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                                                                               Abstract 

The writing delineates some peculiar aspects of the covariant operator. It appears that the metric 

coefficients have to disappear. 

                                                                            Introduction 

The successive operations of two covariant derivative [1]operators on a tensor is usually non 

commutative. But there are many intricate issues involved in the issue. It seems that the metric 

coefficients have to vanish. 
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                                                                              Calculations 

We consider the covariant derivative operator.For scalars in a torsion free field 

∇𝑖∇𝑗𝑓 = ∇𝑗∇𝑖𝑓  (1) 

Since 𝑔𝛼𝛽𝑃𝛼𝑄𝛽is a scalar we have  

 

∇𝑖∇𝑗(𝑔
𝛼𝛽𝑃𝛼𝑄𝛽) = ∇𝑗∇𝑖(𝑔

𝛼𝛽𝑃𝛼𝑄𝛽)  (2) 

Since ∇𝑖𝑔
𝛼𝛽 = 0 

𝑔𝛼𝛽∇𝑖∇𝑗(𝑃𝛼𝑄𝛽) = 𝑔𝛼𝛽∇𝑗∇𝑖(𝑃𝛼𝑄𝛽)   

⇒ 𝑔𝛼𝛽∇𝑖∇𝑗(𝑃𝛼𝑄𝛽) − 𝑔𝛼𝛽∇𝑗∇𝑖(𝑃𝛼𝑄𝛽) = 0  

⇒ 𝑔𝛼𝛽[∇𝑖∇𝑗 − ∇𝑗∇𝑖](𝑃𝛼𝑄𝛽) = 0 𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑃𝛼 𝑎𝑛𝑑 𝑄𝛽  (3) 

We have, 

∇i∇𝑗(𝑃𝛼𝑄𝛽) = ∇i(𝑃𝛼∇𝑗𝑄𝛽 + 𝑄𝛽∇𝑗𝑃𝛼) 

∇i∇𝑗(𝑃𝛼𝑄𝛽) = 𝑃𝛼∇i∇𝑗𝑄𝛽 + (∇i𝑃𝛼)(∇𝑗𝑄𝛽) + (∇𝑖𝑄𝛽)(∇j𝑃𝛼) + 𝑄𝛽∇i∇𝑗𝑃𝛼 (4) 
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∇j∇𝑖(𝑃𝛼𝑄𝛽) = ∇j(𝑃𝛼∇𝑖𝑄𝛽 + 𝑄𝛽∇𝑖𝑃𝛼) 

∇j∇𝑖(𝑃𝛼𝑄𝛽) = 𝑃𝛼∇j∇𝑖𝑄𝛽 + (∇j𝑃𝛼)(∇𝑖𝑄𝛽) + (∇𝑗𝑄𝛽)(∇i𝑃𝛼) + 𝑄𝛽∇j∇𝑖𝑃𝛼  (5) 

From (4) and (5) 

[∇i∇𝑗 − ∇j∇𝑖](𝑃𝛼𝑄𝛽) = 𝑃𝛼(∇i∇𝑗 − ∇j∇𝑖)𝑄𝛽 + 𝑄𝛽(∇i∇𝑗 − ∇j∇𝑖)𝑃𝛼(6) 

Using (3) 

𝑔𝛼𝛽[∇i∇𝑗 − ∇j∇𝑖](𝑃𝛼𝑄𝛽) = 𝑔𝛼𝛽𝑃𝛼(∇i∇𝑗 − ∇j∇𝑖)𝑄𝛽 + 𝑔𝛼𝛽𝑄𝛽(∇i∇𝑗 − ∇j∇𝑖)𝑃𝛼 = 0  (7) 

Next we apply the following formula[2] on (7) 

[∇i∇𝑗 − ∇j∇𝑖]𝐴𝑝 = 𝑅𝑛
𝑝𝑖𝑗𝐴𝑛(8) 

 

𝑔𝛼𝛽𝑃𝛼𝑅𝑛
𝛽𝑖𝑗𝑄𝑛 + 𝑔𝛼𝛽𝑄𝛽𝑅𝑛

𝛼𝑖𝑗𝑃𝑛 = 0 𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑦𝑃𝛼 , 𝑄𝛽  (9) 

𝑔𝛼𝛽𝑃𝛼𝑅0
𝛽𝑖𝑗𝑄0 + [𝑔𝛼𝛽𝑃𝛼𝑅𝑘

𝛽𝑖𝑗𝑄𝑘]𝑘=1,2,3
+ 𝑔𝛼0𝑄0𝑅

𝑛
𝛼𝑖𝑗𝑃𝑛 + [𝑔𝛼𝑘𝑄𝑘𝑅

𝑛
𝛼𝑖𝑗𝑃𝑛]𝑘=1,2,3

= 0  (10) 

Since 𝑃𝛼 and 𝑄𝛽 are arbitrary we make 𝑄0 five times its previous value keeping the other components 

unchanged. With a four vector like the velocity four vector it is not possible to change one component 

keeping the others constant, the norm being not only an invariant but also a constant. We have to 

consider such four vectors for which the norm is not a constant but just an invariant.   

5𝑔𝛼𝛽𝑃𝛼𝑅0
𝛽𝑖𝑗𝑄0 + [𝑔𝛼𝛽𝑃𝛼𝑅𝑘

𝛽𝑖𝑗𝑄𝑘]𝑘=1,2,3
+ 5𝑔𝛼0𝑄0𝑅

𝑛
𝛼𝑖𝑗𝑃𝑛 + [𝑔𝛼𝑘𝑄𝑘𝑅

𝑛
𝛼𝑖𝑗𝑃𝑛]𝑘=1,2,3

= 0  (11) 

Subtracting (10) from (11) 

𝑔𝛼𝛽𝑃𝛼𝑅0
𝛽𝑖𝑗𝑄0 + 𝑔𝛼0𝑄0𝑅

𝑛
𝛼𝑖𝑗𝑃𝑛 = 0 

𝑔𝛼𝛽𝑃𝛼𝑅0
𝛽𝑖𝑗 + 𝑔𝛼0𝑅𝑛

𝛼𝑖𝑗𝑃𝑛 = 0  (12) 

We expand (12) to write  

𝑔0𝛽𝑃0𝑅
0
𝛽𝑖𝑗 + 𝑔𝑘𝛽𝑃𝛼𝑅0

𝑘𝑖𝑗 + 𝑔𝛼0𝑅0
𝛼𝑖𝑗𝑃0 + 𝑔𝛼0𝑅𝑘

𝛼𝑖𝑗𝑃𝑘 = 0 (13) 

Setting  

𝑃0 → 500𝑃0 

500𝑔0𝛽𝑃0𝑅
0
𝛽𝑖𝑗 + 𝑔𝑘𝛽𝑃𝛼𝑅0

𝑘𝑖𝑗 + 500𝑔𝛼0𝑅0
𝛼𝑖𝑗𝑃0 + 𝑔𝛼0𝑅𝑘

𝛼𝑖𝑗𝑃𝑘 = 0(14) 

Taking the difference between (14) and (13) we obtain 
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499𝑔0𝛽𝑃0𝑅
0
𝛽𝑖𝑗 + 499𝑔𝛼0𝑅0

𝛼𝑖𝑗𝑃0 = 0 

𝑔0𝛽𝑅0
𝛽𝑖𝑗 + 𝑔𝛼0𝑅0

𝛼𝑖𝑗 = 0 (15) 

We could make similar type of adjustments with other components sometimes changing all of them 

simultaneously in different proportions. 

The only solution would be to have𝑔𝛼𝛽 = 0  

A closer Look at a Formula 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐴𝛼𝛽∇𝛾𝐵

𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽   (16) 

Proof: 

We consider the following relations 

∇𝛾𝐴
𝛼𝛽 = 𝐴𝛼𝛽 ;𝛾 =

𝜕𝐴𝛼𝛽

𝜕𝑥𝛾
+ Γ𝛾𝑠

𝛼𝐴𝑠𝛽 + Γ𝛾𝑠
𝛽𝐴𝛼𝑠 

∇𝛾𝐵𝛼𝛽 = 𝐵𝛼𝛽;𝛾 =
𝜕𝐵𝛼𝛽

𝜕𝑥𝛾
+ Γ𝑠

𝛾𝛼𝐵𝑠𝛽 + Γ𝑠
𝛾𝛽𝐵𝛼𝑠 

[The above relations do not assume 𝐴𝛼𝛽  and 𝐵𝛼𝛽  as symmetric tensors] 

We obtain, 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐵𝛼𝛽(∇𝛾𝐴

𝛼𝛽 − Γ𝛾𝑠
𝛼𝐴𝑠𝛽 − Γ𝛾𝑠

𝛽𝐴𝛼𝑠) + 𝐴𝛼𝛽(∇𝛾𝐵𝛼𝛽 + Γ𝑠
𝛾𝛼𝐵𝑠𝛽 + Γ𝑠

𝛾𝛽𝐵𝛼𝑠) 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐵𝛼𝛽(−Γ𝛾𝑠

𝛼𝐴𝑠𝛽 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠) + 𝐴𝛼𝛽(Γ𝑠

𝛾𝛼𝐵𝑠𝛽 + Γ𝑠
𝛾𝛽𝐵𝛼𝑠) + 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽 

= −Γ𝛾𝑠
𝛼𝑔𝑠𝛽𝐵𝛼𝛽 − Γ𝛾𝑠

𝛽𝑔𝛼𝑠𝐵𝛼𝛽 + Γ𝑠
𝛾𝛼𝐴𝛼𝛽𝑇𝑠𝛽 + Γ𝑠

𝛾𝛽𝐴𝛼𝛽𝐵𝑠𝛼 + 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = (−Γ𝛾𝑠

𝛼𝐴𝑠𝛽𝐵𝛼𝛽 + Γ𝑠
𝛾𝛼𝐴𝛼𝛽𝐵𝑠𝛽) + (Γ𝑠

𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠𝐵𝛼𝛽) + 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽

+ 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽  (17) 

[In the above 𝛼, 𝑠, 𝛽 are dummy indices] 

We work out the two parentheses separately.  

With the second term in  the first parenthesis to the right we interchange as follows 

𝛼 ↔ 𝑠 

(−Γ𝛾𝑠
𝛼𝐴𝑠𝛽𝐵𝛼𝛽 + Γ𝑠

𝛾𝛼𝐴𝛼𝛽𝐵𝑠𝛽) = (−Γ𝛾𝑠
𝛼𝐴𝑠𝛽𝑇𝛼𝛽 + Γ𝛼

𝛾𝑠𝐴
𝑠𝛽𝐵𝛼𝛽) = 0 



4 
 

We do not have to worry about reflections on the left side of (5)because alpha and beta on the left side 

also disappear on contraction. 

 

Indeed recalling (17) and using the relation:𝐵𝛼𝛽𝐴𝛼𝛽 = 𝐵𝜇𝜈𝐴
𝜇𝜈we may rewrite it [equation (2)] in the 

following form : 

𝜕

𝜕𝑥𝛾
(𝐵𝜇𝜈𝐴

𝜇𝜈) = 𝐵𝛼𝛽(∇𝛾𝐴
𝛼𝛽 − Γ𝛾𝑠

𝛼𝐴𝑠𝛽 − Γ𝛾𝑠
𝛽𝐴𝛼𝑠) + 𝐴𝛼𝛽(∇𝛾𝐵𝛼𝛽 + Γ𝑠

𝛾𝛼𝐵𝑠𝛽 + Γ𝑠
𝛾𝛽𝐵𝛼𝑠)

+ 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽   

There is no 𝛼, 𝛽 on the left   side of the above. 

With the second term in the second parenthesis 

𝛽 ↔ 𝑠 

(Γ𝑠
𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝑠

𝛽𝐴𝛼𝑠𝐵𝛼𝛽) = (Γ𝑠
𝛾𝛽𝐴𝛼𝛽𝐵𝛼𝑠 − Γ𝛾𝛽

𝑠𝐴𝛼𝛽𝐵𝛼𝑠) = 0 

𝜕

𝜕𝑥𝛾
(𝐵𝛼𝛽𝐴𝛼𝛽) = 𝐴𝛼𝛽∇𝛾𝐵𝛼𝛽 + 𝐵𝛼𝛽∇𝛾𝐴𝛼𝛽   

Formula (16) is often used implicitly in mainstream literature[3] 

Considering (3.1.20) from[3] 

𝑡𝑎∇𝑎(𝑔𝑏𝑐𝑢
𝑏𝑤𝑐) = 0 

Analyzing the above relation 

∇𝑎(𝑔𝑏𝑐𝑢
𝑏𝑤𝑐) ≡

𝜕

𝜕𝑥𝑎
(𝑔𝑏𝑐𝑢

𝑏𝑤𝑐) 

We have using (16) 

∇𝑎(𝑔𝑏𝑐𝑢
𝑏𝑤𝑐) = 𝑔𝑏𝑐∇𝑎(𝑢

𝑏𝑤𝑐) + 𝑢𝑏𝑤𝑐∇𝑎𝑔𝑏𝑐  

etc. etc. 

We may prove from separate premises: ∇𝑎𝑔𝑏𝑐 = 0 and then set out to show that dot product is 

preserved for parallel transport that is we may prove 

∂

∂xa
(𝑔𝑏𝑐𝑢

𝑏𝑤𝑐) = ∇𝑎(𝑔𝑏𝑐𝑢
𝑏𝑤𝑐) = 0 

In such an endeavor we have to use relation (16) 
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                                                                  Scalars and Arbitrary Transformations 

We consider a scalar 𝜒 across various manifolds corresponding to all possible transformations(non 

singular transformations). On a given manifold labeled manifold one we consider two points P and Q 

with distinct values of the scalar:𝜒(𝑃) ≠ 𝜒(𝑄). We consider   a non linear transformation both P and Q 

are mapped to point S on manifold two. 

Due to invariance 𝜒(𝑃) = 𝜒′(𝑆); 𝜒(𝑄) = 𝜒′(𝑆) ⇒ 𝜒(𝑃) = 𝜒(𝑄). But this stands in contradiction to 

what we had assumed earlier: 𝜒(𝑃) ≠ 𝜒(𝑄). To avoid the contradiction we have to disallow such  non 

linear transformations as are many to one. To accommodate non linear transformations in a consistent 

manner we have to consider scalars that are constant on the same manifold so that we may not have 

instances like 𝜒(𝑃) ≠ 𝜒(𝑄) on the same manifold to work out the contradiction shown. 

For many to one or one to many transformations the line element is not preserved. Only one tone 

transformations have to be considered. Linear transformations are one to one. Non linear 

transformations like Cartesian to spherical or Cartesian to cylindrical are one tone. But these one to one 

non linear transformations do have some associated problems. 

Let’s consider Cartesian to spherical transformations. Determinant of the Jacobian is given by 

|𝐽| = 𝑟2𝑆𝑖𝑛2𝜃 

On the z axis[poles],𝜃 = 0 𝑜𝑟 𝜋 ⇒ 𝑆𝑖𝑛𝜃 = 0 ⇒ |𝐽| = 0 

Therefore the transformation is of a singular nature for all points on the x-axis. It is to be taken note of 

that for such points though 𝑟 and 𝜃 are uniquely defined 𝜙has no unique value. 

To further analyze the situation we recall the geodesic equations: 

𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
= 0 

𝑑2𝜙

𝑑𝜏2
+ Γ𝜙

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
= 0 

Now for Schwarzschild geometry as well as for flat space time[spherical coordinates] 

Γ𝜙
𝜃𝜙 = Γ𝜙

𝜙𝜃 = 𝐶𝑜𝑡𝜃 

 

For 𝜃 = 0or𝜋 Cot 𝐶𝑜𝑡𝜃 blows up: hence Γ𝜙
𝜃𝜙 = Γ𝜙

𝜙𝜃blow up. Therefore the geodesic equation fails 

for  𝜃 = 0or𝜋.on the z-axis cannot lie on a geodesic. That implies that the north or the south poles 

cannot lie on geodesics that for an ordinary sphere great circles cannot pass through the poles. This is 

not true. Therefore the poles[z axis] has to be excluded from the transformation in the spherical system. 

Line elements with one end on the z axis arte not meaningful the spherical system. 
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𝑑𝑠2 = 𝑑𝑠′2 

is not a meaningful equation if the z axis happens to be the end point of a line element 

 

 

 

                                                         Dot Product Preserving Transport 

 In parallel transport[4] the two vectors the transported parallel to themselves. In dot product preserving 

transport product the dot  is preserved but the two vectors individually  are not transported parallel to 

themselves but the components of each change in a continuous and as differentiable manner as we 

move along the curve: 𝑡𝑖𝛻𝑖𝑢
𝛼 = 0; 𝑡𝑖𝛻𝑖𝑣

𝛽 = 0   are not followed as we move along the curve 

We have due to the preservation of dot product, 

𝑡𝑖𝛻𝑖(𝑔𝛼𝛽𝑢𝛼𝑣𝛽) = 0 (17) 

Since each vector is not transported parallel to itself we have  

𝑡𝑖𝛻𝑖𝑢
𝛼 ≠ 0; 𝑡𝑖𝛻𝑖𝑣

𝛽 ≠ 0  (18) 

. 

We transform to a frame of reference where 𝑡𝑖  has only one non zero component. We try to achieve 

this at some solitary point on the curve 

𝑡𝑘′𝛻𝑘′(𝑔𝛼𝛽′𝑢𝛼′𝑣𝛽′) = 0[no summation on k’: prime denotes the new frame of reference  and not 

differentiation] 

∇𝑘
′ (𝑔𝛼𝛽′𝑢𝛼′𝑣𝛽′) = 0(19) 

 

𝑢𝛼 ′𝑣𝛽′𝛻𝑖′(𝑔𝛼𝛽′) + 𝑔𝛼𝛽 ′𝛻𝑖′(𝑢
𝛼′𝑣𝛽′) = 0 

Since  ∇𝑖(𝑔𝛼𝛽) = 0,we have, 

𝑔𝛼𝛽 ′𝛻𝑖(𝑢
𝛼′𝑣𝛽′) = 0  (20) 

The vectors 𝑢𝛼′and 𝑣𝛽 ′ and consequently their individual components are arbitrary. Therefore                                            

                                                                        𝑔𝛼𝛽
′ = 0 ⇒ 𝑔𝛼𝛽 = 0  (21) 

At the specific chosen point 𝑔𝛼𝛽 = 0   that is the metric tensor is the null tensor for the appropriate 

manifold. But the null tensor remains null in all frames of reference.  
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Next we choose different points and for each point we look for some corresponding manifold by 

transformation manifold for which  𝑡𝑖  has only one non zero component 

[the null tensor remains null in all frames of reference]That implies that the Riemann tensor , Ricci 

tensor and the Ricci scalar are all zero valued objects. 

Equation (19) may be worked out[without any transformation] as 

𝑡𝑖[𝑢𝛼𝑣𝛽𝛻𝑖𝑔𝛼𝛽 + 𝑔𝛼𝛽∇𝑖[𝑢
𝛼𝑣𝛽]] = 0 

𝑡𝑖𝑔𝛼𝛽∇𝑖[𝑢
𝛼𝑣𝛽] = 0 

𝑡𝑖𝑔𝛼𝛽[𝑢𝛼∇𝑖𝑣
𝛽 + 𝑣𝛽∇𝑖𝑢

𝛼] = 0 

𝑔𝛼𝛽[𝑢𝛼𝑡𝑖∇𝑖𝑣
𝛽 + 𝑣𝛽𝑡𝑖∇𝑖𝑢

𝛼] = 0 

Since 𝑢𝛼and 𝑣𝛽  are arbitrary the only option would be 𝑔𝛼𝛽 = 0 

Alternatively we do the following: The four vectors u and v are moved along a continuous curve such 

that  

1. Dot product is preserved: 𝑡𝑖𝛻𝑖(𝑔𝛼𝛽𝑢𝛼𝑣𝛽) = 0 

2. 𝑡𝑖𝛻𝑖𝑢
𝛼 = 0 

3. 𝑡𝑖𝛻𝑖𝑣
𝛽 ≠ 0   . This vector is not transported parallel to itself along the curve but it changes its 

magnitude and orientation embo0died in its components such that we have: 𝑡𝑖𝛻𝑖𝑣
𝛽 ≠ 0   and 

𝑡𝑖𝛻𝑖(𝑔𝛼𝛽𝑢𝛼𝑣𝛽) = 0. In the classical three dimensional space one vectors is transported parallel 

to itself the other does not move parallel to itself; its magnitude and orientation change in such 

a manner that 𝑢⃗ . 𝑣  is preserved. 

We have considered a sequence of vectors u and v  along a curve such that the above conditions are 

fulfilled. 

𝑡𝑖𝛻𝑖(𝑔𝛼𝛽𝑢𝛼𝑣𝛽) = 0 

𝑡𝑖[𝑢𝛼𝑣𝛽𝛻𝑖𝑔𝛼𝛽 + 𝑔𝛼𝛽∇𝑖[𝑢
𝛼𝑣𝛽]] = 0 

𝑡𝑖𝑔𝛼𝛽∇𝑖[𝑢
𝛼𝑣𝛽] = 0 

𝑡𝑖𝑔𝛼𝛽[𝑢𝛼∇𝑖𝑣
𝛽 + 𝑣𝛽∇𝑖𝑢

𝛼] = 0 

𝑔𝛼𝛽𝑢𝛼𝑡𝑖∇𝑖𝑣
𝛽 + 𝑔𝛼𝛽𝑣𝛽𝑡𝑖∇𝑖𝑢

𝛼 = 0 

𝑔𝛼𝛽𝑢𝛼𝑡𝑖∇𝑖𝑣
𝛽 = 0 

Since 𝑢𝛼and 𝑣𝛽  are arbitrary the only option would be 𝑔𝛼𝛽 = 0 
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Also 

𝑔𝛼𝛽𝑇𝛽 = 0 

where 𝑡𝑖∇𝑖𝑣
𝛽 = 𝑇𝛽(𝑡, 𝑥, 𝑦, 𝑧) 

We consider 𝑣𝛽  getting transported on different manifolds where 𝑔𝛼𝛽  are different at ach point.We 

have  

𝑇𝛽 = 0 ⟹ 𝑡𝑖∇𝑖𝑣
𝛽  

                        The Line Element and the Symmetric Nature of the Metric Coefficients 

 

So long as we are on the same manifold, the line element is preserved. This is not true for distinct 

manifolds 

Example: A room with a flat floor and a hemispherical roof is considered. A small arc is drawn on the 

roof and its projection is taken on the floor. With this transformation 

𝑑𝑠′2 ≠ 𝑑𝑠2 

Only if  

𝑑𝑠′2 = 𝑑𝑠2 

then 𝑔𝜇𝜈behaves as a rank two tensor. Indeed  

𝑑𝑠′2 = 𝑑𝑠2 

⇒ 𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑑𝑥̅𝜈 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽  

= 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇
𝑑𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜈 

= 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜇𝑑𝑥̅𝜈  

⇒ 𝑔̅𝜇𝜈 = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
 

 

We revisit the idea[7] that the metric tensor is a symmetric tensor. Indeed 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 

By interchanging the dummy indices 𝜇 and 𝜈 we have, 
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𝑑𝑠2 = 𝑔𝜈𝜇𝑑𝑥𝜈𝑑𝑥𝜇  

⇒ 𝑑𝑠2 =
1

2
(𝑔𝜇𝜈 + 𝑔𝜈𝜇)𝑑𝑥𝜇𝑑𝑥𝜈 

𝑔𝜇𝜈 + 𝑔𝜈𝜇  is asymmetric quantity. The relation  

𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 =
1

2
(𝑔𝜇𝜈 + 𝑔𝜈𝜇)𝑑𝑥𝜇𝑑𝑥𝜈 

is true for arbitrary 𝑑𝑥𝜇and 𝑑𝑥𝜈 .Therefore  

𝑔𝜇𝜈 =
1

2
(𝑔𝜇𝜈 + 𝑔𝜈𝜇) 

⇒ 𝑔𝜇𝜈 = 𝑔𝜈𝜇  

For an  arbitrary non singular transformation a symmetric tensor has to be produced. That is impossible 

unless the metric tensor is the null tensor. This corroborates our inference from the “Dot Product 

Preserving Transport. 

Fine Analysis 

From the proof that 𝑔𝜇𝜈 is a rank two tensor we may recall the following 

𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑑𝑥̅𝜈 = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜇𝑑𝑥̅𝜈 

Since 𝑑𝑥̅𝜇and 𝑑𝑥̅𝜈are arbitrary we have the neat relation 𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑑𝑥̅𝜈 = 𝑔𝛼𝛽
𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈. But 𝑑𝑥̅𝜇and 𝑑𝑥̅𝜈 

are arbitrary within the constraint that they have to be very small or sufficiently small. Is there any sort 

of fogginess in that sufficiently small qualification? let us delve into that: 

We start with the relation 

𝑔̅𝜇𝜈 = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
 

⇒ 𝑔̅𝜇𝜈(𝑑𝑥̅𝜇 + ℎ𝜇)(𝑑𝑥̅𝜈+𝑘𝜈) = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
(𝑑𝑥̅𝜇 + ℎ𝜇)(𝑑𝑥̅𝜈 + 𝑘𝜈) 

[ℎ𝜇 and 𝑘𝜈  might be finite quantities] 

⇒ 𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑑𝑥̅𝜈 + 𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑘𝜈 + 𝑔̅𝜇𝜈ℎ
𝜇𝑑𝑥̅𝜈 + 𝑔̅𝜇𝜈ℎ

𝜇𝑘𝜈

= 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜇𝑑𝑥̅𝜈 + 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜇𝑘̅𝜈 + 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑑𝑥̅𝜈

+ 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑘𝜈  
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The following relation has to hold for arbitrary finite[or infinitesimal] ℎ𝜇 and 𝑘𝜈  

Ignoring this trouble 𝑔𝛼𝛽  is a tensor. Ignoring similar trouble it is a symmetric tensor 

𝑔̅𝜇𝜈𝑑𝑥̅𝜇𝑘𝜈 + 𝑔̅𝜇𝜈ℎ
𝜇𝑑𝑥̅𝜈 + 𝑔̅𝜇𝜈ℎ

𝜇𝑘𝜈

= 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑑𝑥̅𝜇𝑘̅𝜈 + 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑑𝑥̅𝜈 + 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑘𝜈  

𝑔̅𝜇𝜈ℎ
𝜇𝑑𝑥̅𝜈 + 𝑔̅𝜇𝜈ℎ

𝜇𝑘𝜈 = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑑𝑥̅𝜈 + 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
ℎ𝜇𝑘𝜈  

 

Riemannian Curvature Tensor 

If we analyze in terms of the general coordinate systems[orthogonal or non orthogonal]we shall use 

Rααγδ = Rαβγγ = 0 for same components in all reference frames [and not Rαβγδ = Rαγβδ = 0  

]Possibly Rαβαδ , Rαβγα, Rαβγδ, Rαγβδand   Rαββα are non zero 

The zeros will occur [components] every time we transform to some other arbitrary  reference frame. All 

the components have to mix in order to produce the zeros in the same positions. The transformation 

elements will also change as we select different frames of reference. 

Zeros occurring in all reference is impossible unless Rαβγ =0 for each α, β, γ and δ. 

The Riemannian tensor being zero, the Ricci tensor is also a null tensor and the Ricci scalar stands zero.  

That the Ricci tensor is zero has been proved by an alternative method towards the beginning of the 

section. 

As a simpler case we consider a rank one [contravariant ] tensor in four dimensions which has as zero 

one of its components[any one] in all frames of reference 

𝐴̅𝜇 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝐴𝛼 

Let  

𝐴1 = 0, 𝐴𝑘 ≠ 0; 𝑘 ≠ 1 

We can always arrange for transformations 
𝜕𝑥̅𝜇

𝜕𝑥𝛼[with non singular determinant of the Jacobian matrix]so 

that all 𝐴̅𝜇 are zero. We do arrive at a contradiction unless 𝐴𝛼  is the null tensor. This argument may be 

extended to higher rank tensors [including the covariant tensors]like the Riemann curvature tensor 

which has several zeros in each and every frame of reference. 

Tensors are usually defined by relations like 
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𝐴̅𝜇 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝐴𝛼 

The only restriction on the transformation matrix is that 𝐷𝑒𝑡[𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛] ≠ 0 

                                                                                Conclusion 

As mentioned earlier that there is some peculiarity about the covariant operators. Their behavior 

indicates that the metric coefficients have to disappear 
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