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1. Abstract 

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an 

integer 𝑛(𝑛 ≧ 1), the prime factors other than p are 𝑝1,𝑝2,𝑝3,…𝑝𝑟 and the even 

exponent of 𝑝𝑘 is 𝑞𝑘, 

𝑦/𝑝𝑛 = (1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘)

𝑟

𝑘=1

/(2𝑝𝑛) = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

must be satisfied. Let m be non negative integer and q be positive integer, 

𝑛 = 4𝑚 + 1 

𝑝 = 4𝑞 + 1 

Letting b and c be odd integers, satisfying following expressions, 

𝑏 = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

𝑐 = ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘

𝑟

𝑘=1

)/𝑝𝑛 

2𝑏 = 𝑐(𝑝𝑛 + ⋯ + 1) 

is established. This is a known content. By the consideration of this research paper, 

since it turned out that the number of odd perfect numbers is one at most when 

𝑛 ≧ 5 since there is at most one solution that satisfies this equation for p and p is 

unique in the range of 𝑝 ≧ 5 and p is unique in the range of 𝑛 ≧ 5. Then since it 

becomes contradiction because two solutions are satisfied when n is fixed and p is 

changed, we have obtained a conclusion that there are no odd perfect numbers. 

 

 

2. Introduction 

The perfect number is one in which the sum of the divisors other than itself is the 

same value as itself, and the smallest perfect number is 

1 + 2 + 3 = 6 

It is 6. Whether an odd perfect number exists or not is currently an unsolved 

problem. 
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3. Proof 

An odd perfect number is y, one of them is an odd prime number p, an exponent of p 

is an integer n (n ≧ 1). Let 𝑝1,𝑝2,𝑝3,…𝑝𝑟 be the odd prime numbers of factors other 

than p, 𝑞𝑘 the index of 𝑝𝑘, and variable a be the sum of product combinations other 

than prime p. 

𝑎 = ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘

𝑟

𝑘=1

) …① 

The number of terms N of variable a is 

𝑁 = ∏(𝑞𝑘 + 1) …②

𝑟

𝑘=1

 

When y is a perfect number, 

𝑦 = 𝑎(1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) − 𝑦 (𝑛 > 0) 

is established. 

𝑎 ∑ 𝑝𝑘

𝑛

𝑘=0

/2 = 𝑦 

𝑎 ∑ 𝑝𝑘

𝑛

𝑘=0

/(2𝑝𝑛) = 𝑦/𝑝𝑛  …③ 

 

3.1. If 𝑞𝑘  has at least one odd integer 

Letting the number of terms where 𝑞𝑘 is an odd integer be a positive integer u, 

because y/𝑝𝑛 = ∏ 𝑝𝑘
𝑞𝑘𝑟

𝑘=1  is an odd integer, the denominator on the left side of the 

expression ③ has a prime factor 2, from the expression ② variable a has more 

than u prime factor 2 and variable a is an even integer. Therefore ∑ 𝑝𝑘𝑛
𝑘=0  must be 

an odd integer, n is an even integer and u is 1. 

 

3.2. When all 𝑞𝑘  are even integers 

y/𝑝𝑛 is an odd integer, the denominator on the left side of the expression ③ is an 

even integer, and since N is and odd integer when 𝑞𝑘 are all even integers, variable 

a is and odd integer. Therefore ∑ 𝑝𝑘𝑛
𝑘=0  is necessary to include one prime factor 2, 

∑ 𝑝𝑘𝑛
𝑘=0 ≡ 0 (𝑚𝑜𝑑 2) is established, and n must be an odd integer. 

 

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the 

prime factor of y must be an odd integer and variable a must be an odd integer. We 

consider the case of 3.2 below. 
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In order for y to be a perfect number, the following expression must be established. 

𝑦/𝑝𝑛 = (1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘)

𝑟

𝑘=1

/(2𝑝𝑛) = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

However, 𝑞1, 𝑞2, … , 𝑞𝑟 are all even integers. 

 

Here, let b be an integer 

𝑏 = ∏ 𝑝𝑘
𝑞𝑘  …④

𝑟

𝑘=1

 

A following expression is established. 

𝑦/𝑝𝑛 = 𝑎(1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛)/(2𝑝𝑛) = 𝑏 

𝑎(𝑝𝑛+1 − 1)/(2(𝑝 − 1)𝑝𝑛) = 𝑏 

(𝑎 − 2𝑏)𝑝𝑛+1 + 2𝑏𝑝𝑛 − 𝑎 = 0 …⑤ 

Because it is an n + 1 order equation of p, the solution of the odd prime p is n + 1 

at most. 

 

(𝑎𝑝 − 2𝑏𝑝 + 2𝑏)𝑝𝑛 = 𝑎 

Since 𝑎𝑝 − 2𝑏𝑝 + 2𝑏 is an odd integer, a/𝑝𝑛 is an odd integer, which is c. 

𝑎𝑝 − 2𝑏𝑝 + 2𝑏 = 𝑐 (𝑐 > 0) …⑥ 

(2𝑏 − 𝑎)𝑝 = 2𝑏 − 𝑐 

 

Since variable a is an odd integer, 2𝑏 − 𝑎 is an odd integer and 2𝑏 − 𝑎 ≠ 0 

𝑝 = (2𝑏 − 𝑐)/(2𝑏 − 𝑎) 
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Since n ≧ 1 

a − c = cpn − c ≧ cp − c > 0 

a > c 

is. 

 

 

From the equation ⑥ 

2b(p − 1) − (ap − c) = 0 

2b − c(pn+1 − 1)/(p − 1) = 0 

(pn + ⋯ + 1)/2 is an odd integer, n = 4m + 1 is required with m as an integer. 

2b(p − 1) = c(pn+1 − 1) 

2b = c(pn + ⋯ + 1) 

2b = c(p + 1)(pn−1 + pn−3 + ⋯ + 1) …⑦ 

b is an odd integer when p + 1 is not a multiple of 4. It is necessary that p − 1 be a 

multiple of 4. A positive integer is taken as q. 

p = 4q + 1 

is established. 

 

 

When p > 1 

pn − 1 < pn 

(pn − 1)/(p − 1) < pn/(p − 1) 

pn−1 + ⋯ + 1 < pn/(p − 1) …⑧ 

 

Since p is an odd prime number satisfying p = 4q + 1 and p ≧ 5 

pn−1 + ⋯ + 1 < pn/4 

2b − a = c(pn + ⋯ + 1) − cpn = c(pn−1 + ⋯ + 1) 

2b − a < cpn/4 = a/4 

2b < 5a/4 

a > 8b/5 …⑨ 
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Let ak and bk be integers and if 

ak = 1 + pk + pk
2 + ⋯ + pk

qk, bk = pk
qk, 

ak − bk < bk/(pk − 1) 

ak < bkpk/(pk − 1) 

 

a = ∏ ak <

r

k=1

∏ bkpk/(pk − 1)

r

k=1

= b ∏ pk/(pk − 1)

r

k=1

 

a/b < ∏ pk/(pk − 1)

r

k=1

 

When r = 1, since a/b < 3/2 is established, it becomes inappropriate contrary to 

inequality ⑨. 

 

 

From the expression ⑦, 

b = c(p + 1)/2 × (pn−1 + pn−3 + ⋯ + 1) 

holds. Since (p + 1)/2 is the product of only prime numbers of b, let dk be the 

index, 

(p + 1)/2 = ∏ pk
dk

r

k=1
 

p = 2 ∏ pk
dk

r

k=1
− 1 

 

 

From a = cpn and the expression ⑦, 

2bpn = a(pn + ⋯ + 1) 

a(pn + ⋯ + 1)/(2bpn) = 1 … (A) 

When r = 1, 

a = (p1
q1+1 − 1)/(p1 − 1) 

b = p1
q1 

The equation (A) does not hold since there is no odd perfect number when r = 1. 
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Let R be a rational number, 

R = a(pn + ⋯ + 1)/(2bpn) 

Let b’ be a rational number and let A and B to be an integer, 

b′ = (pk
qk+1 − 1)/(pk

qk(pk − 1)) > 1 

Ak = (pk
qk+1 − 1)/(pk − 1) 

Bk = pk
qk 

 

 

Multiplying R by b’, there are both cases that pk increases p or does not change. 

When multiplied by b’, the rate of change of R is Ar+1pn(p′n
+ ⋯ + 1)/(Br+1p′n

(pn +

⋯ + 1)), if p after variation is p’. If the rate of change of R is 1, 

Ar+1pn(p′n
+ ⋯ + 1)/(Br+1p′n

(pn + ⋯ + 1)) = 1 

Ar+1pn(p′n
+ ⋯ + 1) = Br+1p′n

(pn + ⋯ + 1) 

This expression does not hold since the right side is not a multiple of p when p′ > p, 

and Ar+1 > Br+1 holds when p′ = p. Due to this operation, R may be larger or 

smaller than the original value since the rate of change of R does not become 1. 

 

 

Assuming that R = 1 in some r, letting x be an integer and by multiplying fractions 

b′ = Ar+1/Br+1, b′′ = Ar+2/Br+2, …b′′…′ = Ax/Bx to R. Furthermore, assuming that 

As+1As+2 … Ar is not a multiple of p, R is divided by As+1/Bs+1, As+2/Bs+2,…Ar/Br 

and it is assumed that finally R = 1. At this time, assuming that n changes, the 

change rate of R by this operation when multiplying by Ar+1/Br+1 is 

Ar+1pn(pnr+1 + ⋯ + 1)/(Br+1pnr+1(pn + ⋯ + 1)) 

 

1 × Bs+1pn(pns+1 + ⋯ + 1)/(As+1pns+1(pn + ⋯ + 1)) × … × Brpnr−1(pnr + ⋯

+ 1)/(Arpnr(pnr−1 + ⋯ + 1)) × Ar+1pnr(pnr+1 + ⋯ + 1)/(Br+1pnr+1(pnr

+ ⋯ + 1)) × Ar+2pnr+1(pnr+2 + ⋯ + 1)/(Br+2pnr+2(pnr+1 + ⋯ + 1)) × …

× Axpnx−1(pnx + ⋯ + 1)/(Bxpnx(pnx−1 + ⋯ + 1)) = 1 

Bs+1Bs+2 … BrAr+1Ar+2 … Axpn−nx(pnx + ⋯ + 1)

= As+1As+2 … ArBr+1Br+2 … Bx(pn + ⋯ + 1) … (B) 

When nx < n, it becomes contradiction since the right side of above expression does 

not include factor p. 

When nx = n, 

Bs+1Bs+2 … BrAr+1Ar+2 … Ax = As+1As+2 … ArBr+1Br+2 … Bx  … (C) 
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Let er, fr be odd integers and gr be a rational number, 

er = ∏ (pk
qk + ⋯ + 1)

r

k=1
 

fr = ∏ pk
qk

r

k=1
 

gr = er/fr 

holds. 

gr+1 = er+1/fr+1 = er/fr × (pr+1
qr+1 + ⋯ + 1)/pr+1

qr+1 > er/fr = gr 

Let q1′ be even integer and q1
′ > q1 holds. Let gr be gr′ when q1 becomes q1

′ , 

gr
′ = (p1

q1(p1
q1′ + ⋯ + 1)/p1

q1′(p1
q1 + ⋯ + 1))gr > gr 

is established. 

Here, it is assumed that qk becomes qk − hk by making qk smaller than before for 

gr. hk is an even non-negative integer. Then it is assume that r becomes s(s > r), 

gs = gr and gs is not changed. 

gs/gr = p1
q1 × … × pr

qr(p1
q1−h1 + ⋯ + 1) … (pr

qr−hr + ⋯ + 1)/(p1
q1−h1 × …

× pr
qr−hr(p1

q1 + ⋯ + 1) … (pr
qr + ⋯ + 1)) = 1 

p1
h1 × … × pr

hr(p1
q1−h1 + ⋯ + 1) … (pr

qr−hr + ⋯ + 1)/((p1
q1 + ⋯ + 1) … (pr

qr + ⋯ + 1))

× pr+1
qr+1 × … × ps

qs = 1 

pr+1
qr+1 × … × ps

qs × p1
h1 × … × pr

hr(p1
q1−h1 + ⋯ + 1) … (pr

qr−hr + ⋯ + 1)

= (p1
q1 + ⋯ + 1) … (pr

qr + ⋯ + 1) 

pr+1
qr+1 × … × ps

qs(p1
q1 + ⋯ + p1

h1) … (pr
qr + ⋯ + pr

hr)

= (p1
q1 + ⋯ + 1) … (pr

qr + ⋯ + 1) 

a = (p1
q1 + ⋯ + 1) … (pr

qr + ⋯ + 1) = cpn holds and from the expression ⑦, c must 

be a product of primes from p1 to pr. Thereby the above equation does not hold 

since it is inappropriate when there is even one prime number other than p1 to pr. 

When changing the value of pk , it is equivalent to dividing by pk
qk  and then 

multiplying by new pk
qk, so it is sufficient to consider only the changes of qk and r. 

From above, since gr does not chord the original value when qk or r is increased or 

decreased, it takes unique values for the variables pk, qk, r. 

From the above proof, 

gr = A1A2 … As/B1B2 … Bs × Ar+1Ar+2 … Ax/Br+1Br+2 … Bx 

gr must be represented uniquely, and the expression (C) does not satisfied. When 

dividing by the prime number in the expression of p, a contradiction arises since the 

prime number not included in b is in the expression of p. Therefore when p holds 

p ≡ 1 (mod 4) and p ≧ 5, the number of the solution (a, b, p, n) satisfying R = 1 is 

at most one. 
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Since (a, b, p, n) = (1,1,1,1) is inappropriate solution and the expression (C) becomes 

contradiction, there is one solution when nx = n = 1. Therefore there are no odd 

perfect numbers when n = 1. 

 

 

Define the operation [multiplication] and the operation [division] as follows. 

Assuming that p in the equation of R is replaced by p’ by multiplying Ai/Bi, define 

operation [multiplication] to R as follows. 

p’ = 2 ∏ pk
dk

r

k=1
× pi

di − 1 

0 ≦ di ≦ qi 

Here, let i be i > r. Suppose operation [division] is division by Aj/Bj for R, and if pj 

is included in p in the expression R, pj is deleted as dj = 0. Here, assuming that j 

satisfies 1 ≦ j ≦ r. 

 

In the proof of the expression (B), it is assumed that p changes on the way, and 

finally p becomes px. 

A1 … Ar = cpn 

2B1 … Br = c(pn + ⋯ + 1) 

A1 … Ax = c′px
nx 

2B1 … Bx = c′(px
nx + ⋯ + 1) 

It is assumed that the above expressions are satisfied. 

Bs+1Bs+2 … BrAr+1Ar+2 … Axpn(px
nx + ⋯ + 1)

= As+1As+2 … ArBr+1Br+2 … Bxpx
nx(pn + ⋯ + 1) 

Bs+1Bs+2 … BrA1 … ArAr+1Ar+2 … Axpn(px
nx + ⋯ + 1)

= A1 … ArAs+1As+2 … ArBr+1Br+2 … Bxpx
nx(pn + ⋯ + 1) 

Bs+1Bs+2 … Brc′px
nxpn(px

nx + ⋯ + 1)

= A1 … ArAs+1As+2 … ArBr+1Br+2 … Bxpx
nx(pn + ⋯ + 1) 

Bs+1Bs+2 … Brc′pn(px
nx + ⋯ + 1) = A1 … ArAs+1As+2 … ArBr+1Br+2 … Bx(pn + ⋯ + 1) 

 

B1 … BrBs+1Bs+2 … Brc′pn(px
nx + ⋯ + 1)

= A1 … ArAs+1As+2 … ArB1 … BrBr+1Br+2 … Bx(pn + ⋯ + 1) 

B1 … BrBs+1Bs+2 … Brc′pn(px
nx + ⋯ + 1)

= A1 … ArAs+1As+2 … Arc′(px
nx + ⋯ + 1)/2 × (pn + ⋯ + 1) 

B1 … BrBs+1Bs+2 … Brpn = A1 … ArAs+1As+2 … Ar/2 × (pn + ⋯ + 1) 
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c(pn + ⋯ + 1)/2 × Bs+1Bs+2 … Brpn = cpnAs+1As+2 … Ar/2 × (pn + ⋯ + 1) 

Bs+1Bs+2 … Br = As+1As+2 … Ar 

is established. It becomes contradiction since Ak > Bk holds when the operation 

[division] is performed. 

 

We consider in the case of n ≧ 5 as follows. Consider a tree whose vertex is 

(a, b, p, n) = (1,1,1,1), and it becomes a child node when the operation [multiplication] 

is performed. For example, consider a child node connected to a vertex as follows. 

(a, b, p, n) = (13,9,5,5) as p1 = 3, q1 = 2 and d1 = 1 

 (a, b, p, n) = (13,9,17,9) as p1 = 3, q1 = 2 and d1 = 2 

 (a, b, p, n) = (57,49,97,13) as p1 = 7, q1 = 2 and d1 = 2 

In the above proof, since by considering x = s it becomes inconsistent, the two 

points connected without returning to the bifurcation except for the top of the tree 

will not be odd perfect numbers. …(D) 

 

The following lemma holds as a corollary of Zsigmondy's theorem. 

[lemma Z] 

For odd prime p and odd n ≧ 5, where p ≡ 1, n ≡ 1 (mod 4), pn+1 − 1 has at least 

one prime factor different from any prime factor of p2 − 1. 

 

By using this lemma Z, the following theorem can be proved. 

[theorem] 

For odd prime p and odd n ≧ 5, where p ≡ 1, n ≡ 1 (mod 4), pn−1 + pn−3 + ⋯ + p2 + 1 

has a prime factor different from at least one prime factor of (p + 1)/2. 

 

[proof] 

From lemma Z, pn+1 − 1 has at least one prime factor different from any prime 

factor of p2 − 1. Let this be q. 

pn+1 − 1 = (pn−1 + pn−3 + ⋯ + p2 + 1) × (p2 − 1) and since q is not a prime factor of 

p2 − 1, pn−1 + pn−3 + ⋯ + p2 + 1 always has q as a prime factor. 

Since p2 − 1 is a multiple of (p + 1)/2, this q is different from any prime factor of 

(p + 1)/2. □ 

 

From the above, for odd prime number p and odd number n ≧ 5 where p ≡ 1, n ≡

1 (mod 4) pn−1 + pn−3 + ⋯ + p2 + 1 can not be the product of only (p + 1)/2 prime 

factors. 
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We quoted the above lemma Z, theorem and proof from as below. 

Proof for the existence of an odd complete number 3 

https://rio2016.5ch.net/test/read.cgi/math/1544361065/498 

 

From above theorem, when n ≧ 5, if b is only a prime number of (p + 1)/2, it does 

not become an odd perfect number. …(E) 

 

It is assumed that a set of nodes is branched when p is changed by an operation 

[multiplication] in nodes in two or more layers. Here, when there is a solution in a 

certain p, if there is a solution even in the other values p', by the proposition (D) and 

the proposition (E), the operation [division] must be performed to return to the 

bifurcation. At this time from the above proof, it becomes inconsistent. Thereby p 

must be unique. Therefore since for p satisfying p ≧ 5 there is at most one solution 

with R = 1, the number of odd perfect number is one at most where n ≧ 5. 

 

 

Assuming that R = 1 holds in some r when n ≧ 5 and by fixing n and performing 

operation [multiplication], finally p becomes px and R = 1 holds again. 

A1 … Ar = cpn 

2B1 … Br = c(pn + ⋯ + 1) 

A1 … Ax = c′px
n 

2B1 … Bx = c′(px
n + ⋯ + 1) 

 

2B1 … Brpn = A1 … Ar(pn + ⋯ + 1) 

2B1 … Bxpx
n = A1 … Ax(px

n + ⋯ + 1) 

 

Br+1 … Bx × px
n/pn = Ar+1 … Ax × (px

n + ⋯ + 1)/(pn + ⋯ + 1) 

Br+1 … Bxpx
n(pn + ⋯ + 1) = Ar+1 … Axpn(px

n + ⋯ + 1) 

 

Let t be an odd integer, 

Ar+1 … Ax = tpx
n … (E) 

 

Br+1 … Bx(pn + ⋯ + 1) = tpn(px
n + ⋯ + 1) 

 

If Bx = pqx, 

Br+1 … Bx−1pqx−n(pn + ⋯ + 1) = t(px
n + ⋯ + 1) 

https://rio2016.5ch.net/test/read.cgi/math/1544361065/498
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From the expression (E), 

A1 … Ax = ctpnpx
n = c′px

n 

c′ = ctpn 

 

Br+1 … Bx−1pqx−n(pn + ⋯ + 1) = c′/(cpn) × (px
n + ⋯ + 1) 

cBr+1 … Bx−1pqx(pn + ⋯ + 1) = c′(px
n + ⋯ + 1) 

B1 … BrBr+1 … Bx−1pqx = B1 … Bx 

When Bx = pqx, above expression holds. Since the number of odd perfect numbers is 

one at most when n ≧ 5, an assumption that there are two solutions with the same 

n is false. It becomes contradiction because the false assumption holds. From above 

there are no odd perfect numbers. 
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4. Complement 

From the equation ⑤, 

2bpn(p − 1) = a(pn+1 − 1) 

2 = a(pn+1 − 1)/(bpn(p − 1)) 

2 = (p1
q1+1 − 1)(p2

q2+1 − 1) … (pr
qr+1 − 1)(pn+1 − 1)

/(p1
q1p2

q2 … pr
qrpn(p1 − 1)(p2 − 1) … (pr − 1)(p − 1)) 

2(p1
q1+1 − p1

q1)(p2
q2+1 − p2

q2) … (pr
qr+1 − pr

qr)(pn+1 − pn)

= (p1
q1+1 − 1)(p2

q2+1 − 1) … (pr
qr+1 − 1)(pn+1 − 1) 

 

We consider when r = 2. 

(p1
q1+1 − 1)(p2

q2+1 − 1)(pn+1 − 1) = 2(p1
q1+1 − p1

q1)(p2
q2+1 − p2

q2)(pn+1 − pn) 

Let s, t, u be integers, 

s = p1
q1+1 − 1 

t = p2
q2+1 − 1 

u = pn+1 − 1 

are. 

stu = 2(p1
q1+1 − 1 − (p1

q1 − 1))(p2
q2+1 − 1 − (p2

q2 − 1))(pn+1 − 1 − (pn − 1)) 

stu = 2(s − (s + 1)/p1 + 1)(t − (t + 1)/p2 + 1)(u − (u + 1)/p + 1) 

pp1p2stu = 2((s + 1)p1 − (s + 1))((t + 1)p2 + (t + 1))((u + 1)p + (u + 1)) 

pp1p2stu = 2(s + 1)(p1 − 1)(t + 1)(p2 − 1)(u + 1)(p − 1) 

stu/((s + 1)(t + 1)(u + 1)) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

 

 

 

Since stu/((s + 1)(t + 1)(u + 1)) is a monotonically increasing function for variables 

s, t and u, if 

s ≧ 32+1 − 1 = 26, p1 = 3, q1 = 2 

t ≧ 72+1 − 1 = 342, p2 = 7, q2 = 2 

u ≧ 52 − 1 = 24, p = 5, n = 1 

holds, 

stu/((s + 1)(t + 1)(u + 1)) ≧ 26 × 342 × 24/(27 × 343 × 25) = 7904/8575 

2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) = 2 × 2 × 6 × 4/(3 × 7 × 5) = 32/35 
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Since stu/((s + 1)(t + 1)(u + 1)) is limited to 1 when s, t and u are infinite, 

stu/((s + 1)(t + 1)(u + 1)) < 1 

 

If f(p1, p2, p) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) holds, it is sufficient to consider a 

combination where f(p1, p2, p) < 1. 

f(3,7,5) = 2 × 2 × 6 × 4/(3 × 7 × 5) = 32/35 

f(3,11,5) = 2 × 2 × 10 × 4/(3 × 11 × 5) = 32/33 

f(3,13,5) = 2 × 2 × 12 × 4/(3 × 13 × 5) = 64/65 

f(3,17,5) = 2 × 2 × 16 × 4/(3 × 17 × 5) = 256/255 

f(3,7,13) = 2 × 2 × 6 × 12/(3 × 7 × 13) = 96/91 

f(3,5,17) = 2 × 2 × 4 × 16/(3 × 5 × 17) = 256/255 

From the above, when r = 2, a combination (p1, p2, p) = (3,7,5), (3,11,5), (3,13,5) can 

be considered. 

 

Let qk be 2 and n = 1, if g(p1, p2, p) = (p1
3 − 1)(p2

3 − 1)(p2 − 1)/(p1
3p2

3p2), 

g(3,7,5) = 26 × 342 × 24/(337352) = 7904/8575 > 32/35 

g(3,11,5) = 26 × 1330 × 24/(3311352) = 55328/59895 

g(3,13,5) = 26 × 2196 × 24/(3313352) = 3904/4225 

Since the function g is the minimum in the case of qk = 2 and n = 1, there is no 

solution qk and n when g > f, so the case of (p1, p2, p) = (3,7,5) becomes unsuitable. 

 

 

stu/((s + 1)(t + 1)(u + 1)) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

(p1
q1+1 − 1)(p2

q2+1 − 1)(pn+1 − 1)/(p1
q1+1p2

q2+1pn+1)

= 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

 

If F(p1, p2, p) = (p1 − 1)(p2 − 1)(p − 1)/(p1p2p), 

F(p1
q1+1, p2

q2+1, pn+1) = 2F(p1, p2, p) 
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