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Abstract

In this paper a proof of the existence of an infinite number of Sophie Germain

primes, is going to be presented. In order to do that, we analyse the basic formula for

prime numbers and decide when this formula would produce a Sophie Germain prime,

and when not. Originally very difficult problem (in observational space) has been

transformed into a simpler one (in generative space) that can be solved by elementary

math.
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1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is prime, too [1]. In that case the prime

number 2p + 1 is called safe prime. These special primes have applications in public key

cryptography, pseudorandom number generation, and primality testing; see, for example,

[2, 4, 6]. Originally, they have been used also in the investigation of cases of Fermat’s last

theorem [3]. It has been conjectured that there exist infinitely many Sophie Germain primes,

but this was unproven (see for instance, [5]).

In this paper it is going to be proved that exists an infinite number of Sophie Germain

primes. The problem is addressed in generative space, which means that prime numbers are

not going to be analysed directly, but rather their representatives, in the other space, that

can be used to produce them.

Remark: Prime numbers 2 and 3 are in a sense special primes, since they do not share

some of the common features of all other prime numbers. For instance, every prime number,

apart from 2 and 3, can be expressed in the form 6l + 1 or 6l − 1, where l ∈ N . So, in this

paper most of the time when we address prime numbers, we talk about the prime numbers

bigger than 3. It has to be said that both 2 and 3 are Sophie Germain primes, but that has

no impact on the conclusion of this paper.
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2 Proof

It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form

6l + 1 or 6s− 1 (l, s ∈ N). Having that in mind it is easy to check that numbers in the form

6l + 1, could never be Sophie Germain primes since the safe prime is in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1)

and that is composite number divisible by 3. So, the prime number that can potentially be

Sophie Germain prime must be in the form 6s− 1 and then the safe prime is going to be in

the form 6(2s)− 1.

We denote any composite number (that is represented as a product of prime numbers

bigger than 3) with CPN5. Also, we mark with mpl a number in the form 6l + 1, and

with mps a number in the form 6s− 1 (l, s ∈ N). In that case, it is easy to check that any

composite number CPN5 can be expressed in the form mpl×mpl, mps×mps or mpl×mps.

So, if we have a number in the form 6k − 1 that is composite number it must hold

k =
CPN5 + 1

6
. (1)

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product

mpl ×mps, or

mpl = 6x + 1 and mps = 6y − 1(x, y ∈ N),

which leads to

CPN5 = mpl ×mps = 6(6xy − x + y)− 1, (2)
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or, due to symmetry

mpl = 6y + 1 and mps = 6x− 1,

which leads to

CPN5 = mpl ×mps = 6(6xy + x− y)− 1. (3)

So, if we replace (2.2, 2.3) in (2.1) we obtain forms for all k that potentially cannot produce

a prime number. Those forms are expressed by the following equation

k =


(6x− 1)y + x

(6x + 1)y − x

, (4)

where x, y ∈ N . In order to prove the conjecture that exists infinitely many prime pairs

in the form (p, 2p + 1), we need to check when (2p + 1) is going to be a composite number

although p is prime number. First, we are going to consider case when k is in the form

(6x− 1)y + x. In that case we know that k1 that generates 2p + 1 is

k1 = 2k.

So, we are going to check situations in which k cannot be expressed in the form (6x−1)y+x

and 2k can be expressed in the form (6x − 1)y + x. (Simple example is in the case x = 1,

than k = 5y + 1 produces composite number, while the forms k = 5y, k = 5y + 2, k =

5y + 3, k = 5y + 4, still have potential to produce prime numbers. However if k = 5y + 3,

than k1 = 2k is actually in the form k1 = 5y + 1. So, the forms of k = 5y + 1 ∧ k = 5y + 3

cannot produce Sophie Germain prime.) In order to check it, k = (6x − 1)y + a, where

a ∈ {0, 1, ..., 6x − 2} ∧ a 6= x are going to be analysed. In those cases k has potential to
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produce prime numbers. In those cases k1 = 2k = 2((6x − 1)y + a) is going to produce a

composite number if k1 can be expressed as

k1 = 2((6x− 1)y + a) = (6x− 1)z + x,

where z ∈ N . If we solve this equation for a we get

a =
(6x− 1)(z − 2y) + x

2
. (5)

Now, we analyse 2 cases, when x is even and odd, separately. In the case x is even x can

be expressed as x = 2m,m ∈ N . In that case equation (2.5) can be written as

a =
(12m− 1)(z − 2y) + 2m

2
. (6)

Equation (2.6) has a solution that fulfils requirements for a only in the case z − 2y = 0,

and in that case

a = m =
x

2
. (7)

In the case x is odd, x can be expressed as x = 2m − 1,m ∈ N . In that case equation

(2.5) can be written as

a =
(12m− 7)(z − 2y) + 2m− 1

2
. (8)

Equation (2.8) has a solution that fulfils requirements for a only in the case z − 2y = 1,

and in that case

a = 7m− 4 = 3x +
x− 1

2
. (9)
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Using similar analysis for the case when k is in the form (6x+ 1)y− x, we obtain that in

the case k is even, a is defined as

a = −x

2
, (10)

while in the case x is odd, a is defined as

a = −7m + 3 = −3x− x + 1

2
. (11)

Now we can say, that in addition to equation (2.4), k cannot produce prime pairs in the

form (p, 2p + 1) in the following cases

k =



(6x− 1)y + x
2
, x is even

(6x + 1)y − x
2
, x is even

(6x− 1)y + 3x + x−1
2

, x is odd

(6x + 1)y − 3x− x+1
2

, x is odd

, (12)

where x, y ∈ N . Equations (2.4) and (2.12) give a sufficient and necessary condition for k,

so that it cannot be used for generation of the prime pairs in the form(p, 2p + 1). In order

to prove that there are infinitely many prime pairs in the form (p, 2p + 1) we need to prove

that exists infinitely many k that cannot be expressed in the form (2.4) or (2.12). In order

to do it, the number of k that cannot be expressed in the forms (2.4, 2.12) is going to be

calculated. First, we will check the form of (2.4, 2.12) for some values of x.



7

Case x = 1 Case x = 2 Case x = 3 Case x = 4

k = 5y + 1 k = 11y + 2 k = 17y + 3 k = 23y + 4

k = 5y + 3 k = 11y + 1 k = 17y + 10 k = 23y + 2

k = 7y − 1 k = 13y − 2 k = 19y − 3 k = 5(5y − 1) + 1

k = 7y − 4 k = 13y − 1 k = 19y − 11 k = 5(5y − 1) + 3

Case x = 5 Case x = 6 Case x = 7 Case x = 8

k = 29y + 5 k = 7(5y + 1)− 1 k = 41y + 7 k = 47y + 8

k = 29y + 17 k = 5(7y) + 3 k = 41y + 24 k = 47y + 4

k = 31y − 5 k = 37y − 6 k = 43y − 7 k = 7(7y − 1)− 1

k = 31y − 18 k = 37y − 3 k = 43y − 25 k = 7(7y − 1) + 3

From examples, we can see that if (6x− 1) or (6x + 1) represent composite number, k that

is represented by that number has also representation by one of the prime factors of that

composite number. This can be easily proved in the general case, by direct calculation using

representations similar to (2.2, 2.3). Here only one case is going to be analysed. All other

cases can be analysed analogously. In this case we assume

(6x− 1) = (6l + 1)(6s− 1),

where (l, s ∈ N). From previous equation x can be expressed as

x = 6ls− l + s.

Having that in mind, and selecting one representation of k that includes form (6x − 1), we
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have

k = (6x− 1)y − x = (6l + 1)(6s− 1)y − 6ls + l − s

or

k = (6l + 1)(6s− 1)y − s(6l + 1) + l = (6l + 1)((6s− 1)y − s) + l,

which means

k = (6l + 1)f + l

and that represents already existing form of the representation of k for factor (6l+ 1), where

f = (6s− 1)y − s.

So, we can see that all patterns for k that potentially result in composite number, include

prime numbers and we can calculate how many k cannot be represented by the models (2.4,

2.12). In order to do it, a method similar to the sieve of Eratosthenes [7] is going to be used.

When all numbers that can be represented in form

5y + 1 and 5y + 3,

are removed from natural numbers, it can be seen that r1 = 2/5 of all natural numbers are

removed. So, c1 = 1 − 2/5 = 3/5 of all natural numbers cannot be represented by those

two patterns and they still contain some k that could be used for representation of Sophie

Germain primes. If, now, in addition, the natural numbers in the form

7y − 1 and 7y − 4,
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are removed, then the ratio of removed numbers can be calculated by the following equation

(together with previously removed numbers, and taking care that every removed number

is calculated only once; basically, we apply the formula for calculation of the probability of

occurring of two events that are not mutually exclusive P (A∪B) = P (A)+P (B)−P (A∩B))

r2 = r1 +
2

7
− 2

7
× r1 =

2

5
+

2

7
− 4

5× 7
=

20

5× 7
.

So, we have

c2 = 1− r2 =
3× 5

5× 7
,

of all natural numbers that potentially can be used for ”generation” of Sophie Germain

primes.

Now, we denote prime numbers bigger than 3 as p5, and define set S as

S = {p5(1), p5(2), ..., p5(i)},

where i is a natural number (in this moment we consider i bigger than 2), and p5(1) = 5,

p5(2) = 7 and so on. So, after removal of ith pair of numbers related to the ith p5, we will

have

ri = 21
∑
p∈S

1

p
− 22

∑
p,q∈S,
p 6=q

1

p× q
+ 23

∑
p,q,r∈S,
p 6=q 6=r

1

p× q × r
+ ... + (−1)i+12i

∏
p∈S

1

p
,

and

ci = 1− ri =

∏
p∈S(p− 2)∏

p∈S p
.

This formula can be proved by using mathematical induction method (but also by some

other methods). Here we briefly present the induction method.
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We have already seen that basis of the induction method for i = 2 is already satisfied.

We suppose that formula holds for i = n. Now, we are going to prove that it holds for

i = n + 1, too. So, since it holds

cn = 1− rn =

∏n
j=1(p5(j)− 2)∏n

j=1 p5(j)
,

also holds

rn = 1− cn =

∏n
j=1 p5(j)−

∏n
j=1(p5(j)− 2)∏n

j=1 p5(j)
.

When we remove the next pair of numbers that correspond to p5(n + 1) we have

rn+1 = rn +
2

p5(n + 1)
− 2

p5(n + 1)
× rn.

After a few elementary calculations, we obtain the following equation

rn+1 =

∏n+1
j=1 p5(j)−

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
= 1−

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
,

which means that cn+1 is defined by the following equation

cn+1 =

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
,

and that concludes the proof.

If we continue process until we remove all possible patterns (defined by (2.4, 2.12)) related

to all prime numbers bigger than 3 (and that is an infinite number), the number of k that

cannot be represented by any of the combinations in the form (2.4, 2.12), is given by

C = lim
n→+∞

(
cn ×

n∏
j=1

p5(j)

)
=

+∞∏
j=1

(p5(j)− 2).

It can be easily concluded that C is an infinite number. That concludes the proof that

number of Sophie Germain primes is infinite.
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