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Abstract

The writing delineates some peculiar aspects of the covariant operator. It appears that the metric
coefficients have to disappear.

Introduction

The successive operations of two covariant derivative operators on a tensor is usually non
commutative. But there are many intricate issues involved in the issue. It seems that the metric
coefficients have to vanish.
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We consider the covariant derivative operator.For scalars in a torsion free field
ViVif =V;Vif (1)

Since g“BPaQﬁis a scalar we have

ViVi(9 PaQp) = V;Vi(9* PaQp) ()
Since V;g*f = 0
9PV (PeQp) = 9P V;Vi(PaQp)
= g*v,V;(P,Qp) — g*PV;V;(P,Qp) = 0
= g%|v,V; — V;V;|(P,Qp) = 0 for arbitraryP, and Qp (3)
We have,
ViV;(P2Qp) = Vi(P2V;Qp + QpY;Pu)

ViV;(P,Qp) = P, ViV;Qp + (ViP)(V;Q5) + (V:Qp) (ViPy) + QpViV,P, (4)
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ViVi(P.Qp) = V;(P.ViQp + QpViFy)
ViVi(PaQp) = PuViViQp + (ViPa) (ViQp) + (V;Qp) (ViPo) + QpV;ViPy (5)
From (4) and (5)
[ViV; = ViV (PaQp) = Pu(ViV; = V;¥:)Qp + Qp(ViV; — V;V:) Pa(6)
Using (3)
g%P|ViV; — ViV | (P.Qg) = g% P, (ViV; — VV,)Qp + g% Qp(ViV; — V;V;)P, = 0 (7)
Next we apply the following formula™ on (7)

[ViV; = V;V;]4, = R™,;;4,(8)

g“ﬁPaRnﬁian + g“ﬁQ[;R“aian = 0 for arbitrayP,, Qg (9)

9P P,R%;;Q0 + [gaﬁPaRkBiij]k=1,2,3 + 9% QoR™ 4Py + [97¥ QxR 4ij P =0 (10)

k=1,2,3

Since P, and Qg are arbitrary we make Q five times its previous value keeping the other components
unchanged. With a four vector like the velocity four vector it is not possible to change one component
keeping the others constant, the norm being not only an invariant but also a constant. We have to
consider such four vectors for which the norm is not a constant but just an invariant.

59 P,R%;iQ0 + [9P PuR¥ 51 Qx| + 59%Q0R™ i Py + 9% Qi R™ 41 P =0 (11)

k=1,2,3 k=1,2,3

Subtracting (10) from (11)

9P PaR%:jQo + 9*°QoR" aijPr = 0

9P P,R i + g*°R" ;P = 0 (12)
We expand (12) to write

9P PoR%pij + g P PuR%ij + g*°R%gijPo + g*°R* 4Py = 0 (13)
Setting
P, = 500P,
5009°f PyR%s;; + g*P PR ij + 500g*°R% 4Py + g*°R¥ 4 P = 0(14)

Taking the difference between (14) and (13) we obtain



499g°F PyR%g;; + 4999%°R® 4;iPy = 0
g% R%; + g™ R ;5 = 0 (15)

We could make similar type of adjustments with other components sometimes changing all of them
simultaneously in different proportions.

The only solution would be to haveg®? = 0

A closer Look at a Formula
0 (Bypa®) = A “ + B*V,A.p (1
5 (BopA®) = AV, B + BV, A,p (16)

Proof:

We consider the following relations

AP

0
VyAaB — Aaﬁ;y — — + FysaAS‘B + [‘ysﬁAas

9Bup

W + FsyaBs,B + FsyﬁBaS

VyBap = Bagiy =
[The above relations do not assume A%# and Bgp as symmetric tensors]

We obtain,

d
W(BaBAaB) = Bag (VYAaB - FysaASB - FysﬁAas) + AP (VVBaB + FSWBSB + FSVBBas)

0

7 (BapA®F) = Bop(~Tys“AF — TP A%) + A% (5,4 Bsg + T% ) pBas) + AV, Byg + BV, Ayp

= —T,5"9% Bop — Iy’ 9% Bap + 1%, A% Tog + 5,5 A% By + A%V, By + BV, Ayg
6% (BapA®F) = (—Tys* A Byp + 19,4, A% Beg) + (I, A%F Bys — TP A% Bop) + APV, By
+ BV, Aqp (17)
[In the above a, s, B are dummy indices]
We work out the two parentheses separately.
With the second term in the first parenthesis to the right we interchange as follows
aes

(—T,s“AFByg +T5,,A%Bgp) = (—T)s“AF Ty + T%, AP Byp) = 0



We do not have to worry about reflections on the left side of (5)because alpha and beta on the left side
also disappear on contraction.

Indeed recalling (17) and using the reIation:BaﬁA“ﬁ = By, A¥Ywe may rewrite it [equation (2)] in the

following form :
d
ax¥ (BWAW) = Bagp (VYAaﬁ - FVSaASB - FVSBA(ZS) + AP (VyBaB +T%y4Bsp + FSVBBas)
+ APV, By + BV, Ayp
Thereis no a, 8 on the left side of the above.
With the second term in the second parenthesis
Bes
(15, 3A% By — T, P A% B, 5) = (I°5,54%F By — T, 3 A% Bys) = 0
d
527 BapA™F) = AFVy Bog + BV, Agg

Formula (16) is often used implicitly in mainstream literaturel®!
Considering (3.1.20) from[3]

tV, (gpcuPwe) =0

Analyzing the above relation

0
0x2

Va(gbcubwc) = (gbcubwc)
We have using (16)
Va(gbcubwc) = 9ncVa (ubwc) + ubwcva.gbc

etc. etc.

We may prove from separate premises: V,gp. = 0 and then set out to show that dot product is
preserved for parallel transport that is we may prove

0
% (gbcubwc) =V, (gbcubwc) =0

In such an endeavor we have to use relation (16)



Scalars and Arbitrary Transformations

We consider a scalar y across various manifolds corresponding to all possible transformations(non
singular transformations). On a given manifold labeled manifold one we consider two points P and Q
with distinct values of the scalar:y(P) # y(Q). We consider a non linear transformation both P and Q
are mapped to point S on manifold two.

Due to invariance y(P) = x'(S); x(Q) = x'(S) = x(P) = x(Q). But this stands in contradiction to
what we had assumed earlier: y(P) # x(Q). To avoid the contradiction we have to disallow such non
linear transformations as are many to one. To accommodate non linear transformations in a consistent
manner we have to consider scalars that are constant on the same manifold so that we may not have
instances like y(P) # x(Q) on the same manifold to work out the contradiction shown.

For many to one or one to many transformations the line element is not preserved. Only one tone
transformations have to be considered. Linear transformations are one to one. Non linear
transformations like Cartesian to spherical or Cartesian to cylindrical are one tone. But these one to one
non linear transformations do have some associated problems.

Let’s consider Cartesian to spherical transformations. Determinant of the Jacobian is given by
|J| = r2Sin?%6
On the z axis[poles],0 = 0orm = Sin@ =0= /]| =0

Therefore the transformation is of a singular nature for all points on the x-axis. It is to be taken note of
that for such points though r and 8 are uniquely defined ¢has no unique value.

To further analyze the situation we recall the geodesic equations:

d?x“ dxP dx¥

a

a U T

d?¢ A dxFP dxY 3
dr? By dr dr

Now for Schwarzschild geometry as well as for flat space time[spherical coordinates]

g4 =T?4 = Cotb

For 8 = Oorm Cot Cot6 blows up: hence F¢’9¢, = F¢’¢,9 blow up. Therefore the geodesic equation fails
for 8 = Qorm.on the z-axis cannot lie on a geodesic. That implies that the north or the south poles
cannot lie on geodesics that for an ordinary sphere great circles cannot pass through the poles. This is
not true. Therefore the poles[z axis] has to be excluded from the transformation in the spherical system.
Line elements with one end on the z axis arte not meaningful the spherical system.



ds? = ds’?

is not a meaningful equation if the z axis happens to be the end point of a line element

Dot Product Preserving Transport

In parallel transport!® the two vectors the transported parallel to themselves. In dot product preserving
transport product the dot is preserved but the two vectors individually are not transported parallel to
themselves but the components of each change in a continuous and as differentiable manner as we
move along the curve: t'!V;u® = 0; t'V;v# = 0 are not followed as we move along the curve

We have due to the preservation of dot product,
t'Vi(gapu®vf) = 0 (17)
Since each vector is not transported parallel to itself we have

tiu® # 0; t'V;vP # 0 (18)

We transform to a frame of reference where t* has only one non zero component. We try to achieve
this at some solitary point on the curve

tk’Vk,(gaﬁ’u“'vﬁ’) = 0[no summation on k’: prime denotes the new frame of reference and not

differentiation]

Vi (gap'u®vP’) = 0(19)

u“'vﬁ’Vi,(gaﬁ') + gaﬁ'Vi,(u“’vﬁ’) =0
Since Vi(gaﬁ) = 0,we have,
gaﬁ’Vi(u“’vﬂ’) =0 (20)

The vectors u®and v#’ and consequently their individual components are arbitrary. Therefore
9ap = 0= gap =0 (21)

At the specific chosen point g, = 0 that is the metric tensor is the null tensor for the appropriate

manifold. But the null tensor remains null in all frames of reference.



Next we choose different points and for each point we look for some corresponding manifold by
transformation manifold for which t! has only one non zero component

[the null tensor remains null in all frames of reference]That implies that the Riemann tensor , Ricci
tensor and the Ricci scalar are all zero valued objects.

Equation (19) may be worked out[without any transformation] as
t U vPVigap + gapVi[u vP]l = 0
tigagVi[u®vf] =0
tigap[u®Vivf + vV U] =0
Gaplu®t'VivP + vPeivus] =0
Since u®and v# are arbitrary the only option would be Jap =0

Alternatively we do the following: The four vectors u and v are moved along a continuous curve such
that

1. Dot product is preserved: tiVi(ga[;u“vﬁ) =0

2. tiu® =
t'V;v8 # 0 . This vector is not transported parallel to itself along the curve but it changes its
magnitude and orientation emboOdied in its components such that we have: t'7;vf # 0 and
tiVi(gaBu“vﬁ) = 0. In the classical three dimensional space one vectors is transported parallel
to itself the other does not move parallel to itself; its magnitude and orientation change in such
a manner that 1. ¥ is preserved.

We have considered a sequence of vectors uand v along a curve such that the above conditions are
fulfilled.

t'V;i(gapuvf) =0
t' [uvPVigap + gapVi[utvF]l = 0
tigaﬁvi[u“vﬂ] =0
t' gapuVivf + vV U] =0
GapU®t'VivP + gopvPtiviu® =0
Gapu®t'Vivf =0

Since u®and v# are arbitrary the only option would be gap =0



Also
9apTP =0
where t'V;v8 = TB(t,x,y, 2)

We consider v# getting transported on different manifolds where Jap are different at ach point.We
have

T = 0 = tiv,vf

The Line Element and the Symmetric Nature of the Metric Coefficients

So long as we are on the same manifold, the line element is preserved. This is not true for distinct
manifolds

Example: A room with a flat floor and a hemispherical roof is considered. A small arc is drawn on the
roof and its projection is taken on the floor. With this transformation

ds'? # ds?

Only if
ds'? = ds?

then g,,, behaves as a rank two tensor. Indeed

ds'? = ds?

= gupdxtdx’ = ga[;dx“dxﬁ

dx”

We revisit the idea!” that the metric tensor is a symmetric tensor. Indeed
ds? = gy, dx*dx’

By interchanging the dummy indices u and v we have,



ds? = g, dx"dx*
, 1
= dsc = E(g‘“’ + gw)dx“dxv
Juv + Gvy is asymmetric quantity. The relation

1
Juvdxtdx? = 5 (G + Gvp)dxtdx?

is true for arbitrary dx*and dx".Therefore

1
Iuv = E (guv + gvu)

= 9w = Gvu

For an arbitrary non singular transformation a symmetric tensor has to be produced. That is impossible
unless the metric tensor is the null tensor. This corroborates our inference from the “Dot Product
Preserving Transport.

Fine Analysis

From the proof that g, is a rank two tensor we may recall the following

ax® axP

= Jap g v XA

Gudxtdz

0x 9xF
dxXH dxV
are arbitrary within the constraint that they have to be very small or sufficiently small. Is there any sort

Since dx"and dx"are arbitrary we have the neat relation g,, dx*dx" = g,z . But dx*and dx”

of fogginess in that sufficiently small qualification? let us delve into that:
We start with the relation

_ x* oxP
Guw = 9ab 5 30

ax® axP
JxH oxVv

= Guy (A% + h)(dXV+KY) = gap (dx* + h*)(dx” + k)
[h* and kY might be finite quantities]

= g dxtdx’ + g, dxtk¥ + g, h*dxY + g, h*k"

Ix* axP g Ox* dxP LTy ax* dxP g
= 9w gy XX G gy XN G G v
dx% axP

Ui,V

T 9ap Gzu v
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The following relation has to hold for arbitrary finite[or infinitesimal] h* and kY
Ignoring this trouble g4 is a tensor. Ignoring similar trouble it is a symmetric tensor

JuvdX*kY + g, h*dx” + g, h* kY

ax® dxP ax® axP ax* dxP

_ - SUTV - UV - uiv
= 9ab Gz v XK+ Gap G e WA Gap G g MK

_ v - y dx® 9xP ) dx* dxP
Juvh*dx¥ + g, hHKkY = gap FE

Riemannian Curvature Tensor

If we analyze in terms of the general coordinate systems[orthogonal or non orthogonal]we shall use
Ruays = Ragyy = 0 for same components in all reference frames [and not Rygys = Reygs = 0

|Possibly Rggas » Rapya Rapys, Raygsand Rgpgq are non zero

The zeros will occur [components] every time we transform to some other arbitrary reference frame. All
the components have to mix in order to produce the zeros in the same positions. The transformation
elements will also change as we select different frames of reference.

Zeros occurring in all reference is impossible unless Ryg,, =0 for each a, 3,y and 8.
The Riemannian tensor being zero, the Ricci tensor is also a null tensor and the Ricci scalar stands zero.

That the Ricci tensor is zero has been proved by an alternative method towards the beginning of the
section.

As a simpler case we consider a rank one [contravariant ] tensor in four dimensions which has as zero
one of its components[any one] in all frames of reference
aiH

At = — A%
d0x%

Let
Al =0,A #0;k # 1

. axH . . . . .
We can always arrange for transformations ai—a[wnh non singular determinant of the Jacobian matrix]so

that all A are zero. We do arrive at a contradiction unless A% is the null tensor. This argument may be
extended to higher rank tensors [including the covariant tensors]like the Riemann curvature tensor
which has several zeros in each and every frame of reference.

Tensors are usually defined by relations like
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Fr ox#
T 9x@

The only restriction on the transformation matrix is that Det[Jacobian] # 0
Conclusion

As mentioned earlier that there is some peculiarity about the covariant operators. Their behavior
indicates that the metric coefficients have to disappear
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