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1. Abstract 

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an 

integer 𝑛(𝑛 ≧ 1), the prime factors other than p are 𝑝1,𝑝2,𝑝3,…𝑝𝑟 and the even 

exponent of 𝑝𝑘 is 𝑞𝑘, 

𝑦/𝑝𝑛 = (1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘)

𝑟

𝑘=1

/(2𝑝𝑛) = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

must be satisfied. Let m be non negative integer and q be positive integer, 

𝑛 = 4𝑚 + 1 

𝑝 = 4𝑞 + 1 

Letting b and c be odd integers, satisfying following expressions, 

𝑏 = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

𝑐 = ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘

𝑟

𝑘=1

)/𝑝𝑛 

2𝑏 = 𝑐(𝑝𝑛 + ⋯ + 1) 

is established. This is a known content. If we define odd integers 𝑎𝑥, 𝑏𝑥 as below, 

𝑎𝑥 = ∏ (𝑝𝑘
𝑞𝑘 + ⋯ + 1)

𝑟(𝑥)

𝑘=1
 

𝑏𝑥 = ∏ 𝑝𝑘
𝑞𝑘

𝑟(𝑥)

𝑘=1
 

It is assumed that 𝑎1/𝑎2 ≠ 𝑏1/𝑏2 holds when 𝑏1 ≠ 𝑏2. Here, it is assumed that the 

prime number 𝑝𝑘 and its exponent 𝑞𝑘 do not have to be the same value for 𝑏1 and 

𝑏2. By the consideration of this research paper, if this supposition is correct, since it 

turns out that there is a solution at most one when a is a multiple of 𝑝𝑛 and at this 

time the value of b diverges to infinity, we have obtained the conclusion that there 

are no odd perfect numbers. 

 

 

2. Introduction 

The perfect number is one in which the sum of the divisors other than itself is the 

same value as itself, and the smallest perfect number is 

1 + 2 + 3 = 6 

It is 6. Whether an odd perfect number exists or not is currently an unsolved 

problem. 
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3. Proof 

An odd perfect number is y, one of them is an odd prime number p, an exponent of p 

is an integer n (n ≧ 1). Let 𝑝1,𝑝2,𝑝3,…𝑝𝑟 be the odd prime numbers of factors other 

than p, 𝑞𝑘 the index of 𝑝𝑘, and variable a be the sum of product combinations other 

than prime p. 

𝑎 = ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘

𝑟

𝑘=1

) …① 

The number of terms N of variable a is 

𝑁 = ∏(𝑞𝑘 + 1) …②

𝑟

𝑘=1

 

When y is a perfect number, 

𝑦 = 𝑎(1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) − 𝑦 (𝑛 > 0) 

is established. 

𝑎 ∑ 𝑝𝑘

𝑛

𝑘=0

/2 = 𝑦 

𝑎 ∑ 𝑝𝑘

𝑛

𝑘=0

/(2𝑝𝑛) = 𝑦/𝑝𝑛  …③ 

 

3.1. If 𝑞𝑘  has at least one odd integer 

Letting the number of terms where 𝑞𝑘 is an odd integer be a positive integer u, 

because y/𝑝𝑛 = ∏ 𝑝𝑘
𝑞𝑘𝑟

𝑘=1  is an odd integer, the denominator on the left side of 

expression ③ has a prime factor 2, from expression ② variable a has more than u 

prime factor 2 and variable a is an even integer. Therefore ∑ 𝑝𝑘𝑛
𝑘=0  must be an odd 

integer, n is an even integer and u is 1. 

 

3.2. When all 𝑞𝑘  are even integers 

y/𝑝𝑛 is an odd integer, the denominator on the left side of expression ③ is an even 

integer, and since N is and odd integer when 𝑞𝑘 are all even integers, variable a is 

and odd integer. Therefore ∑ 𝑝𝑘𝑛
𝑘=0  is necessary to include one prime factor 2, 

∑ 𝑝𝑘𝑛
𝑘=0 ≡ 0 (𝑚𝑜𝑑 2) is established, and n must be an odd integer. 

 

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the 

prime factor of y must be an odd integer and variable a must be an odd integer. We 

consider the case of 3.2 below. 
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In order for y to be a perfect number, the following expression must be established. 

𝑦/𝑝𝑛 = (1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛) ∏(1 + 𝑝𝑘 + 𝑝𝑘
2 + ⋯ + 𝑝𝑘

𝑞𝑘)

𝑟

𝑘=1

/(2𝑝𝑛) = ∏ 𝑝𝑘
𝑞𝑘

𝑟

𝑘=1

 

However, 𝑞1, 𝑞2, … , 𝑞𝑟 are all even integers. 

 

Here, let b be an integer 

𝑏 = ∏ 𝑝𝑘
𝑞𝑘  …④

𝑟

𝑘=1

 

A following expression is established. 

𝑦/𝑝𝑛 = 𝑎(1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑛)/(2𝑝𝑛) = 𝑏 

𝑎(𝑝𝑛+1 − 1)/(2(𝑝 − 1)𝑝𝑛) = 𝑏 

(𝑎 − 2𝑏)𝑝𝑛+1 + 2𝑏𝑝𝑛 − 𝑎 = 0 …⑤ 

Because it is an n + 1 order equation of p, the solution of the odd prime p is n + 1 

at most. 

 

(𝑎𝑝 − 2𝑏𝑝 + 2𝑏)𝑝𝑛 = 𝑎 

Since 𝑎𝑝 − 2𝑏𝑝 + 2𝑏 is an odd integer, a/𝑝𝑛 is an odd integer, which is c. 

𝑎𝑝 − 2𝑏𝑝 + 2𝑏 = 𝑐 (𝑐 > 0) …⑥ 

(2𝑏 − 𝑎)𝑝 = 2𝑏 − 𝑐 

 

Since variable a is an odd integer, 2𝑏 − 𝑎 is an odd integer and 2𝑏 − 𝑎 ≠ 0 

𝑝 = (2𝑏 − 𝑐)/(2𝑏 − 𝑎) 
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Since n ≧ 1 

a − c = cpn − c ≧ cp − c > 0 

a > c 

is. 

 

 

From equation ⑥ 

2b(p − 1) − (ap − c) = 0 

2b − c(pn+1 − 1)/(p − 1) = 0 

(pn + ⋯ + 1)/2 is an odd integer, n = 4m + 1 is required with m as an integer. 

2b(p − 1) = c(pn+1 − 1) 

2b = c(pn + ⋯ + 1) 

2b = c(p + 1)(pn−1 + pn−3 + ⋯ + 1) …⑦ 

b is an odd integer when p + 1 is not a multiple of 4. It is necessary that p − 1 be a 

multiple of 4. A positive integer is taken as q. 

p = 4q + 1 

is established. 

 

 

When p > 1 

pn − 1 < pn 

(pn − 1)/(p − 1) < pn/(p − 1) 

pn−1 + ⋯ + 1 < pn/(p − 1) …⑧ 

 

Since p is an odd prime number satisfying p = 4q + 1 and p ≧ 5 

pn−1 + ⋯ + 1 < pn/4 

2b − a = c(pn + ⋯ + 1) − cpn = c(pn−1 + ⋯ + 1) 

2b − a < cpn/4 = a/4 

2b < 5a/4 

a > 8b/5 …⑨ 
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Let ak and bk be integers and if 

ak = 1 + pk + pk
2 + ⋯ + pk

qk, bk = pk
qk, 

ak − bk < bk/(pk − 1) 

ak < bkpk/(pk − 1) 

 

a = ∏ ak <

r

k=1

∏ bkpk/(pk − 1)

r

k=1

= b ∏ pk/(pk − 1)

r

k=1

 

a/b < ∏ pk/(pk − 1)

r

k=1

 

When r = 1, since a/b < 3/2 is established, it becomes inappropriate contrary to 

inequality ⑨. 

 

 

From expression ⑦, 

b = c(p + 1)/2 × (pn−1 + pn−3 + ⋯ + 1) 

holds. Since (p + 1)/2 is the product of only prime numbers of b, let dk be the 

index, 

(p + 1)/2 = ∏ pk
dk

r

k=1
 

p = 2 ∏ pk
dk

r

k=1
− 1 

 

 

From a = cpn and expression ⑦, 

2bpn = a(pn + ⋯ + 1) 

a(pn + ⋯ + 1)/(2bpn) = 1 … (A) 

When r = 1, 

a = (p1
q1+1 − 1)/(p1 − 1) 

b = p1
q1 

Equation (A) does not hold since there is no odd perfect number when r = 1. 
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Let R be a rational number, 

R = a(pn + ⋯ + 1)/(2bpn) 

Let b’ be a rational number and let A and B to be an integer, 

b′ = (pk
qk+1 − 1)/(pk

qk(pk − 1)) > 1 

A = (pk
qk+1 − 1)/(pk − 1) 

B = pk
qk 

 

 

Multiplying R by b’, there are both cases that pk increases p or does not change. 

When multiplied by b’, the rate of change of R is Apn(p′n
+ ⋯ + 1)/(Bp′n

(pn + ⋯ +

1)), if p after variation is p’. If the rate of change of R is 1, 

Apn(p′n
+ ⋯ + 1)/(Bp′n

(pn + ⋯ + 1)) = 1 

Apn(p′n
+ ⋯ + 1) = Bp′n

(pn + ⋯ + 1) 

This expression does not hold, since the right side is not a multiple of p when p′ > p, 

and A > B holds when p′ = p. Due to this operation, R may be larger or smaller 

than the original value, since the rate of change of R does not become 1. 

 

 

Assuming that R = 1 in some r, letting x be an integer and by multiplying fractions 

b′ = Ar+1/Br+1, b′′ = Ar+2/Br+2, …b′′…′ = Ax/Bx to R, if R = 1 holds finally. At this 

time, assuming that n changes, the change rate of R by this operation when 

multiplying by Ar+1/Br+1 is 

Ar+1pn(pnr+1 + ⋯ + 1)/(Br+1pnr+1(pn + ⋯ + 1)) 

 

1 × Ar+1pn(pnr+1 + ⋯ + 1)/(Br+1pnr+1(pn + ⋯ + 1)) × Ar+2pnr+1(pnr+2 + ⋯

+ 1)/(Br+2pnr+2(pnr+1 + ⋯ + 1)) × … × Axpnx−1(pnx + ⋯

+ 1)/(Bxpnx(pnx−1 + ⋯ + 1)) = 1 

Ar+1Ar+2 … Axpn(pnx + ⋯ + 1) = Br+1Br+2 … Bxpnx(pn + ⋯ + 1) … (B) 

When n = nx 

Ar+1Ar+2 … Ax = Br+1Br+2 … Bx 

holds. It becomes contradiction. Therefore, there is one solution when p and n are 

fixed. 
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The odd integers ax and bx are defined as follows, and it is assumed that the 

following proposition holds. 

ax = ∏ (pk
qk + ⋯ + 1)

r(x)

k=1
 

bx = ∏ pk
qk

r(x)

k=1
 

When b1 ≠ b2, a1/a2 ≠ b1/b2 holds. …(C) 

Here, it is assumed that the prime number pk and its exponent qk do not have to 

be the same value for b1 and b2. 

 

Assuming that R = 1 in some r, letting x be an integer and fixing p and n and by 

multiplying fractions b′ = Ar+1/Br+1 , b′′ = Ar+2/Br+2 , …b′′…′ = Ax/Bx  to R, and 

assuming that R = 1  holds finally. Dividing by AsAs+1 … Ar/BsBs+1 … Br , from 

expression (B), 

BsBs+1 … BrAr+1Ar+2 … Ax = AsAs+1 … ArBr+1Br+2 … Bx 

holds. If proposition (C) is correct, it becomes contradiction in this expression. When 

dividing by a prime number in the expression of p, contradiction arises since the 

prime number not included in b is in the expression of p. Therefore, when a is 

divided by pn, the number of solutions is one. 

When A1 is divided by p, let t be an odd integer, 

p1
q1 + ⋯ + 1 = tp 

p1
q1+1 − 1 = t(p1 − 1)p 

p1
q1+1 ≡ 1 (mod p) 

Let u be a rational number. From Fermat's little theorem, 

(q1 + 1)u = p − 1 

is established. Thereby, q1 can be changed as large as possible. 

 

When A1A2 … As−1 can be divided by pn, the combinations of primes are infinite, 

and there is at most one solution for one of the combinations. Let a set having 

infinite number of elements which are odd prime multiples of the values of 

B1B2 … Br be a set P, and consider a set Q having as an element the value of b when a 

is an odd multiple of pn. When b is included in the set P or Q, the number of 

solutions is one for each set. Since set Q is a proper subset of the sum of all the sets 

considered as set P, there is at most one solution for all product sets of the set P. 

Therefore, even if an odd perfect number exists, since its value diverges to infinity, if 

proposition (C) is correct, there are no odd perfect numbers. 
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4. Complement 

From equation ⑤, 

2bpn(p − 1) = a(pn+1 − 1) 

2 = a(pn+1 − 1)/(bpn(p − 1)) 

2 = (p1
q1+1 − 1)(p2

q2+1 − 1) … (pr
qr+1 − 1)(pn+1 − 1)

/(p1
q1p2

q2 … pr
qrpn(p1 − 1)(p2 − 1) … (pr − 1)(p − 1)) 

2(p1
q1+1 − p1

q1)(p2
q2+1 − p2

q2) … (pr
qr+1 − pr

qr)(pn+1 − pn)

= (p1
q1+1 − 1)(p2

q2+1 − 1) … (pr
qr+1 − 1)(pn+1 − 1) 

 

We consider when r = 2. 

(p1
q1+1 − 1)(p2

q2+1 − 1)(pn+1 − 1) = 2(p1
q1+1 − p1

q1)(p2
q2+1 − p2

q2)(pn+1 − pn) 

Let s, t, u be integers, 

s = p1
q1+1 − 1 

t = p2
q2+1 − 1 

u = pn+1 − 1 

are. 

stu = 2(p1
q1+1 − 1 − (p1

q1 − 1))(p2
q2+1 − 1 − (p2

q2 − 1))(pn+1 − 1 − (pn − 1)) 

stu = 2(s − (s + 1)/p1 + 1)(t − (t + 1)/p2 + 1)(u − (u + 1)/p + 1) 

pp1p2stu = 2((s + 1)p1 − (s + 1))((t + 1)p2 + (t + 1))((u + 1)p + (u + 1)) 

pp1p2stu = 2(s + 1)(p1 − 1)(t + 1)(p2 − 1)(u + 1)(p − 1) 

stu/((s + 1)(t + 1)(u + 1)) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

 

 

 

Since stu/((s + 1)(t + 1)(u + 1)) is a monotonically increasing function for variables 

s, t and u, if 

s ≧ 32+1 − 1 = 26, p1 = 3, q1 = 2 

t ≧ 72+1 − 1 = 342, p2 = 7, q2 = 2 

u ≧ 52 − 1 = 24, p = 5, n = 1 

holds, 

stu/((s + 1)(t + 1)(u + 1)) ≧ 26 × 342 × 24/(27 × 343 × 25) = 7904/8575 

2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) = 2 × 2 × 6 × 4/(3 × 7 × 5) = 32/35 
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Since stu/((s + 1)(t + 1)(u + 1)) is limited to 1 when s, t and u are infinite, 

stu/((s + 1)(t + 1)(u + 1)) < 1 

 

If f(p1, p2, p) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) holds, it is sufficient to consider a 

combination where f(p1, p2, p) < 1. 

f(3,7,5) = 2 × 2 × 6 × 4/(3 × 7 × 5) = 32/35 

f(3,11,5) = 2 × 2 × 10 × 4/(3 × 11 × 5) = 32/33 

f(3,13,5) = 2 × 2 × 12 × 4/(3 × 13 × 5) = 64/65 

f(3,17,5) = 2 × 2 × 16 × 4/(3 × 17 × 5) = 256/255 

f(3,7,13) = 2 × 2 × 6 × 12/(3 × 7 × 13) = 96/91 

f(3,5,17) = 2 × 2 × 4 × 16/(3 × 5 × 17) = 256/255 

From the above, when r = 2, a combination (p1, p2, p) = (3,7,5), (3,11,5), (3,13,5) can 

be considered. 

 

Let qk be 2 and n = 1, if g(p1, p2, p) = (p1
3 − 1)(p2

3 − 1)(p2 − 1)/(p1
3p2

3p2), 

g(3,7,5) = 26 × 342 × 24/(337352) = 7904/8575 > 32/35 

g(3,11,5) = 26 × 1330 × 24/(3311352) = 55328/59895 

g(3,13,5) = 26 × 2196 × 24/(3313352) = 3904/4225 

Since the function g is the minimum in the case of qk = 2 and n = 1, there is no 

solution qk and n when g > f, so the case of (p1, p2, p) = (3,7,5) becomes unsuitable. 

 

 

stu/((s + 1)(t + 1)(u + 1)) = 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

(p1
q1+1 − 1)(p2

q2+1 − 1)(pn+1 − 1)/(p1
q1+1p2

q2+1pn+1)

= 2(p1 − 1)(p2 − 1)(p − 1)/(p1p2p) 

 

If F(p1, p2, p) = (p1 − 1)(p2 − 1)(p − 1)/(p1p2p), 

F(p1
q1+1, p2

q2+1, pn+1) = 2F(p1, p2, p) 
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