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rs, which when considered within the complex  plane, constitute Unicentered 
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1.  Introduction 

                     

     Its well-known in number theory a complex number whose real and  ima-  

ginary parts are both integers: Gaussian Integer.  The Gaussian integers   are 

the set:  Z[i] := { a +  bi  |   a, b ∈ Z }, where i
2
 = - 1.   Gaussian integers are 

closed under addition and multiplication and form commutative ring,  which 

is a subring of the field of complex numbers.      When considered within the 

complex plane the Gaussian integers constitute the 2-dimensional integer lat- 

tice.  The Gaussian integers form unique factorization domain:  it is irreduci- 

ble if and only if it is a prime(Gaussian primes).  The field of Gaussian ratio- 

nals consists of the complex numbers whose real and imaginary part are both 

rational(see, e.g., [3]).  

    The norm of a Gaussian integer is its product with its conjugate: 

    N(a +  bi) = (a + bi)(a - bi) = a
2
 + b

2
. 

    The norm is multiplicative, that is, one has: 

     N(zw) = N(z)N(w),  z, w ∈ Z[i]. 
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     The following is unsolved problem regarding Gaussian Integers:     if you 

are allowed only steps of bounded size, is it possible to walk to ∞     stepping 

only on Gaussian primes? 

 

     Another well-known integral subclass of complex numbers are Eisenshte- 

in integers:  complex numbers of the form:  z = a + bω, where a and b are in- 

tegers and  ω2 
 +  ω + 1 = 0.       The Eisenshtein integers form a triangular la- 

ttice in the complex plane, in contrast with Gaussian integers,   which form a 

square lattice in the complex plane.  The Eisenstein integers form a commut- 

ative ring as well and similar to Gaussian integers form a Euclidean domain, 

which supposes unique factorization of Eisenshtein integers into Eisenshtein 

primes. 

 

       Similar integral subclasses can be defined for quaternions: Lipschitz and 

Hurwitz Integers(quaternions). 

 

      Quaternions are generally represented in the form:   q =  a + bi + cj + dk, 

where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and i, j and k are the fundamental quate- 

rnion units and are  a number system that extends the  complex numbers(see, 

e.g., [1], [2]).     

 

      The set of all quaternions H is a normed algebra, where the norm is mul- 

tiplicative:   || pq || = || p || || q ||, p ∈ H, q ∈ H, || q ||
2
  =  a

2
 + b

2 
+ c

2
 + d

2
.  

 

      This norm makes it possible to define the distance d(p, q) = ||p - q||,  whi- 

ch makes H into a metric space. 

 

       Lipschitz Integer(quaternion) is defined as: 

 

        L  :=  { q:  q =  a + bi + cj + dk  |  a ∈ Z,  b ∈ Z, c ∈ Z,  d ∈ Z }. 

 

       Lipschitz  Integer(quaternion) is a quaternion, whose components are all 

integers. 

 

       Hurwitz Integer(quaternion) is defined as: 

 

       H  :=  { q:  q =  a + bi + cj + dk  |  a, b,  c,  d ∈ Z + 1/2}. 
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       Thus,     Hurwitz Integer(quaternion) is a quaternion, whose components  

are either all integers or all half-integers. 

 

2.  Polar Complex Integers      
 

     Let us introduce a new subclass of complex numbers and a new  approa-     

ch for their definition accordingly:   Polar Complex Integers.   
 

     Its well-known for a complex number  z =  Re(z) + Im(z)i = a + ib,   a ∈ 

R, b ∈ R, i
2
 = -1, to use an alternative option for coordinates in the  complex 

plane:      polar coordinate system that uses the distant of the point z from the   

origin and the angle,      subtended between the positive real axis and the line   

segment in a counterclockwise  sense(see, e.g., [4], [5]).                

 

       The absolute value of the complex number:   r =  |z| is the distance to the 

origin of the point, representing the complex number z in the complex plane. 

 

        The argument of  z:  ϕ, is the angle of the radius with the    positive real  

axis. Note that there are two notations of angle ϕ: in degree and in radian. 

 

        Together, r and ϕ gives another way of representing complex  numbers, 

the polar form.   Recovering the original rectangular co-ordinates     from the 

polar form is done by the formula called trigonometric form: 

 

         z = r(cos ϕ + i sin ϕ). 

 

         Recall that addition of two complex numbers can be done geometrical-

ly by constructing  the corresponding parallelogram. 

 

          Given two complex numbers: 

 

          z1 = r1 (cos ϕ1 + i sin ϕ1) and z2 = r2 (cos ϕ2 + i sin ϕ2), multiplication     

          of z1 and z2 in polar form is given by:  

           z1z2  = r1 r2 ( cos (ϕ1 + ϕ2) + i sin (ϕ1 + ϕ2) ). 

           Similarly, division is given by: 

           z1 / z2  =  = r1 / r2 ( cos (ϕ1 - ϕ2) + i sin (ϕ1 -  ϕ2) ). 
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           Using polar form, let us introduce the following new subclass of com- 

plex numbers, Polar Complex Integers: 

            P := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z, ϕ ∈ Z,   

                     - 180
°
 <  ϕ  ≤ 180

°
 }. 

Theorem 1.  Polar Complex Integers are closed under multiplication. 

Proof.  It follows from the formula:   

            z1z2  = r1 r2 ( cos (ϕ1 + ϕ2) + i sin (ϕ1 + ϕ2) ).                                       

Theorem 2.  Polar Complex Integers are not closed under addition. 

Proof.  Let us consider  z1 = 0 + 1i and z2 = 1 + 0i.  

             For degree notation, where  z1 = 1(cos 90
°
 + i sin 90

° 
)  and 

z2 = 1(cos 0
°
  + i sin 0

° 
), absolute value of  z1 + z2  is an irrational number.   

Theorem 3.  Polar Complex Integers are not closed under division. 

Proof.  It follows from the formula: 

            z1 / z2  =  = r1 / r2 ( cos (ϕ1 - ϕ2) + i sin (ϕ1 -  ϕ2) ).                               

Corollary 1.  Polar Complex Integers are mutually primes if and only if 

their absolute values are mutually primes.  

Theorem 4.  Polar Complex Integers form countable infinite set.  

Proof.  It follows from the definition.                                                                                                     

           Similarly to aforementioned Hurwitz integers,    let us introduce Polar 

Complex Hurwitz-like Integers: 

            PH := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z + 1/2 , ϕ ∈ Z + 1/2, 

                         - 180
°
 <  ϕ  ≤ 180

°
 }, 

and similarly to aforementioned    Gaussian Rationals,  the corresponding set 

of Polar Complex Rationals can be introduced as well.  
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Theorem 5.      Polar Complex Hurwitz-like Integers form countable infinite 

set. 

Proof.  It follows from the definition.                                                             

3.  Unicentered Radial Lattices of Polar Complex Integers and Polar 

     Complex Hurwitz-like Integers 
 

         As we mentioned above, when considered within the complex plane, 

the Gaussian integers constitute the 2-dimensional integer lattice and the  Ei- 

senshtein integers form a triangular lattice in the complex plane,   in contrast 

with Gaussian integers, which form a square lattice in the complex plane.   

 

           As it follows from the definition: 

 

           P := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z, ϕ ∈ Z,   

                     - 180
°
 <  ϕ  ≤ 180

°
 },   

by fixing the integer radius r ∈ Z,  Polar Complex Integers, when considered 

within the complex plane, constitute Unicentered Radial Lattice. 

           Accordingly, for the Polar Complex Hurwitz-like Integers, as it follo- 

ws from the definition : 

            PH := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z + 1/2 , ϕ ∈ Z + 1/2, 

                         - 180
°
 <  ϕ  ≤ 180

°
 }, 

by fixing the integer radius r ∈ Z,    Polar Complex     Hurwitz-like Integers, 

when considered within the complex plane, constitute      Unicentered Radial 

Lattice as well. 

4.  Polar Quaternionic Integers     

     Similarly, we can introduce Polar Quaternionic Integers. 

    Indeed, its well known to represent quaternions as pairs of complex   nu- 

mbers:  q =  a + bi + cj + dk  ↔  (a + bi,  c + di)  (Cayley-Dickson construc- 

tion). 

 

     Correspondingly, considering each of two parts in polar form: 
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     a + bi = r(cos ϕ + i sin ϕ),  c + di = ρ(cos φ + i sin φ),         

 

let us introduce Polar Quaternionic Integers: 

 

   PQ := { q:  q =  a + bi + cj + dk  ↔  (a + bi,  c + di), 

               a + bi = r(cos ϕ + i sin ϕ),  c + di = ρ(cos φ + i sin φ) | 

               q ∈ H,  r ∈ Z, ϕ ∈ Z,  ρ ∈ Z,  φ ∈ Z,   

               - 180
°
 <  ϕ  ≤ 180

°
,  - 180

°
 <  φ   ≤ 180 }, 

 

and Polar Quaternionic Hurwitz-like Integers: 

 

PQH := { q:  q =  a + bi + cj + dk  ↔  (a + bi,  c + di), 

               a + bi = r(cos ϕ + i sin ϕ),  c + di = ρ(cos φ + i sin φ)  | 

               q ∈ H,  r ∈ Z + 1/2, ϕ ∈ Z + 1/2,  ρ ∈ Z + 1/2,  φ ∈ Z + 1/2, 

 

               - 180
°
 <  ϕ  ≤ 180

°
,  - 180

°
 <  φ   ≤ 180 }, 

and similarly to aforementioned Gaussian Rationals,    the corresponding set 

of Polar Quaternion Rationals can be introduced as well.  

    

5.  Conclusions 

 

           We unveiled a special class of complex numbers, wherein their absol- 

ute values and arguments,      given in a polar coordinate system are integers,       

which when considered within the complex plane,    constitute    Unicentered   

Radial  Lattice and similarly for quaternions. 
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