The Covariant Derivative Operator and Scalars
Anamitra Palit
palit.anamitra@gmail.com
Abstract

The writing delineates some peculiar aspects of the covariant operator. It appears that the metric
coefficients have to disappear.

Introduction

The successive operations of two covariant derivative operators on a tensor is usually non
commutative. But there are many intricate issues involved in the issue. It seems that the metric
coefficients have to vanish.
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Calculations

We consider the covariant derivative operator.For scalars in a torsion free field
ViVif =V;Vif (1)

Since g“BPaQBis a scalar we have

ViVi(9 PaQp) = V;Vi(9* PaQp) ()
Since V;g*f = 0
9PV (PeQp) = 9P V;Vi (PaQp)
= g%v,V;(P,Qp) — g*PV;V;(P,Qp) = 0
= g%|v,V; — V;V;|(P,Qp) = 0 for arbitraryP, and Qp (3)
We have,
ViV;(P2Qp) = Vi(P2V;Qp + QpV;P)

ViV;(P2Qp) = P,ViV;Qp + (ViP)(V;Q5) + (V:Q5) (ViPy) + QpViV,P, (4)
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ViVi(P.Qp) = V;(P.ViQp + QpViFy)
ViVi(P.Qp) = PuViViQp + (VP ) (V:Qp) + (V;Q5) (ViPy) + QV;Vi Py (5)
From (4) and (5)
[ViV; = ViVl (P2 Qp) = Pu(ViV; — V3¥:)Qp + Qp(ViV; — Vi) Pu(6)
Using (3)
g%P|ViV; — ViV | (P.Qg) = g% P, (ViV; — VV,)Qp + g% Qp(ViV; — V;V;)P, = 0 (7)
Next we apply the following formula™ on (7)

[ViV; = V;V;]4, = R™,;;A,(8)

g“BPaR”Bian + g“ﬁQﬁR”aian = 0 for arbitrayP,, Qg (9)

9P PyR%3:Q0 + g% P,R* Qx| + 9% QoR" 4ijPy + [gakaRnaian]k=1’2’3 =0 (10)

k=1,2,3
Since P, and Qg are arbitrary we make Q, five times its previous value
=0 (11)

59 P,R%i;Q0 + [9%P PuR¥ 51 Qx| +59%QoR™4ijPn + 9™ QkR" 41 P

k=1,2,3 k=1,2,3

Subtracting (10) from (11)

9P PR 31;Q0 + 9*°QoR" qjPy = 0

g P,R i + g™ R" i;P, = 0 (12)
We expand (12) to write

g% PoR%pij + g*F PuR%ij + g*°R%qijPo + g*°R* 4Py = 0 (13)
Setting
Py = 500P,
5009°° PyR%s;; + g*P PR ij + 500g*°R% 4Py + g*°R¥ 4 P = 0(14)

]Takong the difference between (14) and (13) we obtain

499g°F PyR%g;; + 4999%°R® ;P = 0

g% R%; + g*R ;5 = 0 (15)



We could make similar type of adjustments with other components sometimes changing all of them
simultaneously in different proportions.

The only solution would be to haveg®® = 0
A closer Look at a Formula
4 BogA®) = A B*f + BBV A,z (1
m( ap )— aﬁvy + VY apB (16)

Proof:

We consider the following relations

AP
V, A% = A%k, =

B
5t T, “AF 4T, F A%

0Bup

W + FsyaBs,B + FsyﬁBaS

VyBap = Bagiy =
[The above relations do not assume A% and Bgp as symmetric tensors]

We obtain,

0

oxY (BaBAaB) = Bap (VYAaB - FysaASB - FysﬁAas) + A% (VVBaB +TyaBsg + FSVBBas)

0
57 (BapA™’) = Bag(=Tys"A%F — I, A%) + A%F (15,4 Bsg + T, Bas) + A%V, By + BV, Ayg
= —T,5"9% Bap — Iys? 9% Bup + 1%, A% Tog + 5,3 A% By + A%V, By + BV, Ayg
d
P (BapA®F) = (—Tys*AF Byp + 19,4 A% Beg) + (I, A% Bys — TP A% Bop) + APV, By
+ BV, Agp (2)
[In the above a, s, B are dummy indices]
We work out the two parentheses separately.
With the second term in the first parenthesis to the right we interchange as follows
aes

(—Tys AP Byp +T5,,A% Bsg) = (—T)s“AFTop + T, A Byg) = 0

We do not have to worry about reflections on the left side of (5)because alpha and beta on the left side

also disappear on contraction.



Indeed recalling (2) and using the reIation:BaﬁA“ﬁ = B, A*Ywe may rewrite it [equation (2)] in the

following form :
d
ax¥ (BWAW) = Bagp (VYAaﬁ - FVSaASB - FVSBA(ZS) + AP (VyBaB +T%y4Bsp + FSVBBas)
+ APV, By + BV, Ayp
Thereis no a, 8 on the left side of the above.
With the second term in the second parenthesis
Bes
(15, 3A% By — T, P A% B 5) = (T°,54%F Bys — T, 3 A% Bys) = 0
d
PP (BopA®f) = A*FV, Byp + BV, Ayp

Formula (16) is often used implicitly in mainstream literaturel®!
Considering (3.1.20) from[3]

tV,(gpcuPwe) =0

Analyzing the above relation

0
0x2

va(gbcubwc) = (gbcubwc)
We have using (16)
Va(gbcubwc) = 9ncVa (ubwc) + ubwcvagbc

etc. etc.

Alternative Considerations

We consider two scalars x(t, x,y, z) and Y(x, y, z, t)on the same manifold. For every point (¢, x,y, z)
we choose another point (¢, x',y', z") on the same manifold such that x(¢t,x,y,z) = Y(x',y', Z', t")

Next we choose a transformation (¢, x,y,z) = (x',y’,Z',t")in order to create a transformed manifold
Automatically

xtx,y,z) =xt((x,y, 2, t),x(x',y, 2, t),y(x',y', 2, t),z(x", y', Z', t"))



Again by our chosen transformation
x(tx,y,2) =9,y 2, t)
Therefore on the transformed manifold,
x@ (', 2 t),x(x, Y, 2, ), y (X, y', 2, 1), 2(x, y', 2, 1) = (¢, Y, 2, 1)
On our chosen manifold [transformed manifold]
@,y 2, 1), x(x, ', 2, ), y(xX, y', 2, 1), 2(x, y', 2, £) = (', y', 2, ') = 0
Finally we set x(t,x,y,2) = 8;T—‘f;gaﬁT"‘B and Y(t,x,y,2) = gupT
[gap:metric tensor; T stress energy tensor]

We have

8tG
7gaﬁTaB = gapT**

—R=R=>2R=0=>R=0
Dot Product Preserving Transport

In parallel transport! the two vectors the transported parallel to themselves.In dot product preserving
transport product the dot is preserved but the two vectors individually are not transported parallel to
themselves.

We have due to the preservation of dot product,
t'V;i(gapuvf) =0 (17)
Since each vector is not transported parallel to itself we have

tiVu® # 0; t'V;vf # 0 (18)

We transform to a frame of reference where t' has only one non zero component.

tk’Vk,(gaﬁ’u“'vﬁ’) = 0[no summation on k’: prime denotes the new frame of reference and not
differentiation]

Vi (gap'u®vP’) = 0(19)

u“’vﬁ’Vi,(gaﬁ’) + gaﬁ’Vi,(u“’vﬁ’) =0



Since Vi(ga,;) = 0,we have,
9ap'Vi(u¥vF") = 0 (20)

The vectors u® and v#' and consequently their individual components are arbitrary. Therefore
9ap =0= gap =0 (21)

[the null tensor remains null in all frames of reference]That implies that the Riemann tensor, Ricci
tensor and the Ricci scalar are all zero valued objects.

The Line Element and the Symmetric Nature of the Metric Coefficients

So long as we are on the same manifold, the line element is preserved. This is not true for distinct
manifolds

Example: A room with a flat floor and a hemispherical roof is considered. A small arc is drawn on the
roof and its projection is taken on the floor. With this transformation

ds'? # ds?

Only if
ds'? = ds?

then g,,, behaves as a rank two tensor. Indeed
ds'® = ds?
= gupdxtdx’ = ga[;dx“dxﬁ

ax* _ oxP
di*

= Jap 5zu X" v X'

We revisit the idea!” that the metric tensor is a symmetric tensor. Indeed
ds? = gy, dx*dx’
By interchanging the dummy indices u and v we have,

ds? = gy, dx’dx"



1
= ds? = E(g‘“’ + gyp)dxtdx”
Juv T Gvy is asymmetric quantity. The relation

1
Juvdxtdx? = 5 (G + Gvp)dxtdx?

is true for arbitrary dx*and dxV.Therefore

1
Iuv = E (guv + gvu)

= 9w = Gvu

For an arbitrary non singular transformation a symmetric tensor has to be produced. That is impossible
unless the metric tensor is the null tensor. This corroborates our inference from the “Dot Product
Preserving Transport.

Riemannian Curvature Tensor

If we analyze in terms of the general coordinate systems[orthogonal or non orthogonal]we shall use
Ruays = Ragyy = 0 for same components in all reference frames [and not Rygys = Reygs = 0

|Possibly Rggas » Rapyaw Rapys, Raygsand Rqpgq are non zero

The zeros will occur [components] every time we transform to some other arbitrary reference frame. All
the components have to mix in order to produce the zeros in the same positions. The transformation
elements will also change as we select different frames of reference.

Zeros occurring in all reference is impossible unless Rqg,, =0 for each o, 3,y and 6.
The Riemannian tensor being zero, the Ricci tensor is also a null tensor and the Ricci scalar stands zero.

That the Ricci tensor is zero has been proved by an alternative method towards the beginning of the
section.

Conclusion

As mentioned earlier that there is some peculiarity about the covariant operators. Their behavior
indicates that the metric coefficients have to disappear
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