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Abstract

From the existence of a line element field (Aβ ,−Aβ) on a four-dimensional time oriented Lorentzian
manifold with metric, the Klein-Gordon equation in curved spacetime, ∇µ∇µΨ = k2Ψ, can be con-
structed from one of the pair of regular vectors in the line element field, its covariant derivative and
associated spinor-tensor; and scalar product for spins 1,1/2 and 0, respectively. The left side of the
asymmetric wave equation can then be symmetrized. The symmetric part, Ψ̃αβ , is the Lie derivative
of the metric, which links the Klein-Gordon equation to modified general relativity for spins 1,1/2
and 0. Modified general relativity is intrinsically hidden in the Klein-Gordon equation for spins 2 and
3/2. Massless gravitons do not exist as force mediators of gravity in a four-dimensional time oriented
Lorentzian spacetime. The diffeomorphism group Diff(M) is not restricted to the Lorentz group. Ψ̃αβ

can instantaneously transmit information to, and quantum properties from, its antisymmetric partner
Kαβ along Aβ . This establishes the concept of entanglement.
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1. Introduction

It has been nearly a century since Schrödinger [1] wrote down his equation describing non-
relativistic quantum mechanics. In the same year of 1926, Klein [2], Gordon [3] and Fock [4] developed the
relativistic quantum mechanical wave equation; mainly referred to as the Klein-Gordon (KG) equation.
Over a decade before that, Einstein [5] formulated general relativity (GR) in 1915. And yet today, there is
still not a full understanding of the relationship between the two fundamental theories of physics: quantum
theory and general relativity. The quantization of gravity has been the major approach to unite the two
theories, with string theory and loop quantum gravity the two mainstream proposals. However, those
and other theories of quantum gravity have well documented successes and failures [6, 7]. The opposite
approach of gravitizing quantum mechanics attempts to bring quantum theory in line with the principles
of general relativity as discussed in [8] (and other references therein). Rather than trying to force quantum
theory on general relativity, or vice versa, this article investigates if a connection between quantum theory
and general relativity exists naturally.

The Klein-Gordon equation for a free field with a particular spin in Minkowski spacetime is
fundamental to the formulation of quantum field theory (QFT). In curved spacetime, the covariant KG
equation ∇µ∇µΨ = k2Ψ is assumed to be the rudimentary equation for the development of quantum
theory. This is an asymmetric wave equation with the field Ψ considered to represent spins 0,1,2,1/2 and
3/2.

From the existence in curved spacetime of a smooth, real, non-vanishing vector field Aβ, the
KG equation can be constructed from it, its covariant derivative Ψαβ = ∇αAβ and related spinor-tensor;

∗PhD Physics, alumnus. Present address Edmonton, AB.

1



and its scalar product ϕ = AβA
β for spins 1, 1/2 and 0, respectively. In that sense, Aβ plays the role of

a fundamental quantum vector field. The left side of the KG wave equation can then be symmetrized.
As GR involves symmetric tensors, the only possibility to associate GR directly with quantum theory in
curved spacetime is through the symmetric part of the KG equation. In that regard, it is noteworthy that
the Lie derivative of the metric with respect to Aβ is the symmetric part of the KG equation, Ψ̃αβ, for
spins 1, 1/2 and 0. This immediately exhibits a geometrical property of quantum theory which has been
neglected.

Einstein developed GR in a four-dimensional Riemannian spacetime. Recently, a modified Ein-
stein equation of general relativity was developed in the article: Modified general relativity [9]. Modified
general relativity (MGR) is the natural extension of GR to a four-dimensional time oriented Lorentzian
spacetime. On a Lorentzian manifold satisfying certain conditions, a smooth regular line element field
(Aβ,−Aβ) exists from which a symmetric tensor is introduced in MGR: Φαβ. It describes the energy-
momentum of the gravitational field itself and completes GR. Φαβ is constructed from the Lie derivative
of both the metric and the unit vectors collinear with one of the pair of regular vectors in the line element
field. Hence, the Lie derivative of the metric is involved with both Ψ̃αβ and Φαβ for spins 1, 1/2 and 0; and
it will be established that GR resides intrinsically in the symmetric part of the KG equation for spins 2
and 3/2. Thus, MGR is linked to quantum theory naturally as discussed in detail in section 2.

In section 3, some interesting results appear from the study of the spin-2 KG equation. Gravity,
described by the metric, is a long-range effective force. If gravitons are the exchange particles of gravity,
they must be massless. In a spacetime described by a four-dimensional time oriented Lorentzian manifold
with a torsionless and metric compatible connection, it is shown that massless gravitons governed by the
spin-2 KG equation cannot be described with the metric; and massless spin-2 ”particles” do not couple to
a non-zero energy-momentum tensor. Massless gravitons therefore do not act as force mediators of gravity.
This result should not be viewed controversially. It is well known that GR, as a classical field theory, does
not require particle exchange to describe the effective force of gravity; that is nicely done by the curvature
of spacetime. Furthermore, there is nothing in the formalism of QFT that requires GR to be quantized.
That was noted by Feynman who said: [10] ”It is still possible that quantum theory does not absolutely
guarantee that gravity has to be quantized”. Gravity, unlike the other three known forces in nature, does
not require the exchange of particles to describe its long-range force behavior. This explains why gravity
is so much weaker than the long-range electromagnetic force which involves the photon as the exchange
particle.

The wave-particle duality and quantum entanglement are discussed in section 4. The KG equa-
tions for spin-1 bosons and spin-1/2 fermions must contain the symmetric tensor Ψ̃αβ in addition to the
traditional antisymmetric tensor Kαβ. These particles move as a wave at all spacetime coordinates and
are guided by local changes in the gravitational field. This property is similar in concept to the pilot wave
of the de Broglie-Bohm theory [11, 12]. But it does not involve the mysterious guiding equation which
describes the pilot wave. The Lie derivative of the metric is constructed from the diffeomorphism group
Diff(M) which is not restricted to the Lorentz group. It is possible to transmit information instantaneously
between Ψ̃αβ and Kαβ along the quantum vector, which establishes the concept of entanglement.

2. Constructing the Klein-Gordon equation from the quantum vector
Aβ in curved spacetime

Curved spacetime is described by the four-dimensional time oriented Lorentzian manifold with a
+2 signature metric, (M, gαβ). The connection on the manifold is torsionless and metric compatible. The
Lorentzian manifold is assumed to be compact with a vanishing Euler-Poincaré characteristic. It admits
a smooth regular line element field (A,−A).

In curved spacetime, the KG equation is fundamentally assumed to be

∇µ∇µΨ = k2Ψ (1)

where k = m0c
h̄ and m0 is the rest mass attributed to each particle of a given spin. This is an asymmetric

wave equation with the field Ψ considered to represent spins 0,1,2,1/2 and 3/2. More specifically in the
language of QFT, Ψ is a function of spacetime and an operator in a linear vector space with particular
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algebraic properties. This article is concerned with the first property of Ψ in curved spacetime and its
intrinsic relationship to MGR.

The real quantum vector field Aβ is related to (1) for spins 1,1/2 and 0 as shown in the subsections
below. This is accomplished by using the (0,2) tensor

Ψαβ := ∇αAβ (2)

and symmetrizing it according to

Ψαβ =
1

2
(∇αAβ +∇βAα) +

1

2
(∇αAβ −∇βAα)

:=
1

2
Ψ̃αβ +

1

2
Kαβ.

(3)

While the composition of the KG equation in terms of Aβ for these spins seems straightforward, there are
some subtle points to discuss.

Firstly, the symmetric tensor Ψ̃αβ is the Lie derivative of the metric along Aβ: £Agαβ = ∇αAβ +
∇βAα. This directly connects MGR

8πG

c4
T̃αβ = Gαβ + Φαβ (4)

to quantum theory for spins 1,1/2 and 0 by the relation

Φαβ =
1

2
Ψ̃αβ + uλ(uα∇βAλ + uβ∇αAλ) (5)

where uβ is a timelike unit vector collinear with Aβ, Φαβ is the energy-momentum tensor of the gravitational
field, T̃αβ is the matter energy-momentum tensor and Gαβ is the Einstein tensor.

Secondly, the Lorentz constraint
∇αAα = 0 (6)

cannot be invoked for any spin because it would force both Ψ̃αβ and Φαβ to vanish. Ψ̃αβ cannot vanish
because even weak gravitational fields gravitate; the gravitational field along Aβ is not constant so £Agαβ 6=
0. From (5), Φ, the trace of the energy-momentum of the gravitational field with respect to the metric, is
given by

Φ = ∇αAα (7)

in an affine parameterization where the geodesic term 2uλuα∇αXλ vanishes.
Thirdly, the additional divergenceless constraint

∇αΨ̃αβ = 0 (8)

cannot apply to the spin-1 and spin-1/2 fields which is shown in the following discussion.

2.1. Spin-1 Klein-Gordon equation

If Ψ is the real vector field Aβ, (1) yields the spin-1 equation

∇α∇αAβ = k2Aβ (9)

or its equivalent from (3)
∇α(Ψ̃αβ +Kαβ) = 2k2Aβ. (10)

If Ψ̃αβ is divergenceless, then (10) generates the Lorentz constraint (6)

∇β∇αKαβ = −1

2
[∇α,∇β]Kαβ = −RαβKαβ = 2k2∇βAβ = 0 (11)

because Rαβ and Kαβ have opposite symmetries. The Lorentz constraint forces Ψ̃αβ to vanish because gαβ

is non-degenerate. Thus, (8) cannot hold for the spin-1 field. The spin-1 KG equation in curved spacetime
contains both symmetric and antisymmetric components. The relationship of Ψ̃αβ to the energy-momentum
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tensor of the gravitational field by (5), does not permit a pure spin-1 vector field. Φ = ∇αAα 6= 0 is an
intrinsic part of the spin-1 field. This is contrary to the traditional belief in curved spacetime [13, 14],
that the antisymmetric tensor Kαβ in the Proca equation

∇αKαβ = k2Aβ (12)

with the Lorentz constraint, completely describe a neutral spin-1 boson for k 6= 0, and the photon for
k = 0. Furthermore, this form of the Proca equation in curved spacetime forces the spin-1 wave equation
to be expressed as ∇α∇αAβ = k2Aβ + ∇α∇βAα which violates the fundamental assumption that the
spin-1 KG equation shall be of the form (9). This problem is automatically resolved with the inclusion of
the symmetric part of the KG equation according to (10).

Symmetrization of the asymmetric tensor Ψαβ into the Lie derivative of the metric and the Faraday
tensor for electrodynamics when k = 0, is somewhat similar to the approach that Einstein presented
[15, 16, 17] to unify gravity and the electromagnetic field. He generalized the Riemannian metric as an
asymmetric tensor with the symmetric part representing the gravitational field in a Riemannian spacetime,
and the antisymmetric component with six remaining degrees of freedom describing the electromagnetic
field. However, one major problem with this theory was that it did not encompass quantum theory;
whereas Ψαβ comes from quantum theory and while Ψ̃αβ is not the metric, it is the flow of the metric along
the quantum vector.

2.2. Spin-1/2 Klein-Gordon equation

The spin-1/2 KG equation in curved spacetime expressed in terms of its spinor indices is

∇α∇αΨAȦ = k2ΨAȦ. (13)

It is well known [18, 19] that the two index spinors ϕAḂ and ϕAḂ can be expressed in terms of the associated
tensors Aβ and Aβ as

ϕAḂ = σAḂβ Aβ (14)

and
ϕAḂ = σβ

AḂ
Aβ. (15)

The Hermitian connecting quantities σAḂβ transform as a spacetime vector on the index β and as spinors

on the index A = 1, 2 and conjugate index Ḃ = 1, 2. Covariant derivatives of spinors are introduced in the
same formalism as that for tensors by adopting the spinor affinities ΓAαB and defining

∇αΨA = ∂αΨA − ΓBαAΨB, ∇αΨA = ∂αΨA + ΓAαBΨ
B (16)

for the spinors ΨA and ΨA respectively. The covariant derivative of a mixed index spinor-tensor is defined
as

∇αΨβA = ∂αΨ
βA + ΓβακΨ

κA + ΓAαBΨ
βB (17)

and the covariant derivative of the connection quantities is postulated to vanish

∇κσαAḂ = 0. (18)

Equation (13) is then equivalent to

σAȦβ ∇α∇αAβ = k2ΨAȦ (19)

using (14). This can be rewritten in terms of Ψαβ = ∇αAβ and symmetrized as in (3) to give

σAȦβ ∇α(Ψ̃αβ +Kαβ) = 2k2σAȦβ Aβ. (20)

Similar to the spin-1 situation, the divergenceless condition (8) cannot be employed because it would
require both Ψ̃αβ and Φαβ to vanish. The spin-1/2 KG equation contains both symmetric and antisymmetric
components.
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Φ is an intrinsic part of the spin-1/2 field. Φ provides the association with gravity that is
traditionally attributed to the Ricci scalar R. An adjustment to the Dirac equations in curved spacetime
to remove their dependence on R is required. This is accomplished by requiring the Dirac equations to be
solutions of their parent KG equation.

Remark 1. The Dirac equations in curved spacetime must be modified to be solutions of their parent
spin-1/2 KG equation.

The Dirac equations in curved spacetime

(γν∇ν − k)ΨA = 0, (γν∇ν + k)ΨȦ = 0 (21)

are taken to be factorizations of the spin-1/2 KG equation. The gamma matrices γµ in curved spacetime
are assumed to satisfy the anticommutation relation

{γµ, γν} = 2gµν . (22)

The product of the Dirac factorizations

(γµ∇µ + k)(γν∇ν − k)ΨAȦ = 0 (23)

must yield the spin-1/2 KG equation. Using

∇µγν = 0 (24)

we have
γµγν∇µ∇νΨAȦ = k2ΨAȦ (25)

which is expressed in the literature [20, 21] (with the metric having a +2 signature) as

∇µ∇µΨAȦ = (k2 +
1

4
R)ΨAȦ. (26)

With only the algebra of (22), the spin-1/2 KG equation in curved spacetime is not precisely recoverable
due to the additional 1

4R term. This term can be eliminated by inserting the scalar Ω = 1
2

√
R into (21) to

obtain the modified Dirac equations

(γν∇ν + Ω− k)ΨA = 0, (γν∇ν + Ω + k)ΨȦ = 0. (27)

By defining the algebras
{γµ∇µ,Ω} = 0 (28)

and

{Ω,Ω} =
R

2
, (29)

the product of the modified Dirac equations in curved spacetime yields their parent spin-1/2 KG equation
(13).

2.3. Spin-0 Klein-Gordon equation

When Ψ is a scalar field ϕ, the spin-0 Klein-Gordon equation is

∇α∇αϕ = k2ϕ. (30)

With ϕ defined in terms of the quantum vector field Aβ as

ϕ := AβAβ, (31)

and using (3) and (8), we have

∇α∇αϕ = 2∇α(AβΨ
αβ)

= Aβ∇αKαβ +
1

2
(Ψ̃αβΨ̃

αβ +KαβK
αβ)

(32)

where Ψ̃αβKαβ = 0 because the tensors in the product have opposite symmetries.
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2.4. Spin-2 and spin-3/2 Klein-Gordon equations

The KG equation for the symmetric spin-2 field is

∇µ∇µΨ̃αβ = k2Ψ̃αβ. (33)

Ψ̃αβ is constructed from the symmetrization of the general (0,2) tensor field Ψαβ according to

Ψαβ =
1

2
(Ψαβ + Ψβα) +

1

2
(Ψαβ −Ψβα)

:=
1

2
Ψ̃αβ +

1

2
Cαβ.

(34)

Gravitons are the particles associated with the metric. The symmetric spin-2 field must therefore involve
the metric as a field variable to enable gravitons to be described by the spin-2 KG equation. The spin-2
field must be divergenceless and traceless with respect to the metric; it has 5 degrees of freedom if k 6= 0.
Ψ̃αβ cannot be equivalent to the Lie derivative of the metric because the traceless attribute of the spin-2
field would lead to the trivial solution of Ψ̃αβ.

An expression for Ψ̃αβ can be obtained by generalizing the results from [9] where the divergenceless
collection of tensors in the Orthogonal Decomposition Theorem can be defined to consist of the Lovelock
tensors, namely the metric and the Einstein tensor in a four-dimensional spacetime; and a collection of
non-Lovelock tensors represented by hαβ, which are independent of both gαβ and Gαβ. hαβ has dimensions
of L−2 which eliminates the super-energy divergenceless tensors, such as the traces of the Chevreton and
Bach tensors which depend on L−4. With Ψ̃αβ defined to be a linear combination of symmetric tensors
consisting of the matter energy-momentum tensor, the energy-momentum tensor of the gravitational field,
the Lovelock tensors and the non-Lovelock tensors with Λ = 0 as discussed in [9]:

Ψ̃αβ =
a

c
T̃αβ + b(Gαβ + Φαβ + hαβ) (35)

where a and b are arbitrary constants. By requiring both Ψ̃αβ and hαβ to be traceless, equation (4) is

recovered for a non-degenerate inverse metric by setting a = −1
2 and b = c3

16πG . It follows that

Ψ̃αβ =
c3

16πG
hαβ (36)

where hαβ is a collection of tensors that are divergenceless, traceless and not a concomitant of the metric
and its first two derivatives. Thus, MGR is hidden in the spin-2 field Ψ̃αβ.

Spin-3/2. A spin-3/2 field can be described by the vector-spinor wave equation

∇µ∇µΨαAȦ = k2ΨαAȦ. (37)

Using (15), this equation can be symmetrized and written as

σβ
AȦ

(∇µ∇µ − k2)Ψ̃αβ = 0. (38)

MGR is hidden in the spin-3/2 field.
Some consequences of these results are now discussed.

3. Massless spin-2 ”particles”

Gravitons are taken to be massless particles because of the 1
r2

long-range effective force behaviour
of gravity. They have spin-2 so that they can couple to the energy-momentum tensor. However, in a four-
dimensional spacetime with a metric compatible connection, when the mass vanishes,

∇µ∇µhαβ = 0 (39)
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is the equation describing a massless spin-2 ”particle”. Because hαβ is independent of the metric, this
equation cannot describe a massless spin-2 graviton.

Furthermore, massless spin-2 ”particles” cannot couple to a non-zero energy-momentum tensor
as force mediators for gravity. If we calculate the interaction of the total matter energy-momentum tensor
with hαβ, we obtain

Sinth = − 1

2c

∫
T̃αβhαβ

√
−gd4x

= − c3

16πG

∫
Gαβhαβ

√
−gd4x

(40)

since
∫
Φαβhαβ

√
−gd4x = 0 because hαβ is divergenceless and ∇µ(uλuα) = 0. The variation of the

functional Sinth with respect to hαβ must vanish. This requires Gαβ to vanish because by definition, hαβ
is independent of both the metric and the Einstein tensor. Φαβ is orthogonal to and independent of hαβ.
Thus,

∫
Φαβδhαβ

√
−gd4x = 0 and Φαβ vanishes. It follows that T̃αβ vanishes and there is no coupling to

the matter energy-momentum tensor. Massless spin-2 ”particles” do not couple to any types of matter
but can occupy the vacuum in accordance with Rαβ = 0.

The hierarchy problem

The hierarchy problem of particle physics can be stated as the question: why is the force of
gravity so much weaker than the other three known forces in nature? In the case of electrodynamics, if
both gravity and electrodynamics have long-range massless force mediators, why is the electromagnetic
force 1040 times stronger than that of gravity? The electroweak force is 1024 times stronger than gravity.
And as the name suggests, the strong nuclear force presents the largest disparity to gravity at nuclear
dimensions.

At the basis of this problem is the notion that gravity must be quantized. However, the symmetric
spin-2 KG equation in a 4-dimensional Lorentzian spacetime with a torsionless and metric compatible
connection, excludes massless gravitons as force mediators of gravity. This starkly contrasts with the
spin-1 KG equation for a massless photon which mediates the electromagnetic field; similarly for the
electroweak force and the massive spin-1 W and Z bosons, and the spin-1 massless gluons mediating the
strong nuclear force. Gravity has no massless particles that act as force mediators. Thus, the hierarchy
problem is explained without the need of extra spatial dimensions inherent in string theory; or any other
theory that involves massless gravitons in a Lorentzian spacetime with a metric compatible connection.
Of course, this result depends on the assumption that the spin-2 KG equation completely describes spin-2
particles in curved spacetime.

4. Wave-particle duality and quantum entanglement

It has been established that neutral spin-1 bosons and spin-1/2 fermions are described by (10) and
(20), respectively. These equations and the spin-0 bosons (30) must have antisymmetric and symmetric
components. The antisymmetric tensor Kαβ satisfies

∇µKαβ +∇βKµα +∇αKβµ = 0 (41)

from which the wave equation

∇µ∇µKαβ = −2k2Kαβ − 2Kµ
[αRβ]µ − 2KµσRµασβ − 2∇[α∇µΨ̃β]µ (42)

is obtained using (10). This establishes the wave nature of these particles. Each particle, or quantum
corpuscle in the case of a light quantum which has no rest mass, moves as a wave at all spacetime
coordinates in the microworld.

The symmetric tensor Ψ̃αβ is the Lie derivative of the metric. Given a diffeomorphism φ : M −→
M , Ψ̃αβ is constructed from the pullback φt∗ of the metric under the diffeomorphism group, Diff(M). The
Lorentz group is a subgroup of Diff(M) so the pullback of the metric is not restricted to the Lorentz group.
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The metric at a point on the regular vector Aβ, far from a given point p on that vector, can be pulled back
instantaneously to the neighbourhood of p; or pushed forward from p with (φ−1

t )∗. The metric describes
the gravitational field and the geometry of spacetime. Hence, the rate of change of the gravitational field
along Aβ is not limited to the speed of light; and could be instantaneous with the caveat that there may
be a presently unknown upper bound to the speed that spacetime itself can transfer information. This
does not conflict with the Lorentzian behaviour of gravitational waves, which carry energy; information is
not energy and has no mass equivalent. Ψ̃αβ can instantaneously transmit information to, and quantum
properties from, its antisymmetric partner Kαβ along Aβ. This establishes the global nature of quantum
theory and the concept of entanglement.

The last term in (42) is constructed from the flow of the gravitational field along the quantum
vector. This term is sensitive to changes in the local gravitational field. In that sense, in the microworld,
it can guide the wave in response to local changes due to gravity. In the classic dual slit experiments, this
term would sense the presence of a detector near a particular slit. It would guide the particle to the slit
which has no impediments, as nature seems to prefer paths of least resistance. No interference pattern
would be observed. The gravitationally guided wave is similar in concept to the pilot wave of the de
Broglie-Bohm theory [11, 12]. But it does not suffer from the mysterious quantum potential [22] integral
to pilot wave theory.

From (4) and (5)

1

2
Ψ̃αβ =

8πG

c4
T̃αβ −Gαβ − uλ(uα∇βAλ + uβ∇αAλ). (43)

Equations (42) and (43) are deterministic. In the microworld, particles in a gravitational field move as a
wave according to these equations. But the Lie derivative of the metric is not constrained by any scale of
measurement. Quantum theory and MGR are therefore linked together in the micro and macro worlds,
although one theory or the other may be more dominant at a particular scale of measurement. In the
macroworld, our de Broglie wave lengths are so small they are essentially undetectable.

When we undertake a measurement on a particle in the microworld by bombarding it with light
quanta or other particles, chaos or destruction is inherent in the process of the measurement. Despite
the fact that the measurement may constrain the wave behaviour of the particle, it does not permanently
destroy the wave property of the particle when detected as a particle; and it does not suddenly become
a wave when detected as such, because in both cases, the particle behaves as a wave at all spacetime
coordinates according to (42). The experiment can be designed to detect a wave or a particle, but the
reality of the microworld is not determined by the experiment; reality exists in the quantum-world before
and after a measurement is performed on an entity in it. This is contrary to the Copenhagen interpretation
[23](and references therein) of quantum theory where the reality of the microworld is declared after a
measurement is performed on a particle in it. The statistical rules of quantum theory are then imposed
to interpret the results of the measurement.

The complementarity principle [24] provides entities in the microworld with both wave and parti-
cle characteristics. But any given experiment is designed to detect a wave or a particle, but not both due
to the Heisenberg uncertainty principle. The wave-particle duality does not challenge the reality of the
microworld. Rather, the duality of the microworld melds into the macroworld by allowing the experimenter
to determine the wave or particle characteristics as designed in the experiment. That a particle always has
wave characteristics is supported by a recent experiment which has observed the simultaneous behaviour
of light acting as both a wave and a stream of particles [25].

5. Conclusion

The results in this article are obtained directly from the rudimentary Klein-Gordon equation
of relativistic quantum mechanics in curved spacetime, and modified general relativity. Gravity is not
quantized and quantum theory is not geometrized. Rather, the Lie derivative of the metric provides a
natural connection between quantum theory and modified general relativity.

The KG equation for spins 1, 1/2 and 0 is constructed from a smooth, real, regular quantum
vector field Aβ. Its symmetric part, Ψ̃αβ, is the Lie derivative of the metric along the quantum vector.
Because Ψ̃αβ cannot vanish, it provides the missing link to gravity for these spins.
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A spin-2 decomposition for Ψ̃αβ is obtained in terms of a collection of tensor fields independent
of the Lovelock tensors. It follows that MGR is intrinsically contained in Ψ̃αβ for spins 2 and 3/2. The
metric does not appear as a field variable in the spin-2 KG equation. Massless spin-2 ”particles” do not
couple to a non-zero energy-momentum tensor as force mediators for gravity, but can occupy the vacuum.
Thus, massless gravitons in a time oriented four-dimensional spacetime do not exist. Unlike the other three
known fundamental forces in nature, no particle exchange is required to explain the force of gravity; that
is nicely done by the curvature of spacetime. That massless gravitons do not exist explains the hierarchy
problem of particle physics.

Ψ̃αβ links the deterministic microworld to the macroworld. Spin-1 bosons and spin-1/2 fermions
move as a wave at all spacetime coordinates in the microworld, which exists before and after a measurement.

The diffeomorphism group Diff(M) is not restricted to the Lorentz group. Ψ̃αβ can instantaneously
transmit information to, and quantum properties from, its antisymmetric partner Kαβ along Aβ. This
establishes the nonlocal behaviour of quantum theory and the concept of entanglement.
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