About the congruent number

Hajime Mashima

April 23, 2019

Abstract

The three sides of the right triangle are rational numbers, and those with natural numbers are congruent numbers.

Theorem 1 Pythagorean theorem

$$(m^2 + n^2)^2 = (2mn)^2 + (m^2 - n^2)^2$$

Definition 2

$$k'(m^{2} + n^{2}) = k' \cdot \frac{f}{e} = acf$$
$$k'(2mn) = k' \cdot \frac{b}{a} = bce$$
$$k'(m^{2} - n^{2}) = k' \cdot \frac{d}{c} = ade$$
$$k' = ace$$

Definition 3 S is a congruent number. $(m, n = \mathbb{N})$

$$S' = mn(m^2 - n^2) = k^2 S \quad (k \ge 1 \quad , \ m \ne n)$$

Proposition 4

The multiplication of the hypotenuse and one side of a right triangle is a congruent number.

Proof 5

$$m = M^2 + N^2$$
 $n = 2MN$
 $S' = 2MN(M^2 + N^2)(M^2 - N^2)^2$ $M \neq N$
 $S'' = 2MN(M^2 + N^2)$

Corollary 6

$$S' = M^2 N^2 (M^4 - N^4) \Rightarrow M^4 - N^4$$

$$S'' = 2 \cdot 2m^2 n^2 (2^2 m^4 + n^4) \Rightarrow 2^2 m^4 + n^4$$