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Abstract

Despite its successes, general relativity has failed to define a stress-energy-
momentum tensor for the gravitational field. In what follows, the scalar,
three-vector theory solves the problem of gravitational dynamics. It yields
covariant expressions for the energy, momentum, stress, force and power. The
weak-field approximation predicts both longitudinal and transverse gravita-
tional waves. It is time to launch a search for longitudinal waves, in the data

at LIGO and Virgo.



1. Introduction

The precis of general relativity is that it provides covariant expressions (ten-
sors) for all physical quantities and for the laws that relate those quanti-
ties. However, no such expressions exist for gravitational energy, momentum,
stress, force and power. This, in itself, shows that general relativity cannot
be correct. The four-dimensional tensor formalism is incapable of describing
gravitational dynamics [1].

The theory presented here derives from the fact that special relativity
was invented without the use of four-vectors. Only scalars and three-vectors
were used by the founders. This is evident in the basic physical elements
of the theory: (time, space), (energy, momentum), (charge, current), etc. It
is by expressing these elements in terms of coordinates that a new theory
of gravitation emerges. It yields a fully covariant treatment of gravitational
dynamics.

2. Field equations

The theory of special relativity concerns the motion and orientation of or-
thonormal frames of reference. A displacement dr is projected onto an or-
thonormal 3-frame: i-dr, j-dr, k - dr. These projections, together with the
time interval dt, undergo a Lorentz transformation, which leaves the funda-
mental interval invariant

ds®> = *dt* — dr® (1)

The physical displacements may also be expressed in terms of a coordinate
system {z#}

cdt = eo(x)dz’ dr = e;(v)dz’ (2)

where e, = (e, €;) is a scalar, 3-vector basis. The interval (1) then takes the
form

ds® = (epda’)® —e; - e; dx'da’

= gudztdx” (3)

where
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The theory of gravitation concerns the structure of this metrical coordinate
system. A Lorentz transformation may take place at any point. It will not
involve the coordinates {x*}.

An observer is free to choose a new coordinate system {z*'}. In order to
retain the distinction between scalars and 3-vectors, the coordinate transfor-
mations are restricted to the form

’

¥ = 2% (20) A ) (5)
Displacements (2) will then be invariant, while the metric transforms as a
tensor
02 02° _ Ox™ Qx” (©)
g0,0/ - 61’0/ 61'0/ gOO gl] - axl/ ax]/ gmn
The Christofel symbols

1
Fﬁ)\ = igup (8)\ng + al/gp/\ - 8pgl/>\) (7)

yield the Ricci tensor
Ry, = 9,T, — O\, + T8, — T3 T, (8)

The gravitational field equations

C4

G
follow from the Einstein-Hilbert action

(R — ;gwR> +T =0 9)

4
5/ 16C Gg“”RW\/—gd‘lx+5/L(m)\/—gd4x =0 (10)
T

There are seven field equations, corresponding to the seven variations dg*” =
(5%, 6¢). Components Ry; and T, do not appear in (9).



3. Gravitational energy, momentum and stress

The rate of change of the basis system is defined in terms of connection
coefficients @,

Ve, = e,\Ql’)V (11)

This formula separates into scalar and 3-vector parts

V1/60 - eOlel (12>
szei = engz/ (13>
where @), = Q% = 0. In terms of the metrical functions (4),
Ngoo = 2900@8,\ (14)
Qgi; = ginQ + ginQio (15)
hgii = GinQjy, + ginQi, (16)

If Q% = Qj; and if the two terms in (15) are assumed to be equal, then

1
Qor = Ty = 5900@900 (17)
jo = Ljo= 29 DoGn; (18)
) ) 1 .
= L= §9m (OrGjn + 0jGnk — Ongji) (19)

Together, they comprise the formula

Q=T+ 39" 9uQ, (20)

where

Qﬁ»\] = Q) — @\ (21)

The non-zero components of Qﬁj/\] are

1 . . 1 .
Q[[)oﬂ = ng = 590081‘900 Cfoj()] = Q;O = 591”(‘909@ (22)



They transform as tensor components
8:1:” 0 y ozt 9z 0x°
Qo) = 77 Qlom Q01 = g gu’ 929

This field strength tensor serves to define the gravitational energy tensor

n0] (23)

4
TP = & G{ @it + Qv — 5 W i@ + @uQ0)} (29)

where @, = Qf o] For a static Newtonian potential 1

2
goo =1+ g@/} (25)
so that Qf‘w\] is given by
1 i
Q?Oi] = 2 i Q[jo] =0 (26)
It follows that
1
T(g) — \V4 2 27
Y =0 (28)
@ _ 1
19 = Lo {owow - 35,(v?) (29)

which is the Newtonian stress-energy tensor.
The conservation law for energy and momentum is found by summing the
expression e, T"” dV,, over a closed, infinitesimal region J R

Z e, " dV, = {eu O(vV—=9gT" )+ (Ve )V—g T‘“’}d%

0R

- eu{j__gay<¢—_gTW>+QiuT“}¢—_gd4x (30)

where TH = T(’ZS + T("TZ) is the total energy tensor and

dV, = /=g (de'dz*d2®, dx’dx?da®, .. ) (31)



Energy and momentum are conserved, if
1
div T = ——=08,(v=gT") + Q), T =0 32)
\/_—g ( A (
Make use of (20) to find

div T'L“j T'ul/ + gqu[al/] (33)

where T#, is the (contracted) covariant derivative. The divergence of the
mixed tensor is

divT,” =T,% + QpuTs (34)

The conservation law has been used to calculate the gravitational energy of
the Robertson-Walker metric [2]. It was found that gravity accounts for two-
thirds of the energy in the Universe—it is the “dark energy.” The energy
tensor (24) was used in [3] to show that gravitational coupling can account
for the fermion mass in a gauge invariant manner.

4. Gravitational force and power

The motion of a particle in a gravitational field is described by the Lagrangian

L =mc /g (x)urtu” (35)

and the resulting equation of motion

mc{dcleF“)\uu}:O (36)

where u* = dz* /ds. The energy and momentum of the particle are given by

mc? mv FE

o L — - Yy (37)
\1—0?/c? P V1—wv?/c2 ¢

They yield the power formula

de dp
ds v ds
where v = dr/dt is the physical velocity. The gravitational power and force
are found by expressing the energy and momentum in terms of coordinates

(38)
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E = mc?eqgu’ p = mc e;u’ (39)

The rate of change of e, u" is

d(e,u*) du” de, dut 5
5 T gy T el @)
dut 5
= e#{d— + T u } + e“Q[W]u U (40)

where (20) has been used. Substitute the equation of motion (36) to find

d(e ut
me dle) = et mc Q@,M]u”u,\ (41)

ds

Separate this formula into scalar and 3-vector parts, then substitute the
components (22) to find that the energy and momentum change as follows:

dE mc?

% = 60 T {_ang()o unuO + aogmn umun} (42)
dgp _ ;mc 0,0 0,n

- ¢ {&-goou u’ — oGin U U } (43)

These equations express the power and force which are exerted by the grav-
itational field. In the Newtonian limit (25), «° =1 and u" = v™/c so that

dE dp

If other forces are present, they will appear in the equation of motion. For

example, a charged particle in combined gravitational and electromagnetic
fields is described by

= q
L = mc\/ g (x)uru” + . A, (z)ut (45)

and

dut
mc{%%—f‘%\uu }:%F‘lfu” (46)

It follows that (compare (41))



d(e,ut y q ”
me (58 ) — eﬂ{chf‘W]u uy + EFWu } (47)
The scalar and 3-vector parts of the Lorentz force are then added to the
right-hand side of (42) and (43).

5. The weak-field approximation

(In this section, Ty, = T = pc*utu".)
If the coordinate system is nearly rectangular, then the metric tensor may
be expanded

G = N + My P | < 1 (48)
Substitution into (8) yields

1
Ry = 5 {0050y + 0,010\ — 0,030, — 0,031, } (49)
The four conditions

,h\ = 20,1, (50)

leave three independent components h,,,,, and they greatly simplify the Ricci

tensor

iz

1
R,uz/ = 5 a)\a)\h,uzx (51>
Rewrite the field equations in the form

1

8tG
Ry == (1% - 5 T) (52)
in order to obtain
167G 1
A _ _
o, = —— (4 - 5% T) (53)

The retarded solution is

AG / (T — 304, T)

h,MV(X, t) = —? |ret de/ (54)

|x — x|



If the source is at rest, then Ty = T' = pc* and T% = 0 so that (54) yields

dﬁ:(y+;¢xm%%41—;¢xmﬂ+@?+w% (55)

where ¢ is the Newtonian potential.

5.1 Wave generation
When motion of the source is significant, radiation is produced which prop-
agates into distant regions. In those regions, the solution (54) simplifies to
I3 — _& uo_ 1 K 3

hE (x,t) = o (T 25,/T)da: (56)
Here, the long wavelength limit is assumed, so that ret simply means time
(t —r/c). Formula (50) for ¥ = 0 imposes a constraint on this solution, viz.,
OohY, = Oph™,. Explicitly,

2G

0 _ 0 ny 33
hole) = —— [T -T7)d (57)
n 2G 0 n 3
W) = —— [(-3T8—Th) d% (58)
so that the constraint becomes
a4 / T0 &z = 0 (59)
dt 0

The material energy changes very little in the weak-field approximation, i.e.,
little gravitational energy is produced. Thus, the T term will not contribute
to the radiation, which leaves

2G
0 _ n 73
M) = 5 / ™ dr (60)
A 4G 1

These integrals may be transformed by means of the identity [4-6]

/T” dr = 5 /a:lxJ OROTH dPx (62)



The conservation law 0,7" = 0 (again, ignoring the gravitational part)
gives 0,0, T™ = 0,0,T%, and it follows that

1 d*1%

T’Lj 3, . / J 3 — _

/ d°x = 5 7dt2 pr'a! v = 5 P (63)
Finally,

G &*1" G &I
o) = === 7 4
ol) clr o dt? crr dt? (64)

; 26 (I 1 P

Wye) = ( it dt2> (65)

The above expressions give the radiation field in terms of the motion of
the source. The h,, also satisfy the field equations (53) for matter-free space,
8)‘(9Ahw, = 0, which admit plane wave solutions such as

h" = A¥ cos(—Kya™) (K= K) (66)
Conditions (50) now take the form

AD = A" AT = K, A" (67)

If a particular direction is chosen (say K?) then the following components
remain

ho=n% hy=—h% hhy=h3 (68)
while h% = h% = 0. The transverse part of A;; is traceless

hoo O 0 0
0 hit hio 0
0 hip —hy 0O
0 0 0 —hoo

Py = (69)

This can be proved for the general case by using the projection operator [7]
Pyj = 0 — nyn; to define AJ; = Py, Pjpy Ay Then (67) gives AT, = 0.

5.2 Radiative energy flow
The flow of gravitational energy is determined by (24)
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9 _ € 0 n A0
Ty = 37 {Q[On]Q o) + @ [nO]Q[Oi]}
4
— ¢ 0 n 30 n
- == {011y 00l + 0,1’y Dol | (70)
A plane wave satisfies K 0;h*, = K; Oph", so that

4
1 = 5.
327G
This shows that the transverse-traceless components do not contribute to the
energy flow. Conditions (67) now give

Kn n KZ n
{5 Qb oI’y + = Dby o1 | (71)

T = K (Bph%)? = . n; (Goh%,)? (72)
" 16nG K 0 167G 0
The scalar product
(9)i, i c’ 042
cTy?'n' = T (Ooh'y) (73)

gives the flow in the radial direction. There is no angular dependence and so
the total power is found by substituting (64)

dE (9)i i, .2 G (d’T\?
% = /CTO nr dQ = 4@5 (dt?’) (74)
In a binary system, [6]
d3] 2m1m2 .
— =—————esinff
773 o1 =) e sin (75)
Substitution into (74) gives the power
2,2 ‘
4B Gmim, 5 €% sin® 0 6 (76)

dat Aa?(1 —e?)
while the average over one period is
dE Gmim3(my +ma) e?
) = 1 ~\(1 = 2\—=7/2
<dt> 2cPad el +4)( ¢)

This formula exhibits a strong dependence upon eccentricity. In particular,
circular orbits will not radiate energy (e = 0), suggesting that they are more

(77)
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stable than eccentric orbits. Nevertheless, they do emit transverse waves in
accordance with (65)
2% d2 Iz

s dt2

W(@) = (78)

5.3 Wave detection
The force (43) exerted on a detector initially at rest is clearly due to d;goo
alone

d mc? mc?
£ T e @goo 7 80h00 ezn (79)
which is along the direction of propagation. Substitute (64) to find
dp Gm d*I
—_— = en’ 80
dt 26 dis 7" (80)

Apart from the acceleration of the mirrors (referring to LIGO), the gravita-
tional field changes the wavelength of light in the storage chambers, much as
in the static redshift. In this regard, it is important that each mode possesses
energy:

4
T = o5 1Qw@mo + Qro@ro — 2i00n™ Q0 Q0n }
4
_ m n m n 0
= oo {BohT00h", + Dok B0k, + 2(0ph')? )

C4

= o {(B0h'))? + (Boh)? + 2(9eh%)*} (81)

where the final line pertains to motion along K?® (see (69)). The effect on
light can then be viewed as an exchange of energy.
The gravitational stress is given by

T-(-g)
Y 8 G

{26201@0] S (17 (@@ + Qo) + 2™ Q0,00 |
(82)
which is diagonal for the field (69)

12



4

T = T8 = o {@nh) + (@)} (83)
4
Cc

Ty = 5o 1(@ohh)” + (Bohy)* + 2(0sh%)* (84)

These stresses are compressive, with the transverse modes exerting an equal

pressure in all directions, and the longitudinal mode exerting pressure along
K3,

5.4 LIGO and Virgo
The equation of motion for a light ray (36) may be written in terms of the
energy and momentum components p* = hk*

dkH dz?
+THE — =0 85
ds AT ds (85)

By proceeding as before, this yields the expression
d(e k") = e Qp k" dz (86)
Separate the scalar and 3-vector parts to find

d(eh?) = {=0nhoo K"da" + Ophym k™" | (87)

ol
2
dlek’) = e {@hoo K0da® — Ooha K°da™ | (88)
These formulas give the change of frequency and wave vector, as the light
ray passes through a gravitational field.
For the plane waves (66),
Oph, = K,A,, sin(—Kz) (89)
and the above formulas become

d(eoh®) = €5 {=K,k" Ao da® + Kok™ Ay, da™} sin(—Kyz?) - (90)

d(ek’) = { 0 Ao dr° — Kok® A, da™ }sin(—K,\x’\) (91)

l\D\)—‘w\}—l

13



At LIGO and Virgo, the light rays are confined to the horizontal arms, which
are taken to be along e; and e;. The gravitational waves can arrive from any
direction. However, only two special cases will be considered here: arrival
along the vertical and arrival along one specific horizontal direction.

(a) Arrival along ez, K° = K3; Agg = —Az3, A1; = — Ao, A1 = Ay
Effect on light ray k* = (k°, k', 0,0):
1
d(egk®) = §K°k1A11dx1 sin(—Kyz?) (92)
1
dlek') = e iKOkoAlldajl sin(— Ky z) (93)

Effect on light ray k* = (k°,0, k%, 0):

1

d(egk®) = 5KozﬂAmdaﬁsin(—fgﬁ) (94)
1

d(esk?) = ey §K0k‘0AQQde‘QSiH(—K)\l‘)‘) (95)

These changes are due to the transverse gravitational waves.
(b) Arrival along e, KO = Kl, AOO = _A117A22 = —A33, A23 = A32
Effect on light ray k* = (k% k', 0,0):
1
d(egk®) = 5 k' Ago(K'da® — K dat) sin(— Kya2?) (96)
1
dlelk') = e 3 K0 Ago(K'da® — Kdat) sin(—Kya?) (97)

These changes are due to the longitudinal waves alone. They are nonzero if
the light ray and the gravitational wave vector are antiparallel.

Effect on light ray k* = (k°,0, k%, 0):
1
d(egk®) = §K0k2A22d$2 sin(—Kyz?) (98)
1
d(62k2> = €9 iKOI{JoAQle'z SiH(-K)\ZL')\) (99)

These changes are due to the transverse modes. In each case, only the terms
along the light ray have been retained. They will produce interference.
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The search for longitudinal waves could begin with the experiments at
LIGO and Virgo. At any given installation, if a gravitational wave arrives
vertically, then its transverse components alter the wavelength of light in
the storage chambers. For other directions of arrival, both transverse and
longitudinal components contribute. A new analysis of the data could reveal
the existence of longitudinal gravitational waves.

5.5 The redshift and bending of light
For the static field (55), formulas (87) and (88) simplify

1 1
d(eok”) = —" 5 O k"da” dek’) = &' = 0p Kda®  (100)

The redshift of a light beam which moves radially is found by setting k° = k,
dz® = dr and w = 2mwc/\ in the scalar equation

Aw_ aA 1L, (101)

w A c?

The bending of a light ray that passes near mass M involves the compari-
son of wave vectors k(A) and k(B) located at two widely separated points A
and B. The angle between them is found by referring the components k*(A)
and k'(B) to the same basis €;(A). The components are found from (85)

dk' = T} k%da® — T k™da™ (102)

For a light ray moving parallel to the z-axis (k°dz® = k3dz?), the change in
the x-direction is

2
dk' = —= 0y k> da® (103)
c
Integration yields the angle
Ak? 4GM
— = 104
k 2R (104)

where R is the radius of closest approach to mass M.
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