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Abstract. We study the intermediate liberation problem for the real and complex
unitary and reflection groups, namely ON , UN , HN ,KN . For any of these groups GN ,
the problem is that of understanding the structure of the intermediate quantum groups
GN ⊂ G×N ⊂ G+

N , in terms of the recently introduced notions of “soft” and “hard”
liberation. We solve here some of these questions, our key ingredient being the generation

formula H
[∞]
N =< HN , T+

N >, coming via crossed product methods. Also, we conjecture
the existence of a “contravariant duality” between the liberations of HN and of UN , as
a solution to the lack of a covariant duality between these liberations.
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Introduction

The quantum analogues of the compact Lie groups GN ⊂ UN , taken in an operator
algebra sense, were introduced by Woronowicz in [33], [34]. In the case where the square
of the antipode is the identity, S2 = id, which is of particular interest, these quantum
groups appear as closed subgroups GN ⊂ U+

N of Wang’s unitary quantum group [30].
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The liberation philosophy from [11] amounts in regarding each such subgroup GN ⊂ U+
N

as a liberation of its classical version, Gc
N ⊂ UN . This philosophy, and its various technical

modifications, cover a fairly large class of interesting closed subgroups GN ⊂ U+
N .

A number of compact Lie groups GN ⊂ UN admit full liberations G+
N ⊂ U+

N , in a certain
technical sense, and the classification and study of the various intermediate liberations
GN ⊂ G×N ⊂ G+

N is a key open problem. This problem was solved in [12], [14] and
subsequent papers for the orthogonal group ON , the conclusions being as follows:

(1) There is only one “easy” intermediate liberation, namely the half-classical orthog-
onal group O∗N , appearing via the relations abc = cba between coordinates.

(2) This quantum group O∗N and its subgroups can be studied by using a variety of
techniques, and generally speaking, are quite well understood.

This solution is actually something quite unique, the situation for the other liberable
compact Lie groups GN ⊂ UN being considerably more complicated.

These questions are of particular interest for the unitary group UN , as well as for the
hyperoctahedral group HN = Z2 o SN , and for its complex version KN = T o SN . These
groups, together with ON , and with their liberations, are indeed as follows:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

As explained in a number of papers, including [4], this cubic diagram is of key impor-
tance, in order to have some 3D intuition on the subgroups HN ⊂ GN ⊂ U+

N .

Summarizing, we have 4 main liberation problems. The solution for ON was explained
above. The classification problem for HN was solved some time ago in [26], [27], [28], and
the classification problem for UN was recently solved in [23], [24], as follows:

(1) We have liberations HN ⊂ HΓ
N ⊂ H

[r]
N ⊂ H+

N , consisting of a family indexed by
groups Z∗∞2 → Γ→ Z∞2 , followed by a series indexed by integers r ∈ N.

(2) We have liberations UN ⊂ U
(r)
N ⊂ UC

N ⊂ U+
N , consisting of a series indexed by

integers r ∈ N, followed by a family indexed by cosemigroups C ⊂ N.

As for the liberation problem for the complex reflection group KN , this remains a
missing piece of the puzzle, with no classification being available here yet.
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The present paper was motivated by the fact that the above-mentioned classification
results for HN , UN have some obvious similarity between them. We have indeed a family
followed by a series, and a series followed by a family, and this suggests the existence of
a “contravariant duality” between these quantum groups, as follows:

UN // U
(r)
N

// UC
N

// U+
N

H+
N H

[r]
N

oo HΓ
N

oo HN
oo

At the first glance, this might sound a bit extravagant. Indeed, we have some natural
and well-established correspondences HN ↔ UN and H+

N ↔ U+
N , obtained in one sense

by taking the real reflection subgroup, H = U ∩ H+
N , and in the other sense by setting

U =< H,UN >. Thus, our proposal of duality “obviously” goes the wrong way.
On the other hand, obvious as well is the fact that these correspondences HN ↔ UN

and H+
N ↔ U+

N cannot be extended as to map the series to the series, and the family to
the family, because the series/families would have to be “inverted”, in order to do so.

Summarizing, our idea of a contravariant duality makes sense. In practice, however,
working out such a result looks very technical, requiring an excellent knowledge of the
papers [26], [27], [28] on one hand, of the papers [23], [24] on the other hand, and finally
of newly developed soft and hard liberation theory from [4], [6], [7], [8] as well.

We were unable to reach to such a level of knowledge, and construct the duality. Instead,
we will simply continuate here our soft and hard liberation work from [4], [6], [7], [8], by
using input from [26], [27], [28] and from [23], [24]. We will reach to a number of interesting
conclusions, that we intend to further use and refine in a number of future papers, with
the idea in mind of building of fully functional soft and hard liberation theory.

Back to the duality itself, this seems to be something quite deep, lying one step above
our soft and hard liberation program. It is our hope of course that such a duality can be
established one day, and that the present considerations can help.

The paper is organized as follows: 1-2 contain preliminaries on the soft and hard
liberation operations, in 3-4 we discuss the quantum reflection groups, in 5-6 we discuss
the unitary quantum groups, and in 7-8 we comment on the duality question.

1. Liberation theory

We use Woronowicz’s compact matrix quantum group formalism in [33], [34], under the
extra assumption that the square of the antipode is the identity, S2 = id.

We are interested in the liberation problem. Let us start with:
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Definition 1.1. A liberation of a compact Lie group GN ⊂ UN is a quantum group

GN ⊂ G×N ⊂ U+
N

whose classical version is GN itself.

Here the classical version if by definition obtained by dividing the algebra C(G×N) by
its commutator ideal, and by [33] we obtain in this way a compact Lie group. Observe
that GN being classical, it is automatically contained in the classical version of G×N .

There are many examples of such liberations. We first have the “full” liberations
GN → G+

N in the sense of [11], that we will explain in a moment. We also have “half-
liberations”, denoted GN → G∗N , that we will explain as well in a moment. Finally, we
have many interesting examples of “genuine” intermediate liberations, either series usually
denoted GN → Gr

N with r ∈ N, or uncountable families, usually denoted GN → GX
N with

X being a discrete group-type object, coming from the work in [23], [24], [28].
At the level of generality of Definition 1.1, however, nothing much can be said, or at

least we don’t know how to do it, so far. Here are a few remarks on the subject:

Proposition 1.2. The collection of liberations of a given compact Lie group GN ⊂ UN
has the following properties:

(1) It is stable under the intersection operation ∩.
(2) It is not necessarily stable under the generation operation < ,>.

Proof. Here (1) is something trivial, and (2) fails indeed, for instance for the hyperocta-
hedral group HN = Z2 o SN . Indeed, HN has at least two liberations, namely the twisted
orthogonal group O−1

N , which appears as quantum symmetry group of the hypercube in
RN , and the quantum group H+

N = Z2 o∗ S+
N , which is the quantum symmetry group of

the coordinate axes of RN . And the point is that, according to [5], we have:

< O−1
N , H+

N >= U+
N

Thus, (2) fails, and in a particularly bad way, for HN . See [5]. �

At a more constructive level now, one idea, which has emerged in recent times, is that
the liberations of a compact Lie group GN ⊂ UN should appear via operations of type
G×N =< GN , I

×
N >, with I×N ⊂ U+

N being a “basic” quantum group. All this is quite
conjectural for the moment, still requiring a lot of work. Formulating some improved
conjectures on the subject, and partly solving them for some basic examples of compact
Lie groups GN ⊂ UN , will be our main purpose in this paper.

Let us first discuss the case of the “well-established” full liberations, from [11]. These
can be understood via a formula G×N =< GN , I

×
N > as above, as follows:

Definition 1.3. The soft liberation of a compact Lie group GN ⊂ UN is given by

G+
N =< GN , S

+
N >

where S+
N ⊂ U+

N is Wang’s quantum permutation group [31].



UNITARIES VS REFLECTIONS 5

The terminology here comes from the fact that, as we will see soon, there is as well a
second liberation operation, the “hard” one. For more on this, see [8].

As already mentioned, all this is inspired from [11]. To be more precise, we have the
following result, which makes the link with the notion of liberation from there:

Proposition 1.4. The soft liberation operation has the following properties:

(1) If SN ⊂ GN ⊂ UN is easy, we obtain the easy liberation S+
N ⊂ G+

N ⊂ U+
N .

(2) If we are in the case HN ⊂ GN ⊂ UN , then we have G+
N =< GN , H

+
N >.

(3) We have the formula G+
N =< GN , SN >+.

Proof. All this is explained in [8], the idea being as follows:
(1) This follows from the Tannakian formula C<G,H> = CG ∩ CH , and from [11].
(2) This follows from the well-known formula H+

N =< HN , S
+
N >.

(3) This is something trivial, coming from definitions. �

We will need as well the following notion, from [3]:

Definition 1.5. The easy envelope of a compact group SN ⊂ GN ⊂ UN is the smallest

compact group SN ⊂ G̃N ⊂ UN containing GN , and which is easy.

We refer to [3] for more details regarding this notion, and for some explicit computa-
tions, for basic examples of compact Lie groups. Here we will only need the following
formula, which is actually the Tannakian definition of the easy envelope:

CG̃N
= span(Tπ|π ∈ P, Tπ ∈ CGN

)

We have the following conjecture, recently made in [8]:

Conjecture 1.6 (Soft liberation conjecture, SLC). We have the formula

G+
N = (G̃N)+

valid for any compact group GN ⊂ UN , where tilde denotes the easy envelope.

As explained in [8], this is ultimately something about partitions. To be more precise,
by using the above-mentioned description of CG̃N

, the SLC is equivalent to the following
fact, for any r ∈ N, any partitions π1, . . . , πr ∈ NC, and any scalars λ1, . . . , λr 6= 0:

λ1Tπ1 + . . .+ λrTπr ∈ CGN
=⇒ Tπ1 , . . . , Tπr ∈ CGN

Such questions, however, can be quite difficult, as explained in [10]. This is further
discussed in [8], along with the remark that, in case all this is too difficult, an alternative
approach might come from using Lie group theory, a bit as in [10]. See [8].

Here is now a related conjecture, which is new:

Conjecture 1.7 (Absorption conjecture, AC). Assuming that EN ⊂ U+
N is easy, and

non-classical, then so is
< GN , EN >

for any compact quantum group GN ⊂ U+
N .
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As a first remark here, the fact that EN is not classical is really needed, because with
EN = SN we can have as counterexample any non-easy intermediate compact group
SN ⊂ GN ⊂ UN . And there are indeed such groups, as for instance:

U2
N =

{
U ∈ UN

∣∣∣ detU = ±1
}

In the free case, S+
N ⊂ EN ⊂ U+

N , our claim is that the AC is equivalent to:

Conjecture 1.8 (Freeness conjecture, FC). Any intermediate quantum group

S+
N ⊂ GN ⊂ U+

N

must be easy.

Indeed, assume first that the AC holds in the free case. Given S+
N ⊂ GN ⊂ U+

N , we can
simply take EN = S+

N , and the AC tells us that < GN , EN >= GN is easy.
Conversely, assume that the FC holds. Given S+

N ⊂ EN ⊂ U+
N and GN ⊂ U+

N we have
S+
N ⊂< GN , EN >⊂ U+

N , and by the FC this quantum group is easy.
In order to further comment on these conjectures, and on the relation between them,

we will need a negative statement, concerning counterexamples, as follows:

Theorem 1.9. The following happen, with “c” standing for the classical version,

(1) The soft liberation is not necessarily maximal, as a liberation,

(2) The “strong SLC” formula < GN , S
+
N >= (G̃c

N)+ does not necessarily hold,

due to the existence of certain quantum groups B′+N ⊂ B′++
N and K+

N ⊂ K++
N .

Proof. This is well-known, but in view of the importance of these counterexamples, let us
discuss them in detail. We have two groups to be discussed, as follows:

B′N . This compact group, from [11], is B′N = BN×Z2, where BN ⊂ ON is the bistochas-

tic group. Its category of partitions is known from [11] to be the category of singletons
and pairings P ′12, with an even number of singletons. The soft liberation of B′N is then
the easy quantum group B′+N appearing from the category NC ′12 = P ′12 ∩NC.

Contrary to was was announced in [11], this liberation is not maximal, and we have a
bigger quantum group, B′+N ⊂ B′++

N , corresponding to the smaller category NC ′−12 ⊂ NC ′12

coming from the fact that each pairing must connect ◦ − •, after rotating the partition
on one line, and labelling the legs alternatively ◦ • ◦ • . . . We refer here to [32].

KN . This is the complex reflection group, KN = T o SN , whose free liberation theory
can be deduced from the general classification results in [29]. However, all this being
quite technical, here are some explanations. First of all, KN comes from the category
Peven of partitions having even blocks, with #◦ = #• holding over each block, and its
soft liberation KN = T o∗ S+

N comes then from the category NCeven = Peven ∩NC.
Consider now the free complexification K+

N → K++
N , obtained by replacing u → zu,

with z being a Haar unitary, free from u. By [25] this complexification is easy as well,
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corresponding to the category NC−even ⊂ NCeven coming from the fact that the partitions,
when rotated on one line, must contain in each block alternating ◦, • symbols.

But this shows that we have an inclusion K+
N ⊂ K++

N , which is not an isomorphism. In
addition, it is elementary to check that the category P−even =< NC−even,P2 > contains all
4 matching versions of uuu, and so equals Peven itself, which gives (K++

N )c = KN .

Summarizing, we have our “exotic” quantum groups B′+N ⊂ B′++
N and K+

N ⊂ K++
N , and

these provide counterexamples to both (1) and (2), as claimed. �

We can now further comment on the relation between the SLC, AC, FC. The key
connecting statement would be the “strong SLC” from Theorem 1.9 (2) above, but as
explained there, this latter statement is wrong. We do not have a fix for this fact, although
we believe that such a fix could come from a careful examination of [29].

To be more precise, the question is that of understanding whether the above construc-
tions G+

N → G++
N and D → D− are of the “same type”, and then if such things can

be avoided, via some simple extra axiom. Indeed, imposing such an extra axiom could
probably lead to a “strong SLC”, making a clear link between the SLC, AC, FC.

There is probably a relation here with the work in [21], [22] as well.

2. Hard liberation

We discuss here an alternative approach to the liberation operation, which is harder to
perform, but which leads to more powerful consequences.

This is the “hard” liberation operation, obtained by using tori. The idea indeed, coming
from [6], [7], [8] and from a number of preceding papers, notably [15], [16], [18], is to
construct the liberation operation by using a free real torus, as follows:

G+
N =< GN , T

+
N > , T+

N = Ẑ∗N2
In practice, this is known to work for basic groups like ON , UN , but the situation in

general is more complicated. For instance this does not work for the real and complex
bistochastic groups BN , CN , whose diagonal torus collapses, and nor does it work for SN ,
for the same reason. For these quantum groups the solution is by using carefully chosen
spinned tori, as in [7], with the exact procedure being not axiomatized yet.

In what follows we will not get into such difficulties, and we will focus on the case of
hard liberation using diagonal tori, which works for ON , UN , and also, to some reasonable
extent, for the other two groups that we are interested in here, namely HN , KN .

Let us begin with the following definition:

Definition 2.1. A compact Lie group liberation GN ⊂ G×N is called hard liberation when

G×N =< Gc
N , T

×
N >

where T×N ⊂ G×N is the diagonal torus.
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Here, and in what follows, the diagonal torus is by definition constructed by imposing
the conditions uij = 0, for any i 6= j. The fact that we obtain indeed a noncommutative
torus, or group dual, comes from the fact that the elements gi = uii satisfy ∆(gi) = gi⊗gi
in the quotient, and so are group-like, and generate a discrete group. See [12].

As a main statement regarding the hard liberation, we have:

Conjecture 2.2 (Hard liberation conjecture, HLC). If Gc
N ⊂ G◦N is an easy hard libera-

tion of an easy compact Lie group, then any intermediate liberation

GN ⊂ G×N ⊂ G◦N

is an easy hard liberation as well.

As we will see in what follows, verifying such things is in general non-trivial.
Summarizing, we have so far many interesting conjectures, which are related between

them, usually in a non-trivial way. In what follows we will verify some of these conjectures
in some basic cases, leaving the more technical verifications for some future work.

In order to further comment on these questions, let us introduce:

Definition 2.3. A family G = (GN) with GN ⊂ U+
N is called uniform when

GN−1 = GN ∩ U+
N−1

for any N ≥ 2, with the embeddings U+
N−1 ⊂ U+

N being given by u→ diag(u, 1).

As a first remark, under this uniformity assumption, when assuming that GN−1 is not
classical, GN is not classical either. Thus, there is an integer n ∈ {2, 3, . . . ,∞} such that
G1, . . . , Gn−1 are all classical, and then Gn, Gn+1, . . . are all non-classical.

Inspired from the work in [15], [16], [18], let us formulate now:

Proposition 2.4. Assuming that G = (GN) is uniform, and letting n ∈ {2, 3, . . . ,∞} be
minimal such that Gn is not classical, consider the following generation conditions:

(1) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(2) Usual generation: GN =< Gc
N , GN−1 >, for any N > n.

(3) Initial step generation: Gn+1 =< Gc
n+1, Gn >.

We have then (1) ⇐⇒ (2) =⇒ (3), and (3) is in general strictly weaker.

Proof. All the implications and non-implications are elementary, as follows:
(1) =⇒ (2) This follows from Gn ⊂ GN−1 for N > n, coming from uniformity.
(2) =⇒ (1) By using twice the usual generation, and then the uniformity, we have:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, GN−2 >

= < Gc
N , GN−2 >

Thus we have a descent method, and we end up with the strong generation condition.
(2) =⇒ (3) This is clear, because (2) at N = n+ 1 is precisely (3).
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(3) 6=⇒ (2) In order to construct counterexamples here, simplest is to use group duals.

Indeed, with GN = Γ̂N and ΓN =< g1, . . . , gN >, the uniformity condition from Definition
2.3 tells us that we must be in a projective limit situation, as follows:

Γ1 ← Γ2 ← Γ3 ← Γ4 ← . . . , ΓN−1 = ΓN/ < gN = 1 >

But with this picture in hand, the result is clear. Indeed, assuming for instance that
Γ2 is given and not abelian, there are many ways of completing the sequence, and so the
uniqueness coming from the generation condition in (2) can only fail. �

In relation now with the HLC, let us introduce as well:

Proposition 2.5. Assuming that G = (GN) is uniform, and letting n ∈ {2, 3, . . . ,∞} be
as above, consider the following conditions, where IN ⊂ GN is the diagonal torus:

(1) Strong hard liberation: GN =< Gc
N , In >, for any N ≥ n.

(2) Technical condition: GN =< Gc
N , IN−1 > for any N > n, and Gn =< Gc

n, In >.
(3) Hard liberation: GN =< Gc

N , IN >, for any N .
(4) Initial step hard liberation: Gn =< Gc

n, In >.

We have then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Proof. Our first claim is that when assuming that G = (GN) is uniform, the family of
diagonal tori I = (IN) follows to be uniform as well. In order to prove this claim, observe
first that the definition of the diagonal torus can be reformulated as follows:

IN = GN ∩ F̂N
WIth this picture in hand, the uniformity claim for I = (IN) comes from that of

G = (GN), and from that of F̂ = (F̂N), which is trivial, as follows:

IN ∩ U+
N−1 = (GN ∩ F̂N) ∩ U+

N−1

= (GN ∩ U+
N−1) ∩ (F̂N ∩ U+

N−1)

= GN−1 ∩ F̂N−1

= IN−1

Thus our claim is proved, and this gives the various implications in the statement. �

Let us discuss now to understand the relationship between the above conditions. In the
group dual case, the simplest example to look at is the free real torus, G = (T+

N ). Here,
with respect to the 3 + 4 = 7 conditions that we have, the last 2 conditions trivially hold,
and the first 5 conditions all require T+

3 =< T3, T
+
2 >, which is wrong. Indeed, in order

to see this latter fact, consider the following discrete group:

Γ =
〈
a, b, c

∣∣∣a2 = b2 = c2 = 1, [a, b] = [a, c] = 1
〉
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We have then T3 ⊂ Γ̂ and T+
2 ⊂ Γ̂ as well, and so < T3, T

+
2 >⊂ Γ̂. On the other hand

we have Γ 6= Z∗32 , and so Γ̂ 6= T+
3 , and we conclude that we have < T3, T

+
2 >6= T+

3 .
With these preliminaries in hand, we can now formulate our main theoretical observa-

tion on the subject, which is a statement related to the HLC, as follows:

Theorem 2.6. Assuming that G = (GN) is uniform, and letting n ∈ {2, 3, . . . ,∞} be as
above, minimal such that Gn is not classical, the following conditions are equivalent,

(1) Generation: GN =< Gc
N , GN−1 >, for any N > n.

(2) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(3) Hard liberation: GN =< Gc
N , IN >, for any N ≥ n.

(4) Strong hard liberation: GN =< Gc
N , In >, for any N ≥ n.

modulo their initial steps.

Proof. Our first claim is that generation plus initial step hard liberation imply the tech-
nical hard liberation condition. Indeed, the recurrence step goes as follows:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−1 >

= < Gc
N , IN−1 >

In order to pass now from the technical hard liberation condition to the strong hard
liberation condition itself, observe that we have:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−1 >

= < Gc
N , IN−1 >

With this condition in hand, we have then as well:

GN = < Gc
N , GN−1 >

= < Gc
N , G

c
N−1, IN−2 >

= < Gc
N , IN−2 >

This procedure can be of course be continued. Thus we have a descent method, and
we end up with the strong hard liberation condition.

In the other sense now, we want to prove that we have GN =< Gc
N , GN−1 > at N ≥ n.

At N = n+ 1 this is something that we already have. At N = n+ 2 now, we have:

Gn+2 = < Gc
n+2, In >

= < Gc
n+2, G

c
n+1, In >

= < Gc
n+2, Gn+1 >

This procedure can be of course be continued. Thus, we have a descent method, and
we end up with the strong generation condition. �
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The above results remain of course quite theoretical. Still at the theoretical level, we
believe that the uniformity condition and generation condition are best viewed together.
The idea indeed is that given a family of compact quantum groups G = (GN) with
GN ⊂ U+

N , we have a “ladder of cubes”, formed by cubes as follows:

U+
N−1

// U+
N

GN−1
//

<<

GN

==

UN−1
//

OO

UN

OO

Gclass
N−1

OO

<<

// Gclass
N

OO

==

Thus, as a natural problem, we have the question of investigating the 2 × 6 = 12
intersection and generation properties, for the faces of such cubes, either with N ∈ N
arbitrary, or with N ≥ n. It is quite unclear on what can be done here, but as a general
idea, this could emerge on a notion of “super-strong uniformity”, with findings refining
those above. We intend to come back to these questions in some future work.

3. Reflection groups

In this section and in the next ones we discuss the various questions raised in sections
1-2 above, for the basic examples of compact Lie groups, namely HN , KN , ON , UN . The
choice of these groups, widely known to be of key importance in quantum group theory,
is best justified by the recent note [4]. It was shown indeed there that, under very strong
axioms, these 4 groups and their liberations H+

N , K
+
N , O

+
N , U

+
N are the only ones left.

We start with a study of the hyperoctahedral group HN = Z2 o SN , and its liberations.
The theory here is non-trivial, going back to the papers of Raum and Weber [26], [27],
[28], and with some extra useful information coming from the more recent paper [1]. Our
first purpose will be that of reviewing this material. Let us begin with:

Proposition 3.1. We have a quantum group H
[∞]
N ⊂ H+

N , obtained via the relations
abc = 0, for any a 6= c on the same row or column of u = (uij). This quantum group is

easy, and the corresponding category of partitions P
[∞]
even can be described as follows:

(1) P
[∞]
even is the category generated by η = ker

(
aab
baa

)
.

(2) P
[∞]
even = {π ∈ Peven|σ ∈ P ∗even,∀σ ⊂ π}.

(3) P
[∞]
even = {π ∈ Peven|ε(τ) = 1,∀τ ≤ π}.

Proof. All this is quite technical, and we refer to [26], [27], [28] and to [1] for the various
unexplained notions and for details of the proof, the idea being as follows:
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(1) This comes from the fact that η implements the relations in the statement. As a

side remark here, η and P
[∞]
even were discovered in fact prior to H

[∞]
N itself, due to the fact

that the relations aab = baa trivially hold for the real reflection groups. See [28].

(2) This is related to H∗N ⊂ H
[∞]
N , with P ∗even being the category of partitions for H∗N ,

consisting of the partitions having the property that when labelling counterclockwise the
legs ◦ • ◦ • . . ., each block has an equal number of black and white legs. See [28].

(3) This is something more recent, with ε : Peven → {±1} being the signature function,
extending the signature of the usual permutations S∞ ⊂ Peven. Besides giving a useful

description of P
[∞]
even, this formula shows that H

[∞]
N equals its own twist. See [1]. �

Generally speaking, H
[∞]
N is the “main” intermediate liberation of HN , with all the

results in [1], [28] leading to this conclusion. Of key importance here is:

Proposition 3.2. The easy liberations HN ⊂ H×N ⊂ H+
N fall into two classes:

(1) Easy liberations HN ⊂ H×N ⊂ H
[∞]
N .

(2) Easy liberations H
[∞]
N ⊂ H×N ⊂ H+

N , with H
[∞]
N excluded.

Proof. This is something quite technical, whose proof comes from the classification work

in [26], [27], [28]. The reasons for including H
[∞]
N into (1) are explained below. �

Let us first discuss the case (1). Given a reflection group Z∗N2 → Γ → ZN2 which is
uniform, in the sense that each permutation σ ∈ SN produces a group automorphism,
gi → gσ(i), we can associate to it a category of partitions D = (D(k, l)), as follows:

D(k, l) =
{
π ∈ P (k, l)

∣∣∣ ker(ij) ≤ π =⇒ gi1 . . . gik = gj1 . . . gjl

}
Observe that we have P

[∞]
even ⊂ D ⊂ Peven, with the inclusions coming respectively from

η ∈ D, and from Γ→ ZN2 . Conversely, given a category of partitions P
[∞]
even ⊂ D ⊂ Peven,

we can associate to it a uniform reflection group Z∗N2 → Γ→ ZN2 , as follows:

Γ =
〈
g1, . . . gN

∣∣∣gi1 . . . gik = gj1 . . . gjl , ∀i, j, k, l, ker(ij) ∈ D(k, l)
〉

As explained in [27], the correspondences Γ→ D and D → Γ are bijective, and inverse
to each other, at N =∞. We have in fact the following result, from [26], [27], [28]:

Proposition 3.3. We have correspondences between:

(1) Uniform reflection groups Z∗∞2 → Γ→ Z∞2 .

(2) Categories of partitions P
[∞]
even ⊂ D ⊂ Peven.

(3) Easy quantum groups G = (GN), with H
[∞]
N ⊃ GN ⊃ HN .

These correspondences will be denoted as Γ↔ P Γ
even ↔ HΓ

N .
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Proof. This is something quite technical. As an illustration, if we denote by Z◦N2 the
quotient of Z∗N2 by the relations of type abc = cba between the generators, we have:

ZN2 Z◦N2oo Z∗N2oo

HN
// H∗N

// H
[∞]
N

In general, the various results follow from some combinatorial work. See [28]. �

Regarding now the case (2) in Proposition 3.2, the result here, from [28], is:

Proposition 3.4. Let H
[r]
N ⊂ H+

N be the easy quantum group coming from:

πr = ker

(
1 . . . r r . . . 1
1 . . . r r . . . 1

)
Then H+

N = H
[1]
N ⊃ H

[2]
N ⊃ H

[3]
N ⊃ . . . ⊃ H

[∞]
N , and we obtain in this way all the interme-

diate easy quantum groups H
[∞]
N ⊂ G ⊂ H+

N , satisfying G 6= H
[∞]
N .

Proof. For full details here, we refer to the paper [28]. �

As a conclusion to all this, we have the following result, from [28]:

Proposition 3.5. The easy quantum groups HN ⊂ GN ⊂ H+
N , and the corresponding

diagonal tori, are as follows,

HN
// HΓ

N
// H

[∞]
N

// H
[r]
N

// H+
N

TN

OO

// Γ̂ //

OO

T+
N

//

OO

T+
N

//

OO

T+
N

OO

with the family HΓ
N and the series H

[r]
N being constructed as above.

Proof. The classification result follows by combining the above results, and the assertion
about the diagonal tori is clear from definitions. See [28]. �

With these results in hand, we can go back now to our hard liberation questions.
Obviously, with our present hard liberation theory, based on blowing up the diagonal

torus, we cannot get beyond H
[∞]
N , due to Proposition 3.5 above. Thus, we have to focus

on the quantum groups of type HΓ
N . And here we have the following result:
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Theorem 3.6. The quantum groups HΓ
N appear via hard liberation, as follows:

HΓ
N =< HN , Γ̂ >

In particular, we have the “master formula” H
[∞]
N =< HN , T

+
N >.

Proof. We use the basic fact, from [27], and which is complementary to the easiness
considerations above, that we have a crossed product decomposition as follows:

HΓ
N = Γ̂ o SN

With this result in hand, we obtain that we have the missing inclusion, namely:

HΓ
N = < SN , Γ̂ > ⊂ < HN , Γ̂ >

Finally, the last assertion is clear, by taking Γ = Z∗N2 . Indeed, this group produces

H
[∞]
N , and the corresponding group dual is the free real torus T+

N . �

As an interesting consequence of Theorem 3.6, let us record the following formula:

Proposition 3.7. We have the following formula,

span(P Γ
even) = span(Peven) ∩ CΓ̂

where CΓ̂ is the Tannakian category associated to Γ̂.

Proof. We use the Tannakian approach to the intersection and generation operations ∩
and < ,>, which is summarized in the following well-known formulae, going back to [18],
and widely used in the recent literature on the subject [4], [6], [7], [8]:

CG∩H =< CG, CH > , C<G,H> = CG ∩ CH
With these general formulae in hand, the generation formula in Theorem 3.6, namely

HΓ
N =< HN , Γ̂ >, reformulates in terms of Tannakian categories as follows:

CHΓ
N

= CHN
∩ CΓ̂

But this is precisely the equality in the statement. �

In practice now, the category CΓ̂ appearing in Proposition 3.7 above is given by the
following well-known formula, for which we refer for instance to [7]:

CΓ̂(k, l) =
{
T ∈MN l×Nk(C)

∣∣∣gi1 . . . gik 6= gj1 . . . gjl =⇒ Tj1...jl,i1...ik = 0
}

With this formula in hand, it is clear that the ⊂ inclusion in Proposition 3.7 holds
indeed, and that ⊃ holds as well on Peven. However, having ⊃ extended to the span of
Peven looks like a difficult combinatorial question. Thus, as a philosophical conclusion,
the crossed product results in [27] solve a difficult combinatorial question.

The above results are basically what we need, in what follows. There are of course
many other interesting questions regarding the quantum reflection groups, as follows:
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(1) Hard liberation of H
[r]
N , and of H+

N itself. Here we cannot do this with the diagonal
torus alone, and we must blow up some spinned tori as well. See [7], [8].

(2) Further classification questions. It is pehaps reasonable to conjecture that the
intermediate quantum groups HN ⊂ H×N ⊂ H+

N must be easy. This looks difficult.
(3) Recurrent generation questions. This comes in relation with the considerations from

section 2 above, and the subject is probably quite technical. See [15].

4. Complex reflections

We discuss here the same questions as before, this time for the complex reflection groups
KN = T oSN . The situation here is a bit different than the one for HN , and for the groups
ON , UN too, because the classification work for the easy quantum groups [11], [12], [23],
[24], [28], [29] has avoided so far the classification of the easy liberations of KN .

In the lack of this key ingredient, we can simply construct examples, by using our soft
liberation operation, and then study them. Let us begin with:

Proposition 4.1. We have easy quantum groups K×N as follows,

KN
// KΓ

N
// K

[∞]
N

// K
[r]
N

// K+
N

HN

OO

// HΓ
N

//

OO

H
[∞]
N

//

OO

H
[r]
N

//

OO

H+
N

OO

obtained by soft intermediate liberation, K×N =< KN , H
×
N >.

Proof. This is more of an empty statement, with perhaps the only thing to be justified

being the fact that KN , K
[∞]
N , K+

N , which are already known, appear indeed via soft liber-
ation. But this latter fact follows by interesting categories, with input from [1], [29]. �

In relation now with our hard liberation questions, we first have:

Proposition 4.2. The diagonal tori of the quantum groups K×N are as follows,

KN
// KΓ

N
// K

[∞]
N

// K
[r]
N

// K+
N

TN

OO

// Γ̂c //

OO

T+
N

//

OO

T+
N

//

OO

T+
N

OO

with Γ→ Γc being a certain complexification operation, satisfying < TN , Γ̂ >⊂ Γ̂c.
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Proof. As a first observation, the results are clear and well-known for the endpoints

KN , K
+
N and for the middle point K

[∞]
N as well. Indeed, these are, as explained in the

proof of Proposition 4.1 above, previously known quantum groups, from [1], [29].

By functoriality it follows that the diagonal torus of K
[r]
N must be the free complex

torus T+
N , for any r ∈ N, so we are done with the right part of the diagram.

Regarding now the left part of the diagram, concerning the quantum groups KΓ
N , if we

denote by T1(.) the diagonal torus, we have, by using [7]:

T1(KΓ
N) = T1(< KN , H

Γ
N >)

⊃ < T1(KN), T1(HΓ
N) >

= < TN , Γ̂ >

Thus, we are led to the conclusion in the statement. �

Observe that the above inclusion < TN , Γ̂ >⊂ Γ̂c fails to be an isomorphism, and this
for instance for Γ = Z∗N2 . However, the construction Γ→ Γc can be in principle explicitely
computed, for instance by using Tannakian methods. Indeed, our soft liberation formula
KΓ
N =< KN , H

Γ
N > translates into a Tannakian formula, as follows:

PΓ
even = Peven ∩ P Γ

even

The problem is that of explicitely computing the category on the left, corresponding
to KΓ

N , and then of deducing from this a presentation formula for the associated diagonal

torus Γ̂c, by using methods from [7]. All this is probably related to [2], [21], [28].
Now back to the hard liberation question, we have the following result:

Theorem 4.3. The quantum groups KΓ
N appear via hard liberation, and this even in a

stronger form, as follows:

KΓ
N =< KN , Γ̂ >

In particular, we have the formula K
[∞]
N =< KN , T

+
N >.

Proof. This follows from Theorem 3.6 and Proposition 4.1. Indeed, we have:

KΓ
N = < KN , H

Γ
N >

= < KN , HN , Γ̂ >

= < KN , Γ̂ >

Thus we have the formula in the statement, and the fact that this implies the fact that
KΓ
N appears indeed via hard liberation follows from Proposition 4.2 above.

Finally, with Γ = Z∗N2 we obtain from this the formula K
[∞]
N =< KN , T

+
N >. �

Regarding the hard liberation question for the quantum groups K
[r]
N , the problem here

is open, the difficulties being similar to those for the quantum groups H
[r]
N .
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5. Orthogonal groups

In relation now with the orthogonal groups, the situation is much simpler, because the
quantum groups ON ⊂ O∗N ⊂ O+

N are known from [12] to be the only easy liberations of
ON . In addition, it is known from [10] that the inclusion ON ⊂ O∗N is maximal, in the
sense that it has no intermediate object at all. Also, as explained in [10], the conjecture
is that ON ⊂ O∗N ⊂ O+

N are the only liberations of ON , not necessarily easy.
In order to discuss all this, we will need a technical result, as follows:

Proposition 5.1. We have the generation formula

O+
N =< ON , H

[∞]
N >

where H
[∞]
N is the liberation of HN from section 3 above.

Proof. We use the Tannakian approach to the intersection and generation operations ∩
and < ,>, explained in the proof of Proposition 3.7 above. According to the general
formula C<G,H> = CG ∩ CH there, the formula in the statement is equivalent to:

CO+
N

= CON
∩ C

H
[∞]
N

By easiness, we are led into the following combinatorial statement:

NC2 = P2 ∩ P [∞]
even

In order to establish this latter formula, we use the explicit description of P
[∞]
even given

in Proposition 3.1 (2) above, which is as follows:

P [∞]
even = {π ∈ Peven|σ ∈ P ∗even, ∀σ ⊂ π}

With this formula in hand, the fact that we have NC2 ⊂ P2 ∩ P [∞]
even is of course clear.

This is in fact something that we already know, coming from O+
N ⊃< ON , H

[∞]
N >.

Regarding the reverse inclusion, let π ∈ P2 ∩P [∞]
even. If we assume that π has a crossing,

then we have a basic crossing σ ⊂ π, and since we have σ 6∈ P ∗even, we obtain in this way
a contradition. Thus our reverse inclusion is proved, and we are done. �

As a comment here, the above result can be deduced as well from the classification

reaults in [12], by using the fact that the quantum group O×N =< ON , H
[∞]
N > is easy, and

is not classical, nor half-classical. However, all this is ultimately too complicated, and
having a direct and clear proof as above is probably something quite useful.

In relation now with our hard liberation questions, we have:

Proposition 5.2. The quantum groups ON , O
∗
N , O

+
N all appear via hard liberation,

O×N =< ON , T
×
N >

where T×N ⊂ O×N is the diagonal torus, equal respectively to TN , T
∗
N , T

+
N .
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Proof. This is trivial for ON , and known from [6] for O∗N . In the case of O+
N the problem

is more difficult, as explained in [8], but we have now the following complete proof:

O+
N = < ON , H

[∞]
N >

= < ON , HN , T
+
N >

= < ON , T
+
N >

To be more precise here, the first formula is from Proposition 5.1, the second one is the
‘master formula”, from Theorem 3.6 above, and the last one is trivial. �

Let us go back now to the conjecture regarding ON ⊂ O∗N ⊂ O+
N , which is probably

the most interesting statement around. As already mentioned, it is known from [12] that
ON ⊂ O∗N ⊂ O+

N are the unique easy liberations of ON . In terms of our present formalism,
this means that ON ⊂ O∗N ⊂ O+

N are the unique soft liberations of ON .
Here is a related result, providing some slight advances on this question:

Theorem 5.3. The basic orthogonal quantum groups, namely

ON ⊂ O∗N ⊂ O+
N

are the unique hard liberations of ON .

Proof. A hard liberation of ON must appear by definition as follows, for a certain real
reflection group Z∗N2 → Γ→ ZN2 , whose dual is the diagonal torus of the liberation:

OΓ
N =< ON , Γ̂ >

On the other hand, we have the following computation, based on Theorem 3.6, on the
fact that the class of easy quantum groups is stable under <,>, and finally on [12]:

OΓ
N = < ON , Γ̂ >

= < ON , HN , Γ̂ >

= < ON , H
Γ
N >

∈ {ON , O
∗
N , O

+
N}

Thus, we are led to the conclusion in the statement. �

We believe that Theorem 5.3 can be further extended, by using the notion of spinned
tori from [7], and the corresponding notions of hard liberation. However, the spinned
version of the hard liberation is something which is not axiomatized yet.

6. Unitary groups

We are interested in what follows in the intermediate quantum groups UN ⊂ G ⊂ U+
N .

A first construction of such quantum groups, from [9], [23], is as follows:
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Proposition 6.1. Associated to any r ∈ N is the quantum group UN ⊂ U
(r)
N ⊂ U+

N coming

from the category P(r)
2 of matching pairings having the property that #◦ = # • (r) holds

between the legs of each string. These quantum groups have the following properties:

(1) At r = 1 we obtain the usual unitary group, U
(1)
N = UN .

(2) At r = 2 we obtain the half-classical unitary group, U
(2)
N = U∗N .

(3) For any r|s we have an embedding U
(r)
N ⊂ U

(s)
N .

(4) In general, we have an embedding U
(r)
N ⊂ U r

N o Zr.
(5) We have as well a cyclic matrix model C(U

(r)
N ) ⊂Mr(C(U r

N)).
(6) In this latter model,

∫
U

(r)
N

appears as the restriction of trr ⊗
∫
Ur
N

.

Proof. This is something quite compact, summarizing the various findings from [9], [23].
Here are a few brief explanations on all this:

(1) This is clear from P(1)
2 = P2, and from a well-known result of Brauer [17].

(2) This is because P(2)
2 is generated by the partitions with implement the relations

abc = cba between the variables {uij, u∗ij}, used in [14] for constructing U∗N .

(3) This simply follows from P(s)
2 ⊂ P

(r)
2 , by functoriality.

(4) This is the original definition of U
(r)
N , from [9]. We refer to [9] for the exact formula

of the embedding, and to [23] for the compatibility with the Tannakian definition.

(5) This is also from [9], more specifically it is an alternative definition for U
(r)
N .

(6) Once again, this is something from [9], and we will be back to it. �

Let us discuss now the second known construction of unitary quantum groups, from
[24]. This construction uses an additive semigroup D ⊂ N, but as pointed out there, using
instead the complementary set C = N−D leads to several simplifications.

So, let us call “cosemigroup” any subset C ⊂ N which is complementary to an additive
semigroup, x, y /∈ C =⇒ x+ y /∈ C. The construction from [24] is then:

Proposition 6.2. Associated to any cosemigroup C ⊂ N is the easy quantum group

UN ⊂ UC
N ⊂ U+

N coming from the category PC2 ⊂ P
(∞)
2 of pairings having the property

# ◦ −#• ∈ C, between each two legs colored ◦, • of two strings which cross. We have:

(1) For C = ∅ we obtain the quantum group U+
N .

(2) For C = {0} we obtain the quantum group U×N .
(3) For C = {0, 1} we obtain the quantum group U∗∗N .

(4) For C = N we obtain the quantum group U
(∞)
N .

(5) For C ⊂ C ′ we have an inclusion UC′
N ⊂ UC

N .

(6) Each quantum group UC
N contains each quantum group U

(r)
N .

Proof. Once again this is something very compact, coming from recent work in [24], with
our convention that the semigroup D ⊂ N which is used there is replaced here by its
complement C = N−D. Here are a few explanations on all this:
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(1) The assumption C = ∅ means that the condition #◦−#• ∈ C can never be applied.
Thus, the strings cannot cross, we have P∅2 = NC2, and so U∅N = U+

N .
(2) As explained in [24], here we obtain indeed the quantum group U×N from [13],

constructed there by using the relations ab∗c = cb∗a, with a, b, c ∈ {uij}.
(3) This is also explained in [24], with U∗∗N being the quantum group from [9], which is

the biggest whose full projective version, in the sense there, is classical.
(4) Here the assumption C = N simply tells us that the condition # ◦ −#• ∈ C in the

statement is irrelevant. Thus, we have PN
2 = P(∞)

2 , and so UN
N = U

(∞)
N .

(5) This is clear by functoriality, because C ⊂ C ′ implies PC2 ⊂ PC
′

2 .
(6) This is clear from definitions, and from Proposition 6.1 above. �

We have the following key result, from [24]:

Proposition 6.3. The easy quantum groups UN ⊂ G ⊂ U+
N are as follows,

UN ⊂ {U (r)
N } ⊂ {U

C
N} ⊂ U+

N

with the series covering UN , and the family covering U+
N .

Proof. This is something highly non-trivial, and we refer here to [24]. The general idea is

that U
(∞)
N produces a dichotomy for the quantum groups in the statement, and this leads,

via massive combinatorial computations, to the series and the family. See [23], [24]. �

Observe that there is an obvious similarity here with the dichotomy in Proposition 3.2,
for the liberations of HN , coming from [28]. We will be back to this, later on.

In relation now with our liberation questions, we have:

Theorem 6.4. The basic unitary quantum groups, UN , U
∗
N , U

+
N , appear via real and com-

plex soft liberation, and via hard liberation as well, as follows:

(1) If we set K×N = U×N ∩K
+
N , we have U×N =< UN , K

×
N >.

(2) In fact, if we set H×N = U×N ∩H
+
N , we have U×N =< UN , H

×
N >.

(3) In the free case, we have as well the formula U+
N =< UN , H

[∞]
N >.

(4) We have U×N =< UN , I
×
N >, with I×N ⊂ U×N being the diagonal torus.

Proof. These results are trivial for UN , and for U∗N , U
+
N the proofs are as follows:

(1) This is well-known since [2], coming from the following standard formulae:

P∗2 = P2 ∩ P∗even , NC2 = P2 ∩NCeven

(2) This enhances (1), by using the following standard formulae:

P∗2 = P2 ∩ P ∗even , NC2 = P2 ∩NCeven
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(3) This enhances (2) in the free case, and comes from Proposition 5.1, as follows:

U+
N = < UN , O

+
N >

= < UN , ON , H
[∞]
N >

= < UN , H
[∞]
N >

(4) For U∗N we have indeed the following computation, based on (2):

U∗N = < UN , H
∗
N >

= < UN , HN , T
∗
N >

= < UN , T
∗
N >

⊂ < UN ,T∗N >

For U+
N we can use a similar method, based on (3), as follows:

U+
N = < UN , H

[∞]
N >

= < UN , HN , T
+
N >

= < UN , T
+
N >

⊂ < UN ,T+
N >

Since the reverse inclusions are clear, this finishes the proof. �

The above result is of course something quite elementary, and having the HLC proved
for UN , which would amount in proving (4) for all the quantum groups in Proposition 6.1
and Proposition 6.2, is still something which is far away, requiring lots of work.

For the quantum groups U
(r)
N the corresponding reflection groups K

(r)
N = U

(r)
N ∩K

+
N can

be explicitely computed, because we have a diagram as follows:

U r
N o Zr // U

(r)
N

SrN o Zr //

OO

K
(r)
N

OO

In other words, the construction KN → K
(r)
N is similar to the construction UN → U

(r)
N ,

by applying the matrix model construction in [9]. Thus, our strategy of proof from
Theorem 6.4, by doing soft liberation, and then hard liberation, looks viable.

For the quantum groups UC
N , however, the situation is considerably more compli-

cated, because the corresponding reflection groups KC
N = UC

N ∩ K+
N seem to collapse

to KN , K
∗
N , K

+
N . Thus, we are in need of a new method here. The problem is non-trivial

already for U
(∞)
N , U∗∗N , U

×
N , and we have no solution, even in these basic cases.
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7. Duality results

As already noted above, there is an obvious similarity between the dictotomies from
Proposition 3.2 and Proposition 6.3, and between the work in [26], [27], [28] and [23], [24]
in general, regarding the easy liberations of HN , and the easy liberations of UN .

Our purpose here will be that of discussing this phenomenon. Our results will be quite
modest. In fact, this is our third attempt of commenting on this, after [1], [2]. We believe
however that all this is useful, at least providing some advertisement, and problems.

Let us begin with the following standard definition, coming from [1], [2]:

Definition 7.1. We have “covariant” correspondences H×N ↔ U×N between the liberations
of HN and the liberations of UN , constructed as follows:

(1) To any U×N we can associate the quantum group H×N = U×N ∩H
+
N .

(2) To any H×N we can associate the quantum group U×N =< H×N , UN >.

These operations were introduced in [2], in a general setting, in the noncommutative
geometry context. Observe that both correspondences are indeed covariant.

In practice now, in the easy case, we have the following result:

Proposition 7.2. The operations U×N → U×N ∩ H
+
N and H×N →< H×N , UN > are both

“controlled”, in the easy case, by the corresponding quantum groups

O×N ∈ {ON , O
∗
N , O

+
N}

appearing via U×N → U×N ∩ O
+
N and H×N →< ON , H

×
N > respectively, and their images

collapse to {HN , H
∗
N , H

+
N} and {UN , U∗N , U+

N} respectively.

Proof. We use here the standard fact, from [12], that the quantum groups ON ⊂ O∗N ⊂ O+
N

are the unique easy liberations of the orthogonal group ON . See [12].
With O×N = U×N ∩O

+
N , we have the following computation:

H×N = U×N ∩H
+
N

= U×N ∩O
+
N ∩H

+
N

= O×N ∩H
+
N

∈ {HN , H
∗
N , H

+
N}

Also, with O×N =< ON , H
×
N > this time, we have the following computation:

U×N = < UN , H
×
N >

= < UN , ON , H
×
N >

= < UN , O
×
N >

∈ {UN , U∗N , U+
N}

Thus, we are led to the conclusions in the statement. �
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The above “covariant duality” is of course something quite deceiving, missing the whole
point with the work in [26], [27], [28] and [23], [24]. However, technically speaking, this
duality has some applications to classification problems, that we will discuss now.

Let us begin with an elementary statement, as follows:

Proposition 7.3. We have intermediate quantum groups HN ⊂ GN ⊂ U+
N as follows,

HN
// KN

// UN

H∗N

OO

// K∗N
//

OO

U∗N

OO

HN
//

OO

KN

OO

// UN

OO

and this is an intersection and generation diagram, in the sense that any of its subsquare
diagrams A ⊂ B,C ⊂ D satisfies A = B ∩ C,< B,C >= D.

Proof. The fact that we have a diagram as above is clear from definitions, and the inter-
section and generation properties follow from easiness. See [4]. �

In general now, any intermediate quantum group HN ⊂ GN ⊂ U+
N will appear inside

the square, and we can therefore use some “2D orientation” methods in order to deal with
it. To be more precise, we can use the following observation, from [4]:

Proposition 7.4. Given an intersection and generation diagram P ⊂ Q,R ⊂ S and an
intermediate quantum group P ⊂ G ⊂ S, we have a diagram as follows:

Q // < G,Q > // S

G ∩Q

OO

// G //

OO

< G,R >

OO

P //

OO

G ∩R

OO

// R

OO

In addition, G slices the square, in the sense that this is an intersection and generation
diagram, precisely when G =< G ∩Q,G ∩R > and G =< G,Q > ∩ < G,R >.

Proof. This is indeed clear from definitions, because the intersection and generation dia-
gram conditions are automatic for the upper left and lower right squares, as well as half of
the generation diagram conditions for the lower left and upper right squares. See [4]. �

Now back to our classification problem, we have the following result:
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Theorem 7.5. The intermediate easy quantum groups HN ⊂ GN ⊂ U+
N which slice the

square HN ⊂ H+
N , UN ⊂ U+

N , in the sense of Proposition 7.4, are as follows,

H+
N

// E+
N

// U+
N

H∗N

OO

// E∗N
//

OO

U∗N

OO

HN
//

OO

EN

OO

// UN

OO

with HN ⊂ EN ⊂ UN being an easy quantum group, and with E∗N , E
+
N being obtained via

soft liberation, E∗N =< EN , H
∗
N > and E+

N =< EN , H
+
N >.

Proof. Assuming that HN ⊂ GN ⊂ U+
N is easy, and slices the square, its unitary version

Gu
N =< GN , UN > must be easy, and so is one of the easy quantum groups U×N from

section 6 above. Now observe that the slicing condition tells us in particular that U×N
appears via the duality in Proposition 7.2 from its real discrete version H×N = U×N ∩H

+
N .

Thus by duality we must have U×N ∈ {UN , U∗N , U
+
N}, and this gives the result. �

As an extra remark, when further imposing the uniformity condition from [4] the half-
liberations dissapear, and we are left with the classical and free solutions, from [29].

Let us go back now to duality considerations, with the idea of “fixing” what we have,
from Proposition 7.2. The classification results for HN , UN have some obvious similarity
between them. We have indeed a family followed by a series, and a series followed by a
family, and this suggests the existence of a “contravariant duality”, as follows:

UN // U
(r)
N

// UC
N

// U+
N

H+
N H

[r]
N

oo HΓ
N

oo HN
oo

As a first, naive attempt here, we could try to construct such a duality H×N ↔ U×N by
using a kind of “complementation formula”, of the following type:

< H×N , U
×
N >= U+

N

To be more precise, given a quantum group H×N , we would like to define its dual U×N
to be the “minimal” quantum group having the above property, and vice versa. Observe
that such a correspondence H×N ↔ U×N would be indeed contravariant.
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In practice now, the main problem comes from the formula U+
N =< UN , H

[∞]
N > from

Theorem 6.4. This formula shows indeed that our naive attempt presented above simply

fails, because the dual of UN would be H
[∞]
N , instead of being H+

N , as desired.
We believe however that all this should be doable, in the long run, with some further

technical input from the classification program of Weber and al. on one hand, and from
our soft and hard liberation program on the other, as both programs advance.

Needless to say, we believe that all this is important, and related to many things, and
applications. In fact, in our opinion, if the easiness definition from [11] can be agreed
upon as being the “Main Definition” in compact quantum groups, then such a duality
would be probably the corresponding “Main Theorem” on compact quantum groups.

8. Open problems

We have seen that the soft and hard liberation leads to a fresh point of view on the
liberations of ON , UN , HN , KN . Here are some open problems, in relation with this:

Problem 8.1. Soft and hard liberation.

As a key problem here, we have to understand the hard liberation above H
[∞]
N , using

the spinned tori from [7].

Problem 8.2. Classification and maximality questions.

The most basic question here is probably the one regarding the classification of the
easy liberations of KN , in the spirit of [23], [24].

Problem 8.3. Covariant and contravariant dualities.

The main problem here, and main problem in general, is that of constructing a con-
travariant duality between the liberations of HN and the liberations of UN .

Problem 8.4. Noncommutative spheres and geometry.

An interesting question here is whether the Laplacian theory from [19], [20] extends or
not to the noncommutative spheres associated to the quantum groups U×N .
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