers that cannot be

presented by the previous formula and we know that the number of the primes is infinite. Now,

we are going to check what numbers can be presented by the formula m = 244/ for some

J.
Case j=1 Case j=2 Case j=3 Case j=4
m=3i+1 m=5i+2 m=7i+3 k=3(3i+1)+1
Case j=5 Case j=6 Case j=7 Case j=8
m=11i+5 m=13i+6 m=5(3i+1)+2 m=17i+8

Again we can see that we have mthat is represented by threads that are represented by odd

prime numbers. Here, again, we can see that the threads that are generated by composite




numbers can be generated by some of the threads defined by one of the factors of that
composite number. That can be easily checked. Comparing to the threads that define % that
represent numbers that cannot generate Sophie Germain primes, we can see that in both
vases we have threads defined by the same numbers, with the only difference that in the case
of composite primes we have additional thread that is defined by number 3. Having in mind
that threads that define m will leave infinite number of numbers that cannot be represented
by (2.7), we can conclude that the number of & that cannot be represented by the models
(2.4b, 2.6) is also infinite. And that completes the proof that number of Sophie Germain
primes is infinite.

Although, it is not going to be analyzed here, it can be said that using very similar method it

can be proved that the number of twin primes is infinite.
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