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Abstract

In general relativity, the density of gravitational energy is undefined: it is
said to be ’nonlocalizable’. In what follows, a new theory solves the problem
of gravitational dynamics. It provides covariant expressions for the energy,
momentum, stress, force and power. The theory predicts both longitudinal
and transverse gravitational waves. It is time to launch a search for longitu-
dinal waves, in the data at LIGO and Virgo.
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1. Introduction

The precis of general relativity is that it provides covariant expressions (ten-
sors) for all physical quantities and for the laws that relate those quanti-
ties. However, no such expressions exist for gravitational energy, momentum,
stress, force and power. This, in itself, shows that general relativity cannot
be correct. The four-dimensional tensor formalism is incapable of describing
gravitational dynamics [1].

The theory presented here derives from the fact that special relativity
was invented without the use of four-vectors. Only scalars and three-vectors
were used by the founders. This is evident in the basic physical elements
of the theory: (time, space), (energy, momentum), (charge, current), etc. It
is by expressing these elements in terms of coordinates that a new theory
of gravitation emerges. It yields a fully covariant treatment of gravitational
dynamics.

2. Field equations

The theory of special relativity concerns the motion and orientation of or-
thonormal frames of reference. A displacement dr is projected onto an or-
thonormal 3-frame: i · dr, j · dr, k · dr. These projections, together with the
time interval dt, undergo a Lorentz transformation, which leaves the funda-
mental interval invariant

ds2 = c2dt2 − dr2 (1)

The physical displacements may also be expressed in terms of a coordinate
system {xµ}

c dt = e0(x)dx0 dr = ei(x)dxi (2)

where eµ = (e0, ei) is a scalar, 3-vector basis. The interval (1) then takes the
form

ds2 = (e0dx
0)2 − ei · ej dxidxj

= gµνdx
µdxν (3)

where
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gµν =


g00 0 0 0
0
0 gij
0

 (4)

The theory of gravitation concerns the structure of this metrical coordinate
system. A Lorentz transformation may take place at any point. It will not
involve the coordinates {xµ}.

An observer is free to choose a new coordinate system {xµ′}. In order to
retain the distinction between scalars and 3-vectors, the coordinate transfor-
mations are restricted to the form

x0
′
= x0

′
(x0) xi

′
= xi

′
(xj) (5)

Displacements (2) will then be invariant, while the metric transforms as a
tensor

g0′0′ =
∂x0

∂x0′
∂x0

∂x0′
g00 gi′j′ =

∂xm

∂xi′
∂xn

∂xj′
gmn (6)

The Christofel symbols

Γµνλ =
1

2
gµρ (∂λgνρ + ∂νgρλ − ∂ρgνλ) (7)

yield the Ricci tensor

Rµν = ∂νΓ
λ
µλ − ∂λΓλµν + ΓλρνΓ

ρ
µλ − ΓλλρΓ

ρ
µν (8)

The gravitational field equations

c4

8πG

(
Rµν −

1

2
gµνR

)
+ T (m)

µν = 0 (9)

follow from the Einstein-Hilbert action

δ
∫ c4

16πG
gµνRµν

√
−g d4x+ δ

∫
L(m)√−g d4x = 0 (10)

There are seven field equations, corresponding to the seven variations δgµν =
(δg00, δgij). Components R0i and T

(m)
0i do not appear in (9).
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3. Gravitational energy, momentum and stress

The rate of change of the basis system is defined in terms of connection
coefficients Qλ

µν

∇νeµ = eλQ
λ
µν (11)

This formula separates into scalar and 3-vector parts

∇νe0 = e0Q
0
0ν (12)

∇νei = ejQ
j
iν (13)

where Qj
0ν = Q0

iν ≡ 0. In terms of the metrical functions (4),

∂λg00 = 2g00Q
0
0λ (14)

∂0gij = ginQ
n
j0 + gjnQ

n
i0 (15)

∂kgij = ginQ
n
jk + gjnQ

n
ik (16)

If Qi
jk = Qi

kj and if the two terms in (15) are assumed to be equal, then

Q0
0λ = Γ0

0λ =
1

2
g00∂λg00 (17)

Qi
j0 = Γij0 =

1

2
gin∂0gnj (18)

Qi
jk = Γijk =

1

2
gin (∂kgjn + ∂jgnk − ∂ngjk) (19)

Together, they comprise the formula

Qµ
νλ = Γµνλ + gµρgληQ

η
[νρ] (20)

where

Qµ
[νλ] ≡ Qµ

νλ −Q
µ
λν (21)

The non-zero components of Qµ
[νλ] are

Q0
[0i] = Q0

0i =
1

2
g00∂ig00 Qi

[j0] = Qi
j0 =

1

2
gin∂0gnj (22)
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They transform as tensor components

Q0′

[0′i′] =
∂xn

∂xi′
Q0

[0n] Qi′

[j′0′] =
∂xi

′

∂xm
∂xn

∂xj′
∂x0

∂x0′
Qm

[n0] (23)

This field strength tensor serves to define the gravitational energy tensor

T (g)
µν =

c4

8πG

{
Qρ

[λµ]Q
λ
[ρν] +QµQν −

1

2
gµνg

ητ (Qρ
[λη]Q

λ
[ρτ ] +QηQτ )

}
(24)

where Qµ = Qρ
[ρµ]. For a static Newtonian potential ψ

g00 = 1 +
2

c2
ψ (25)

so that Qµ
[νλ] is given by

Q0
[0i] =

1

c2
∂iψ Qi

[j0] = 0 (26)

It follows that

T
(g)
00 =

1

8πG
(∇ψ)2 (27)

T
(g)
0i = 0 (28)

T
(g)
ij =

1

4πG

{
∂iψ ∂jψ −

1

2
δij(∇ψ)2

}
(29)

which is the Newtonian stress-energy tensor.
The conservation law for energy and momentum is found by summing the

expression eµT
µν dVν over a closed, infinitesimal region δR

∑
δR

eµT
µν dVν =

{
eµ ∂ν(

√
−g T µν) + (∇νeµ)

√
−g T µν

}
d4x

= eµ
{ 1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν
}√
−g d4x (30)

where T µν = T µν(g) + T µν(m) is the total energy tensor and

dVν =
√
−g (dx1dx2dx3, dx0dx2dx3, . . .) (31)
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Energy and momentum are conserved, if

divT µν =
1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν = 0 (32)

Make use of (20) to find

divT µν = T µν;ν + gµνQβ
[αν]T

α
β (33)

where T µν;ν is the (contracted) covariant derivative. The divergence of the
mixed tensor is

divT ν
µ = T ν

µ ;ν +Qβ
[αµ]T

α
β (34)

4. Gravitational force and power

The motion of a particle in a gravitational field is described by the Lagrangian

L = mc
√
gµν(x)uµuν (35)

and the resulting equation of motion

mc
{duµ
ds

+ Γµνλu
νuλ

}
= 0 (36)

where uµ = dxµ/ds. The energy and momentum of the particle are given by

E =
mc2√

1− v2/c2
p =

mv√
1− v2/c2

=
E

c2
v (37)

They yield the power formula

dE

ds
= v · dp

ds
(38)

where v = dr/dt is the physical velocity. The gravitational power and force
are found by expressing the energy and momentum in terms of coordinates

E = mc2e0u
0 p = mc eiu

i (39)

The rate of change of eµu
µ is
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d(eµu
µ)

ds
= eµ

duµ

ds
+
deµ
ds

uµ = eµ
{duµ
ds

+Qµ
νλu

νuλ
}

= eµ
{duµ
ds

+ Γµνλu
νuλ

}
+ eµQλ

[νµ]u
νuλ (40)

where (20) has been used. Substitute the equation of motion (36) to find

mc
d(eµu

µ)

ds
= eµmcQλ

[νµ]u
νuλ (41)

Separate this formula into scalar and 3-vector parts, then substitute the
components (22) to find that the energy and momentum change as follows:

dE

ds
= e0

mc2

2

{
−∂ng00 unu0 + ∂0gmn u

mun
}

(42)

dp

ds
= ei

mc

2

{
∂ig00 u

0u0 − ∂0gin u0un
}

(43)

These equations express the power and force which are exerted by the grav-
itational field. In the Newtonian limit (25), u0 = 1 and un = vn/c so that

dE

dt
= −m∇ψ · v dp

dt
= −m∇ψ (44)

If other forces are present, they will appear in the equation of motion. For
example, a charged particle in combined gravitational and electromagnetic
fields is described by

L = mc
√
gµν(x)uµuν +

q

c
Aµ(x)uµ (45)

and

mc
{duµ
ds

+ Γµνλu
νuλ

}
=
q

c
F µ
νu

ν (46)

It follows that (compare (41))

mc
d(eµu

µ)

ds
= eµ

{
mcQλ

[νµ]u
νuλ +

q

c
Fµνu

ν
}

(47)

The scalar and 3-vector parts of the Lorentz force are then added to the
right-hand side of (42) and (43).
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5. The weak-field approximation

(In this section, T µν(m) = T µν = ρc2uµuν .)
If the coordinate system is nearly rectangular, then the metric tensor may
be expanded

gµν = ηµν + hµν |hµν | � 1 (48)

Substitution into (8) yields

Rµν =
1

2

{
ηλρ∂λ∂ρhµν + ∂µ∂νh

λ
λ − ∂µ∂λhλν − ∂ν∂λhλµ

}
(49)

The four conditions

∂νh
λ
λ = 2 ∂λh

λ
ν (50)

leave three independent components hµν , and they greatly simplify the Ricci
tensor

Rµν =
1

2
∂λ∂λhµν (51)

Rewrite the field equations in the form

Rµ
ν = −8πG

c4

(
T µν −

1

2
δµν T

)
(52)

in order to obtain

∂λ∂λh
µ
ν = −16πG

c4

(
T µν −

1

2
δµν T

)
(53)

The retarded solution is

hµν(x, t) = −4G

c4

∫ (T µν − 1
2
δµν T )

|x− x′|
|ret d3x′ (54)

If the source is at rest, then T 0
0 = T = ρc2 and T ij = 0 so that (54) yields

ds2 = (1 +
2

c2
ψ)(dx0)2 − (1− 2

c2
ψ)(dx2 + dy2 + dz2) (55)

where ψ is the Newtonian potential.
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5.1 Wave generation
When motion of the source is significant, radiation is produced which prop-
agates into distant regions. In those regions, the solution (54) simplifies to

hµν(x, t) = −4G

c4r

∫
(T µν −

1

2
δµν T )|t−r/c d3x′ (56)

Here, the long wavelength limit is assumed, so that ret simply means time
(t− r/c). Formula (50) for ν = 0 imposes a constraint on this solution, viz.,
∂0h

0
0 = ∂0h

n
n. Explicitly,

h00(x) = −2G

c4r

∫
(T 0

0 − T nn) d3x′ (57)

hnn(x) = −2G

c4r

∫
(−3T 0

0 − T nn) d3x′ (58)

so that the constraint becomes

d

dt

∫
T 0

0 d
3x′ = 0 (59)

The material energy changes very little in the weak-field approximation, i.e.,
little gravitational energy is produced. Thus, the T 0

0 term will not contribute
to the radiation, which leaves

h00(x) =
2G

c4r

∫
T nn d

3x′ (60)

hij(x) = −4G

c4r

∫
(T ij −

1

2
δij T

n
n) d3x′ (61)

These integrals may be transformed by means of the identity [2-5]∫
T ij d3x =

1

2

∫
xixj ∂k∂lT

kl d3x (62)

The conservation law ∂µT
µν = 0 (again, ignoring the gravitational part)

gives ∂k∂lT
kl = ∂0∂0T

00, and it follows that

∫
T ij d3x =

1

2

d2

dt2

∫
ρ xixj d3x =

1

2

d2I ij

dt2
(63)

Finally,
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h00(x) =
G

c4r

d2Inn
dt2

= − G

c4r

d2I

dt2
(64)

hij(x) = −2G

c4r

(d2I ij
dt2

+
1

2
δij
d2I

dt2

)
(65)

The above expressions give the radiation field in terms of the motion of
the source. The hµν also satisfy the field equations (53) for matter-free space,
∂λ∂λhµν = 0, which admit plane wave solutions such as

hµν = Aµν cos(−Kλx
λ) (K0 = K) (66)

Conditions (50) now take the form

A0
0 = Ann KiA

n
n = KnA

n
i (67)

If a particular direction is chosen (say K3) then the following components
remain

A0
0 = A3

3 A1
1 = −A2

2 A1
2 = A2

1 (68)

while A2
3 = A3

1 = 0. The transverse part of Aij is traceless

Aµν =


A00 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 −A00

 (69)

5.2 Radiative energy flow
The flow of gravitational energy is determined by (24)

T
(g)
0i =

c4

8πG

{
Q0

[0n]Q
n
[i0] +Qn

[n0]Q
0
[0i]

}
=

c4

32πG

{
∂kh

0
0 ∂0h

k
i + ∂ih

0
0 ∂0h

k
k

}
(70)

The retarded fields satisfy ∂ih
µ
ν = −∂0hµν ni where ni is the unit vector in

the radial direction. It follows that
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T
(g)
0i = − c4

32πG

{
∂0h

0
0 ∂0h

k
i n

k + ∂0h
0
0 ∂0h

k
k n

i
}

(71)

The radial flux is given by the product

T
(g)
0i n

i = − c4

32πG
∂0h

0
0

{
∂0h

k
i n

kni + ∂0h
0
0

}
(72)

Substitute (64) and (65) to find the energy flow per unit solid angle

d2E

dt dΩ
= −cr2T (g)

0i n
i =

G

16πc5
d3I

dt3

(
d3Iki
dt3

nkni +
d3I

dt3

)
(73)

Integration yields an average value for the angular term
∫
nknidΩ = δik4π/3

and the power formula

dE

dt
=
∫
c T

(g)i
0 nir2dΩ =

G

6c5

(
d3I

dt3

)2

(74)

In a binary system, [6]

d3I

dt3
= − 2m1m2

a(1− e2)
e sin θ θ̇ (75)

Substitution into (74) gives

dE

dt
=

2Gm2
1m

2
2

3c5a2(1− e2)2
e2 sin2 θ θ̇2 (76)

while the average power over one period is〈
dE

dt

〉
=
Gm2

1m
2
2(m1 +m2)

3c5a5
e2(1 +

e2

4
)(1− e2)−7/2 (77)

This formula exhibits a strong dependence upon eccentricity. In particular,
circular orbits will not radiate energy (e = 0), suggesting that they are more
stable than eccentric orbits. Nevertheless, they do emit transverse waves in
accordance with (65)

hij(x) = −2G

c4r

d2I ij
dt2

(78)
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5.3 Wave detection
The force (43) exerted on a detector initially at rest is due to ∂ig00 alone

dp

dt
=
mc2

2
ei ∂ig00 =

mc2

2
∂0h00 ein

i (79)

which is along the direction of propagation. Substitute (64) to find

dp

dt
= −Gm

2c3r

d3I

dt3
ein

i (80)

Apart from the acceleration of the mirrors (referring to LIGO), the gravita-
tional field directly changes the wavelength of light in the storage chambers,
much as in the static redshift. In this regard, it is important that each mode
possesses energy:

T
(g)
00 =

c4

16πG

{
Qm
n0Q

n
m0 +Qm

m0Q
n
n0 − 2η00η

mnQ0
0mQ

0
0n

}
=

c4

64πG

{
∂0h

m
n∂0h

n
m + ∂0h

m
m∂0h

n
n + 2(∂0h

0
0)

2
}

=
c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2 + 2(∂0h
0
0)

2
}

(81)

where the final line pertains to plane waves along K3 (see (69)). The effect
on light can then be viewed as an exchange of energy.

The gravitational stress is given by

T
(g)
ij =

c4

8πG

{
2Q0

0iQ
0
0j −

1

2
ηij
[
η00(Qm

n0Q
n
m0 +Qm

m0Q
n
n0) + 2ηmnQ0

0mQ
0
0n

]}
(82)

which is diagonal for the field (69)

T
(g)
11 = T

(g)
22 =

c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2
}

(83)

T
(g)
33 =

c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2 + 2(∂3h
0
0)

2
}

(84)

The transverse modes exert an equal pressure in all directions, while the
longitudinal mode exerts pressure along K3.
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5.4 LIGO and Virgo
The equation of motion for a light ray (36) may be written in terms of the
energy and momentum components pµ = h̄kµ

dkµ

ds
+ Γµνλk

ν dx
λ

ds
= 0 (85)

By proceeding as in section 4, this yields the expression

d(eµk
µ) = eµQλ

[νµ]k
νdxλ (86)

Separate the scalar and 3-vector parts to find

d(e0k
0) = e0

1

2

{
−∂nh00 kndx0 + ∂0hmn k

mdxn
}

(87)

d(eik
i) = ei

1

2

{
∂ih00 k

0dx0 − ∂0hin k0dxn
}

(88)

These formulas give the change of frequency and wave vector, as the light
ray passes through a gravitational field.

For the plane waves (66),

∂ρhµν = KρAµν sin(−Kλx
λ) (89)

and the above formulas become

d(e0k
0) = e0

1

2

{
−Knk

nA00 dx
0 +K0k

mAmn dx
n
}

sin(−Kλx
λ) (90)

d(eik
i) = ei

1

2

{
Kik

0A00 dx
0 −K0k

0Ain dx
n
}

sin(−Kλx
λ) (91)

At LIGO and Virgo, the light rays are confined to the horizontal arms, which
are taken to be along e1 and e2. The gravitational waves can arrive from any
direction. However, only two special cases will be considered here: arrival
along the vertical and arrival along one specific horizontal direction.

(a) Arrival along e3, K
0 = K3;A00 = −A33, A11 = −A22, A12 = A21

Effect on light ray kµ = (k0, k1, 0, 0):
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d(e0k
0) = e0

1

2
K0k1A11dx

1 sin(−Kλx
λ) (92)

d(e1k
1) = e1

1

2
K0k0A11dx

1 sin(−Kλx
λ) (93)

Effect on light ray kµ = (k0, 0, k2, 0):

d(e0k
0) = e0

1

2
K0k2A22dx

2 sin(−Kλx
λ) (94)

d(e2k
2) = e2

1

2
K0k0A22dx

2 sin(−Kλx
λ) (95)

These changes are due to the transverse gravitational waves.
(b) Arrival along e1, K

0 = K1;A00 = −A11, A22 = −A33, A23 = A32

Effect on light ray kµ = (k0, k1, 0, 0):

d(e0k
0) = e0

1

2
k1A00(K

1dx0 −K0dx1) sin(−Kλx
λ) (96)

d(e1k
1) = e1

1

2
k0A00(K

1dx0 −K0dx1) sin(−Kλx
λ) (97)

These changes are due to the longitudinal waves alone. They are nonzero if
the light ray and the gravitational wave vector are antiparallel.
Effect on light ray kµ = (k0, 0, k2, 0):

d(e0k
0) = e0

1

2
K0k2A22dx

2 sin(−Kλx
λ) (98)

d(e2k
2) = e2

1

2
K0k0A22dx

2 sin(−Kλx
λ) (99)

These changes are due to the transverse modes. In each case, only the terms
along the light ray have been retained. They will produce interference.

5.5 The redshift and bending of light
For the time-independent field (55), formulas (87) and (88) simplify

d(e0k
0) = −e0 1

c2
∂nψ k

ndx0 d(eik
i) = ei

1

c2
∂iψ k

0dx0 (100)
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The redshift of a light beam which moves radially is found by setting k0 = k,
dx0 = dr and e0k

0 = ω/c = 2π/λ in the scalar equation

∆ω

ω
= −∆λ

λ
= − 1

c2
∆ψ (101)

The bending of a light ray that passes near mass M involves the compar-
ison of wave vectors k(A) and k(B), which are located at points A and B far
from mass M . The angle between them is found by referring the components
ki(A) and ki(B) to the same basis ei(A). The components are found from
(85)

dki = −Γi00k
0dx0 − Γimnk

mdxn (102)

For a light ray moving parallel to the z-axis (k0dx0 = k3dx3), the change in
the x-direction is

dk1 = − 2

c2
∂1ψ k

3dx3 (103)

Integration yields the angle

∆k1

k
= −4GM

c2R
(104)

where R is the radius of closest approach to mass M .

6. Concluding remarks

The search for longitudinal waves could begin with the experiments at LIGO
and Virgo. At any given installation, if a gravitational wave arrives vertically,
then its transverse components alter the wavelength of light in the storage
chambers. For other directions of arrival, both transverse and longitudinal
components contribute. A new analysis of the data could reveal the existence
of longitudinal gravitational waves.

The tensor (24) has been used in [6] to calculate the gravitational energy
of the Robertson-Walker metric. The conservation law (32) and the Fried-
mann equations then combined to show that gravity accounts for two-thirds
of the energy in the Universe—it is the “dark energy.” The current conditions
in the Universe yield a positive acceleration for the expansion.

In [7], the covariant spinor derivative couples the gravitational tetrad
to the spinor, in a gauge invariant manner. The coupling is such that the
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spinor and tetrad propagate together with the same velocity. It is similar to
the coupling between electric and magnetic fields. The tetrad satisfies the
gravitational field equations (9), while the spinor satisfies the Dirac equation
for a free, massive fermion. The tensor (24) was applied to show that the
energy and momentum are conserved.
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