
Via Geometric (Clifford) Algebra: Equation for

Line of Intersection of Two Planes

May 5, 2019

James Smith

nitac14b@yahoo.com

https://mx.linkedin.com/in/james-smith-1b195047

Abstract

As a high-school-level example of solving a problem via Geometric

Algebra (GA), we show how to derive an equation for the line of intersection

between two given planes. The solution method that we use emphasizes

GA’s capabilities for expressing and manipulating projections and rotations

of vectors.

“Find the equation, in the form z = z0+λû, of the line of intersection

between the planes P1 : (x− a1) ∧ B̂1 and P2 : (x− a2) ∧ B̂2.”
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Figure 1: Plane P1 consists of the endpoints of all those vectors x that satisfy

the condition expressed by the equation (x− a1)∧ B̂1 = 0. Plane P2 consists of

the endpoints of all those vectors x that satisfy the condition expressed by the

equation (x− a2) ∧ B̂2 = 0.

1 Introduction

The line of intersection of two planes is an important element of many mathe-

matical and physical problems. Here, we’ll develop an equation for such a line

using Geometric-Algebra (GA) concepts that are discussed in greater detail in

Refs. [1] and [2].

2 Problem Statement

In Fig. 1,‘Given the planes (x− a1)∧B̂1 = 0 and (x− a2)∧B̂2 = 0,

derive an equation for their line of intersection, in the parametric

form z = z0 + λû.

3 Solution

To define the line of intersection, we will find the line’s direction (û) and one

point along the line. As that point, we will choose the one closest to the origin.

We will call the vector from the origin to that point z0.



Figure 2: The vector ûB̂1 is parallel to the bivector B̂1, and the vector B̂2û

is parallel to the bivector B̂2. Both vectors are 90◦ rotations of the vector û,

but are not necessarily perpendicular to each other. Instead, the angle between

them is equal to the angle between the two planes.

3.1 Finding û

The vector û can be found by several routes, but a simple one is to consider the

two vectors ûB̂1 and B̂2û (Fig. 2). The vector û that we seek is the dual of the

unit bivector Q̂ (Fig. 3) that contains ûB̂1 and B̂2û. We find that bivector by

simplifying the
(
ûB̂2

)
∧
(
B̂1û

)
. How? We begin by recognizing that because

û is parallel to B̂1, ûB̂1 = −B̂1û. Similarly, B̂2û = −ûB̂2. Thus,(
ûB̂1

)
∧
(
B̂2û

)
= 〈
(
ûB̂1

)(
B̂2û

)
〉2

= 〈
(
−B̂1û

)(
−ûB̂2

)
〉2

= 〈B̂1B̂2〉2.

The corresponding unit bivector (which we have called Q̂) is 〈B̂1B̂2〉2/‖〈B̂1B̂2〉2‖.
Therefore,

û = Q̂I−1
3

=
[
〈B̂1B̂2〉2/‖〈B̂1B̂2〉2‖

]
I−1
3 . (3.1)

3.2 Finding z0

The vector z0 that we seek lies in a plane that passes through the origin, and is

parallel to Q (Fig. 4). Vectors ûB̂1 and B̂2û are also parallel to said plane. We

will find z0 by solving the triangle whose vertices are the endpoint of said vector,

and the endpoints of the projections, upon that same plane, of the vectors a1
and a2 (Figs. 5, 6).
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Figure 3: The bivector Q contains (and is the outer product of))the vectors ûB̂1

and B̂2û. Although those two vectors are unit vectors, Q is not necessarily a

unit bivector, because the two vectors are not necessarily perpendicular to each

other.

Figure 4: The vector z0 that we seek lies in a plane that passes through the

origin, and is parallel to Q. Vectors ûB̂1 and B̂2û are also parallel to said plane.

Figure 5: To Fig. 4, we have added PQ (a1) (the projection of vector a1) and

PQ (a2) (the projection of vector a2).
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Figure 6: Looking downward (i.e., in the direction −û) upon the gray plane

shown in Figs. 4 and 5. To find z0, we will begin by solving the blue triangle

for the vector µ1ûB̂1. Then, z0 = PQ (a1) + µ1ûB̂1.

From Fig. 6,

µ1ûB̂1 + µ2B̂2û = PQ (a2)−PQ (a1) .

To solve for µ1, we’ll eliminate µ2 by taking the outer product of both sides

with the vector B̂2û:(
µ1ûB̂1 + µ2B̂2û

)
∧
(
B̂2û

)
= [PQ (a2)−PQ (a1)] ∧

(
B̂2û

)
µ1

(
ûB̂1

)
∧
(
B̂2û

)
= [PQ (a2)−PQ (a1)] ∧

(
B̂2û

)
.

Q̂
−1

= Q̂, and 〈B̂1B̂2〉−1
2 =

−〈B̂1B̂2〉2/‖〈B̂1B̂2〉2‖2/

Next, we use properties of projections and the outer product to solve for µ1:

µ1

[
〈
(
ûB̂1

)(
B̂2û

)
〉2
]

= [PQ (a2 − a1)] ∧
(
B̂2û

)
µ1〈B̂1B̂2〉2 = 〈

{[
(a2 − a1) · Q̂

]
Q̂

−1
}

=PQ(a2−a1)

(
B̂2û

)
〉2

µ1〈B̂1B̂2〉2 = −〈
{[

(a2 − a1) · Q̂
]
Q̂
}(

B̂2û
)
〉2

µ1〈B̂1B̂2〉2
[
〈B̂1B̂2〉−1

2

]
= 〈
{[

(a2 − a1) · Q̂
]
Q̂
}(

B̂2û
)
〉2
[
〈B̂1B̂2〉2

]
/‖〈B̂1B̂2〉2‖2

µ1 = 〈〈(a2 − a1) Q̂〉1
=(a2−a1)·Q̂

Q̂
(
B̂2û

)
〉2
[
〈B̂1B̂2〉2

]
/‖〈B̂1B̂2〉2‖2

= 〈〈(a2 − a1) Q̂〉1Q̂
(
−ûB̂2

)
〉2
[
〈B̂1B̂2〉2

]
/‖〈B̂1B̂2〉2‖2

= 〈〈(a2 − a1) Q̂〉1
(
−Q̂û

)
B̂2〉2

[
〈B̂1B̂2〉2

]
/‖〈B̂1B̂2〉2‖2.
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Now, we recall that û = Q̂I−1
3 . Therefore, −Q̂û = −Q̂Q̂I−1

3 = I−1
3 , and

µ1 = 〈〈(a2 − a1) Q̂〉1I−1
3 B̂2〉2〈B̂1B̂2〉2/‖〈B̂1B̂2〉2‖2. (3.2)

Our purpose in finding µ1 was to then proceed to find µ1ûB̂1. We’ll do

that now.

µ1ûB̂1 =

{[
〈〈(a2 − a1) Q̂〉1I−1

3 B̂2〉2
‖〈B̂1B̂2〉2‖2

]
〈B̂1B̂2〉2

}
︸ ︷︷ ︸

=µ1

{[
〈B̂1B̂2〉2
‖〈B̂1B̂2〉2‖

]
I−1
3

}
︸ ︷︷ ︸

=û

B̂1

= −
{
〈〈(a2 − a1) Q̂〉1I−1

3 B̂2〉2I−1
3 B̂1

}
/‖〈B̂1B̂2〉2‖.

To finish, we recognize that I−1
3 = −I3, so that

µ1ûB̂1 = −
{
〈〈(a2 − a1) Q̂〉1I3B̂2〉2I3B̂1

}
/‖〈B̂1B̂2〉2‖.

Then,

z0 = PQ (a2 − gabolda1) + µ1ûB̂1

= −〈(a2 − a1) Q̂〉1Q̂−
〈〈(a2 − a1) Q̂〉1I3B̂2〉2I3B̂1

‖〈B̂1B̂2〉2‖
. (3.3)
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