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ABSTRACT Time series has a wide range of applications in various fields. Recently, a new math tool,
named as visibility graph, is developed to transform the time series into complex networks. One shortcoming
of existing network-based time series prediction methods is time consuming. To address this issue, this paper
proposes a new prediction algorithm based on visibility graph and markov chains. Among the existing
network-based time series prediction methods, the main step is to determine the similarity degree between
two nodes based on link prediction algorithm. A new similarity measure between two nodes is presented
without the iteration process in classical link prediction algorithm. The prediction of Construct Cost Index
(CCI) shows that the proposed method has the better accuracy with less time consuming.

INDEX TERMS Time series, Visibility graph, Markov chains, Similarity measure, Link prediction,
Construct Cost Index.

I. INTRODUCTION

Time series analysis and prediction is an important topic
which is used in the fields of traffic [1], engineering [2],
[3] complex networks [4]–[6] and so on [7]–[10]. Time
series analysis can help analyze the characteristics of data
and explore potential information. For example, predicting
project costs can help individuals and organizations reduce
costs and schedule projects. Construction cost index (CCI)
is the weighted sum of the average price of labor, standard
structural steel, Portland cement and wood, which is widely
used in housing construction [11].

There are a lot of traditional time series foresting meth-
ods including the stochastic [12], support vector machines
(SVM) [13] and neural network methods [14]. Autoregres-
sive Integrated Moving Average (ARIMA) [12] is a typical
method in stochastic methods. ARIMA has several types,
such as Autoregressive Moving Average (ARMA) [15]–[17],
Autoregressive (AR) [18]–[20], Moving Average (MA) [21]–
[23]. Neural Network [12], [14], [24] is a data-driven ap-
proach. SVM [13], [25], [26] has many applications in time
series, such as regression, signal processing and time series
analysis.

Recently, complex networks [27]–[31] have also been used
for time series analysis [32], [33]. Many studies have shown
that complex networks can help predict time series, and the
effective information is mined by researching the complex

networks [34]–[37]. Lacasa et al. [27] proposed a method
to convert time series into a network, which can effectively
present the internal structure of the network. Liu et al.
[38] proposed a method to measure the similarity of two
nodes, some scholars use this method for time series [39]–
[41]. However, this method needs to iteratively calculate the
similarity of two nodes, which is very time-consuming.

To address this issue, a fast method is proposed to calculate
the similarity of two nodes without iteration. the proposed
method is mainly divided into four steps. Firstly, the time
series is converted into complex networks. Then the new
method is used to calculate the similarity between the nodes.
Finally the k nodes which are the most similar to the last
node are determined, and the weights are calculated to make
a prediction.

The structure of this article is as follows: preliminaries will
be introduced in the Section 2. Section 3 will introduce the
proposed method. The experiments will be carried out in the
Section 4, and finally the summary will be given in Section
5.

II. PRELIMINARIES
In this section, some basic knowledge will be introduced
including visibility graph [42] and transition probability [38].

A visibility graph [43], [44] algorithm is an algorithm that
converts a time series into complex networks [27], [45]. The
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constructed graph inherits several properties of the series.
The periodic sequence is converted into a regular graph, and
the random sequence is converted into a random graph.

Definition 1 A time series is defined as Y =
{y1, y2, . . . yN}, where iεT and T is the index of time [46].

Definition 2 Connectivity in time series is defined as
follows [27].

yk < yj + (yi − yj)
j − k
j − i

& i < k < j (1)

If the points (i, yi) and (j, yj) satisfy the above formula,
then the two points are connected.

Note that the visibility graph has a total of three properties.
• Connected: Each adjacent point is connected.
• Undirected: the visibility is non-directional.
• Mapping in-variance: visibility criterion is invariant for

both horizontal and vertical scaling and horizontal and
vertical translation.

The transition probability is the key parameter in link
prediction.

Definition 3 The transition probability is defined by [38]

Pij =
Iij
Di

(2)

Where Pij is the probability that i turns to j, Di is the degree
of point (i, yi), and

Iij =

{
1, yk < yj + (yi − yj) j−kj−i & i < k < j

0, otherwise

III. PROPOSED METHOD
This paper proposes a new method that uses the past N data
points to predict the (N + 1th) data point.

The flow chart of the proposed method is shown in Figure
1.

Figure 1: Flow chart of proposed method

STEP 1 Convert time series Y = {y1, y2, . . . yN} into
complex neteorks according to Eq.(1). The visibility algo-
rithm is an algorithm that converts time series into a visibility
graph [27].

STEP 2 Calculate the probability transfer matrix accord-
ing to Eq.(2). The transition probability of two nodes can be
regarded as a similar measure of two nodes. Zhang et al. [39]
explained in detail why the transition probability can be used
to measure the similarity of two nodes. However, the method
proposed by Zhang et al. [39] is very time consuming. It is
necessary to present a faster way.

STEP 3 A method of similarity of new computational
nodes is proposed based on stationary distribution of Markov
chains in this step. The stationary distribution of the Markov
chain is determined by the transition matrix and the initial
distribution. Note that we assume that the time series Y =
{y1, y2, . . . yN} is a Markov chain.

In the method of time series prediction based on complex
networks, a key step is to calculate the similarity between the
Nth node and the previous N − 1 nodes. Then, the value of
the (N + 1)th node is determined by the Nth node and the
Jth node. Where the Jth node is the node most similar to
the Nth node, which can be seen in Figure 2.

Nth N+1thJth

Predict

Figure 2: Predict time series based on complex networks

To the best of our knowledge, most current methods of
calculating similarity are based on link prediction. The ad-
vantage of this method is that it can calculate the similarity
of any two nodes in a complex network. However, isn’t the
similarity of such compute nodes fully applicable to time
series? In fact, it is only necessary to calculate the similarity
between the Nth node and the previous N − 1 nodes.
This method uses the value of the stationary distribution
of the probability transfer matrix as the similarity, which is
presented as follows.

V TNj(j) = PTV0 (3)

Where V is the N -dimensional column vector, V TNj(j) is
the similarity between the Nth node and the Jth node, and
V0 is the probability distribution of the initial nodes. In the
proposed method, we set T ensuring that the

∥∥V T+1 − V T
∥∥

are less than 10−5. In the link prediction, the similarity of any
two nodes is calculated as follows [39].

SSRWij =

T∑
t=0

ki
2|E|

P tπi +
kj

2|E|
P tπj (4)

Where SSRWij is the similarity between node i and node j,
ki and ki are the degrees of nodes i and node j, |E| is the
number of edges in the network. Note that π is different from
V . πi is an N -dimensional column vector, where the value
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of the i-th element is 1, and the value of the other elements
is 0. V is a column vector of N , representing the probability
distribution of all nodes, where the values of all elements are
between 0 and 1.

Normally, calculating the similarity between theNth node
and the previous N − 1 nodes requires N − 1 calculations
based on link prediction. However, in the proposed method,
it only needs to be calculated once [39].

It is noted that one property of the Markov chain is utilized
in calculating the similarity of nodes: the limit distribution
is the same as the stationary distribution. The process of
certification is provided in Section VI.

STEP 4 This step first looks for the top k maximum values
in V . Here, it is considered that the top k maximum values
points are most similar to the Nth point.The final prediction
can be calculated as follows.

yN+1 =
k∑
r=1

Vr∑k
j=1 Vj

(
yN − yr
N − r

((N + 1)−N) + yN ) (5)

Where V TNj(j) is recorded as Vj .

IV. APPLICATION IN CCI PREDICTION
This section verifies the effectiveness of the method through
CCI data. The CCI data set is the engineering cost data [47],
[48], with a total of 295 data points. From January of 1990
to July of 2014. The flow chart of the whole experiment is
shown below.

In order to assess the accuracy of the forecast, a total of
5 evaluation criteria are choosed including normalized root
mean square error (NRMSE), mean absolute percentage error
(MAPE), symmetric mean absolute percent error (SMAPE),
mean absolute difference (MAD), Root Mean Squared Error
(RMSE) [49].

A. STEP BY STEP PREDICTION

NRMSE =

√
1
N

∑N
i=1 |ŷi − yi|2

ŷmax − ŷmin
(6)

MAPE =
1

N

N∑
i=1

|ŷi − yi|
ŷi

× 100 (7)

SMAPE =
2

N

N∑
i=1

|ŷi − yi|
ŷi + yi

(8)

MAD =
1

N

N∑
i=1

|ŷi − yi| (9)

RMSE =

√√√√ 1

N

N∑
i=1

|ŷi − yi|2 (10)

The flow chart of the prediction is shown in Figure 3.

Prdicted y(i+2)

Start i=1

Proposed
method

previous data=
{y(i)|i=1,2,...,N}

Error(i+2)

i+1>N

i=i+1

End

Yes

Figure 3: Flow chart of the prediction

Table 1 shows a comparison of the three methods including
SMA [50], Zhang et al.’ [39] method and proposed method.
It can be seen that the proposed method performs better than
the previous method on three indicators.

MADRMSEMAPE(%)NRMSE(%)
SMA(k=1) [50] 21.59 32.73 0.3110 0.6350
Zhang et al. [39]20.05 29.33 0.2889 0.5690
Proposed method19.88 28.06 0.2899 0.5455

Table 1: Comparison in three methods

Figure 4 shows a comparison of real and predicted values
in the CCI data set. It can be seen that the overall predicted
value is very consistent with the real, but there is a partial
error.
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Figure 4: The real values and predicted values of CCI

B. OUT-OF-SAMPLE PREDICTIONS

To further verify the effectiveness of the proposed method.
The entire experimental process can be seen on Algorithm 1.
The sliding window method is used to test. In the experiment,
the sliding window was set to L = 3, L = 6, L = 12.

Algorithm 1
Require: Dataset, length of L;
Ensure: Average error;

for i = 1 to (N − L− 2) do
Traindataset == {x|x(i), i = 1, . . . , k + 1} ;
for j to L do
ŷ = Proposedmethod(Traindataset(k + j + 1));

end for
Error;

end for
Averageerror;

Table 2 shows the error of non-synchronization. It can be
seen that the MAD, MAPE, SMAPE, and RMSE gradually
increase with the increase of the step size, but the NRMSE
decreases with the increase of the step size.

L MAD MAPE SMAPE RMSE NRMSE
3 30.8937 0.4522 0.4531 34.0824 185.618
6 42.1445 0.6222 0.6222 48.1535 73.4600
12 56.4889 0.8377 0.8414 65.6824 38.9931

Table 2: Errors comparison in three step size
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Figure 5: MAPE in three step size

Figure 5 shows that each error of the error MAPE is in
three step size.
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Figure 6: MAPE error L = 12 comparations with other
methods

Figure 6 shows the comparison of different methods on
MAPE [39]. Where the time consumption is smaller, the
accuracy of the proposed method is the same as that of the
Zhang et al.’ [39] method.

V. CONCLUSIONS
Based on the stationary distribution of visibility graph and
markov chains [51], a more efficient method is proposed to
predict the time series.

The proposed method is divided into four steps. The first
step is to convert the time series into a visibility graph. The
second step uses the visibility graph to calculate the probabil-
ity transfer matrix. The third step uses the properties of the
probability transfer matrix to solve the stationary distribution.
The fourth step is based on finding the point with the highest
pro-k probability as the most similar point to the Nth, and
the value of the (N + 1th) point is predicted according to the
weighted coefficient.

The contribution of this paper is that a faster method to
calculate similarity betweenNth and previousN−1th nodes
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is proposed. In predicting that the value of the N+1th node is
jointly determined by the first k nodes, it seems to improve
the accuracy.

VI. APPENDIX
Definition 4 The stationary distribution V = {v1, v2, . . . vN}
is defined as follows.
•
∑
jεE vj = 1.

• vj =
∑
iεE viPij .

Where PV = V is the matrix form of the above formula.
Definition 5 If there is a limit, for all states i and j, the

limit distribution is defined as follows.

lim
n→∞

Pnij = Πj &
∑
jεE

Πj = 1 (11)

Theorem 1 The stationary distribution of Markov pro-
cesses is equal to the limit distribution:

Proof Assume that the limit distribution of the Markov
chain X = {x(n), n = 1, 2, . . . } is (Π1,Π2, . . . ).

lim
n→∞

Pnij = Πj (12)

because pn+1
ij =

∑
rεE Πr · Prj . So when n tends to

infinity
Πj =

∑
rεE

Πr · Prj (13)
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