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1 Introduction

For the long history of division by zero, see [4, 29]. S. K. Sen and R. P.
Agarwal [35] quite recentry referred to our paper [11] in connection with
division by zero, however, their understandings on the paper seem to be
not suitable (not right) and their ideas on the division by zero seem to be
traditional, indeed, they stated as the conclusion of the introduction of the
book in the following way:
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“Thou shalt not divide by zero” remains valid eternally.

However, in [32] we stated simply based on the division by zero calculus
that

We Can Divide the Numbers and Analytic Functions by Zero
with a Natural Sense.

For the long tradition on the division by zero, people may not be accepted
our new results against many clear evidences on our division by zero, however,
a physicist stated as follows:

Here is how I see the problem with prohibition on division by zero, which
is the biggest scandal in modern mathematics as you rightly pointed out
(2017.10.14.08:55).

The common sense on the division by zero with the long and mysterious
history is wrong and our basic idea on the space around the point at infinity
is also wrong since Euclid. On the gradient or on differential coefficients we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero. In this paper, in a new and
definite sense, we will show and give various applications of the division by
zero 0/0 = 1/0 = z/0 = 0. In particular, we will introduce several funda-
mental concepts in calculus, Euclidean geometry, analytic geometry, complex
analysis and differential equations. We will see new properties on the Lau-
rent expansion, singularity, derivative, extension of solutions of differential
equations beyond analytical and isolated singularities, and reduction prob-
lems of differential equations. On Euclidean geometry and analytic geometry,
we will find new fields by the concept of the division by zero. We will give
many concrete properties in mathematical sciences from the viewpoint of the
division by zero. We will know that the division by zero is our elementary
and fundamental mathematics.

The contents are as follows.
1. Introduction.
2. Division by zero.
3. Division by zero calculus.
4. We can divide the numbers and analytic functions by zero.
5. General division and usual division.
6. Division by zero calculus.
7. Derivatives of functions.
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8. Differential equations.
9. Euclidean spaces and division by zero calculus.
10. Analytic functions and division by zero calculus.
11. The Descartes circle theorem.
12. Horn torus models and division by zero calculus – a new world.

2 Division by zero

The division by zero with the mysterious and long history was indeed trivial
and clear as in the followings.

By the concept of the Moore-Penrose generalized solution of the funda-
mental equation ax = b, the division by zero was trivial and clear as b/0 = 0
in the generalized fraction that is defined by the generalized solution of
the equation ax = b. Here, the generalized solution is always uniquely de-
termined and the theory is very classical. See [11] for example. However, we
can state clearly and directly its essence as follows:

For a complex number α and the associated matrix A, the correspondence

α = a1 + ia2 ←→ A =

(
a1 −a2
a2 a1

)
is homomorphism between the complex number field and the matrix field of
2× 2.

For any matrix A, there exists a uniquely determined Moore-Penroze gen-
eralized inverse A† satisfying the conditions, for complex conjugate transpose
∗,

AA†A = A,

A†AA† = A†A,

(AA†)∗ = AA†,

and
(A†A)∗ = A†A,

and it is given by, for A ̸= O, not zero matrix,

A† =
1

|a|2 + |b|2 + |c|2 + |d|2
·
(
a c

b d

)
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for

A =

(
a b
c d

)
.

If A = O, then A† = O.

In general, for a vector x ∈ Cn, its Moore-Penrose generalized inverse x†

is given by

x† =

{
0∗ for x = 0

(x∗x)−1x∗ for x ̸= 0.

Recall the uniqueness theorem by S. Takahasi on the division by zero.
See [11, 38]:

Proposition 2.1 Let F be a function from C×C to C such that

F (a, b)F (c, d) = F (ac, bd)

for all
a, b, c, d ∈ C

and
F (a, b) =

a

b
, a, b ∈ C, b ̸= 0.

Then, we obtain, for any a ∈ C

F (a, 0) = 0.

Proof. Indeed, we have

F (a, 0) = F (a, 0)1 = F (a, 0)
2

2
= F (a, 0)F (2, 2) =

F (a · 2, 0 · 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).

Thus F (a, 0) = 2F (a, 0) which implies the desired result F (a, 0) = 0 for
all a ∈ C.

In the long mysterious history of the division by zero, this proposition
seems to be decisive.
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Indeed, Takahasi’s assumption for the product property should be ac-
cepted for any generalization of fraction (division). Without the product
property, we will not be able to consider any reasonable fraction (division).

Following Proposition 2.1, we should define

F (b, 0) =
b

0
= 0,

and we should consider that for the mapping

W = f(z) =
1

z
, (2.1)

the image f(0) of z = 0 is W = 0 (should be defined from the form).
This fact seems to be a curious one in connection with our well-established
popular image for the point at infinity on the Riemann sphere ([2]). As
the representation of the point at infinity on the Riemann sphere by the
zero z = 0, we will see some delicate relations between 0 and ∞ which
show a strong discontinuity at the point of infinity on the Riemann sphere.
We did not consider any value of the elementary function W = 1/z at the
origin z = 0, because we did not consider the division by zero 1/0 in a good
way. Many and many people consider its value at the origin by limiting
like +∞ and −∞ or by the point at infinity as ∞. However, their basic
idea comes from continuity with the common sense or based on the basic
idea of Aristotele. – For the related Greece philosophy, see [41, 42, 43].
However, as the division by zero we will consider its value of the function
W = 1/z as zero at z = 0. We will see that this new definition is valid
widely in mathematics and mathematical sciences, see ([15, 19]) for example.
Therefore, the division by zero will give great impact to calculus, Euclidean
geometry, analytic geometry, complex analysis and the theory of differential
equations at an undergraduate level and furthermore to our basic idea for
the space and universe.

The simple field structure containing division by zero was established by
M. Yamada ([14]) in a natural way. For a simple introduction, H. Okumura
[26] discovered the very simple essence that:

To divide by zero is to multiply by zero.

That is, for any complex numbers a and b, the general fraction(division)
a/b may be defined as follows; for b ̸= 0, with its inversion b−1

a

b
= ab−1
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and for b = 0
a

b
= ab.

Then, the general fractions containing the division by zero form the Yamada
field.

For the operator properties of the generalized fractions, see [38].

3 Division by zero calculus

As the number system containing the division by zero, the Yamada field
structure is perfect. However, for applications of the division by zero to
functions, we need the concept of the division by zero calculus for the sake
of unique determination of the results and for other reasons.

For example, for the typical linear mapping

W =
z − i
z + i

, (3.1)

it gives a conformal mapping on {C \ {−i}} onto {C \ {1}} in one to one
and from

W = 1 +
−2i

z − (−i)
, (3.2)

we see that −i corresponds to 1 and so the function maps the whole {C}
onto {C} in one to one.

Meanwhile, note that for

W = (z − i) · 1

z + i
, (3.3)

we should not enter z = −i in the way

[(z − i)]z=−i ·
[

1

z + i

]
z=−i

= (−2i) · 0 = 0. (3.4)

However, in many cases, the above two results will have practical mean-
ings and so, we will need to consider many ways for the application of the
division by zero and we will need to check the results obtained, in some prac-
tical viewpoints. We referred to this delicate problem with many examples
in the references.
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We will introduce the division by zero calculus. For any Laurent expan-
sion around z = a,

f(z) =
−1∑

n=−∞

Cn(z − a)n + C0 +
∞∑
n=1

Cn(z − a)n, (3.5)

we define the identity
f(a) = C0. (3.6)

Note that here, there is no problem on any convergence of the expansion
(3.5) at the point z = a, because all terms (z − a)n are zero at z = a for
n ̸= 0, when we use the result 1/0 = 0.

Apart from the motivation, we define the division by zero cal-
culus by (3.6). With this assumption, we can obtain many new results
and new ideas. However, for this assumption we have to check the results
obtained whether they are reasonable or not. By this idea, we can avoid
any logical problems. – In this point, the division by zero calculus may be
considered as a fundamental assumption like an axiom.

In addition, we will refer to an interesting viewpoint of the division by
zero calculus.

Recall the Cauchy integral formula for an analytic function f(z); for an
analytic function f(z) around z = a and for a smooth simple Jordan closed
curve γ enclosing one time the point a, we have

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz.

Even when the function f(z) has any singularity at the point a, we assume
that this formula is valid as the division by zero calculus.

We define the value of the function f(z) at the singular point z = a with
the above Cauchy integral.

The basic idea of the above may be considered that we can consider the
value of a function by a mean value of the function.

On February 16, 2019 Professor H. Okumura introduced the surprising
news in Research Gate:

José Manuel Rodŕıguez Caballero
Added an answer
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In the proof assistant Isabelle/HOL we have x/0 = 0 for each number x.
This is advantageous in order to simplify the proofs. You can download this
proof assistant here: https://isabelle.in.tum.de/.

J.M.R. Caballero kindly showed surprisingly several examples to the au-
thor by the system that

tan
π

2
= 0,

log 0 = 0,

exp
1

x
(x = 0) = 1,

and others following the questions of the author. Furthermore, for the pre-
sentation at the annual meeting of the Japanese Mathematical Society at the
Tokyo Institute of Technology:

March 17, 2019: 9: 45-10: 00 in Complex Analysis Session, Horn torus
models for the Riemann sphere from the viewpoint of division by zero with
[6],

he kindly sent the message to the author as follows:

It is nice to know that you will present your result at the Tokyo Insti-
tute of Technology. Please remember to mention Isabelle/HOL, which is
a software in which x/0 = 0. This software is the result of many years
of research and a millions of dollars were invested in it. If x/0 = 0 was
false, all these money was for nothing. Right now, there is a team of
mathematicians formalizing all the mathematics in Isabelle/HOL, where x/0
= 0 for all x, so this mathematical relation is the future of mathematics.
https://www.cl.cam.ac.uk/ lp15/Grants/Alexandria/

4 We can divide the numbers and analytic

functions by zero

In Section 2 and Section3, we will be interested in their precise relation from
the logical point. We can derive from the motivations in Section 2, the
division by zero calculus in Section 3. However, we will have some delicate
logics for it. As the simple introduction and logical base on the division
by zero we can start with the definition of the division by zero calculus in
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Section 3. Indeed, we can develop our theory from the definition. In this
sense, the division by zero calculus may be considered as a new axiom.

On this logic, the meaning (definition) of

1

0
= 0

is given by f(0) = 0 by means of the division by zero calculus for the function
f(z) = 1/z. Similarly, the definition

0

0
= 0

is given by f(0) = 0 by means of the division by zero calculus for the function
f(z) = 0/z.

In the division by zero, the essential problem was in the sense of the
division by zero (definition) z/0. Many confusions and simple history of
division by zero may be looked in [25].

In this section, in order to give the precise meaning of division by zero, we
will give a simple and affirmative answer, for a famous rule that we are not
permitted to divide the numbers and functions by zero. In our mathematics,
prohibition is a famous word for the division by zero.

For any analytic function f(z) around the origin z = 0 that is permitted to
have any singularity at z = 0 (of course, any constant function is permitted),
we can consider the value, by the division by zero calculus

f(z)

zn
(4.1)

at the point z = 0, for any positive integer n. This will mean that from the
form we can consider it as follows:

f(z)

zn
|z=0 . (4.2)

For example,

ex

xn
|x=0=

1

n!
.

This is the definition of our division by zero (general fraction). In this
sense, we can divide the numbers and analytic functions by zero. For z ̸= 0,
f(z)
zn

means the usual division of the function f(z) by zn.
The content of this subsection was presented by [32].
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5 General division and usual division

Since the native division by zero z/0 in the sense that from z/0 = X to z =
X · 0 is impossible for z ̸= 0, we introduced its sense by the division by zero
calculus. However, in our many formulas in mathematics and mathematical
sciences we can see that they have the natural senses; that is for (4.2), we
have:

f(z)

zn
|z=0=

f(0)

0n
.

However, this is, in general, not valid. Indeed, for the function f(z) = sin z,
we have

sin z

z
|z=0=

sin 0

0
=

0

0
= 0,

however, we have, by the division by zero calculus

sin z

z
|z=0= 1.

For the functions f(z) = 1/z and g(z) = zf(z), we have f(0) = 0 and
g(0) = 1 by the division by zero calculus, but we have another result in this
way g(0) = 0× f(0) = 0× 0 = 0.

Here, we will show typical examples. See also [13, 15, 24, 27] for many
examples.

5.1 Examples of 0/0 = 0

The conditional probability P (A|B) for the probability of A under the con-
dition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

If P (B) = 0, then, of course, P (A∩B) = 0 and from the meaning, P (A|B) =
0 and so, 0/0 = 0.

For the representation of inner product A ·B in vectors

cos θ =
A ·B
AB

=
AxBx + AyBy + AzBz√

A2
x + A2

y + A2
z

√
B2

x +B2
y +B2

z

,
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if A or B is the zero vector, then we see that 0 = 0/0. In general, the zero
vector is orthogonal for any vector and then, cos θ = 0.

For the differential equation

dy

dx
=

2y

x
,

we have the general solution with constant C

y = Cx2.

At the origin (0, 0) we have

y′(0) =
0

0
= 0.

For three points a, b, c on a circle with its center at the origin on the complex
z-plane with its radius R, we have

|a+ b+ c| = |ab+ bc+ ca|
R

.

If R = 0, then a, b, c = 0 and we have 0 = 0/0.
For a circle with its radius R and for an inscribed triangle with its side

lengths a, b, c, and further for the inscribed circle with its radius r for the
triangle, the area S of the triangle is given by

S =
r

2
(a+ b+ c) =

abc

4R
.

If R = 0, then we have

S = 0 =
0

0

(H. Michiwaki: 2017.7.28.). We have the identity

r =
2S

a+ b+ c
.

If a+ b+ c = 0, then we have

0 =
0

0
.

11



For the distance d of the centers of the inscribed circle and circumscribed
circle, we have the Euler formula

r =
1

2
R− d2

2R
.

If R = 0, then we have d = 0 and

0 = 0− 0

0
.

For the second curvature

K2 =
(
(x′′)2 + (y′′)2 + (z′′)2

)−1 ·

∣∣∣∣∣∣
x′ y′ z′

x′′ y′′ z′′

x′′′ y′′′ z′′′

∣∣∣∣∣∣ ,
if (x′′)2 + (y′′)2 + (z′′)2 = 0; that is, for the case of lines, then 0 = 0/0.

In a Hilbert space H, for a fixed member v and for a given number d we
set

V = {y ∈ H; (y, v) = d}

and for fixed x ∈ H
d(x, V ) :=

|(x, v)− d|
∥v∥

.

If v = 0, then, (y, v) = 0 and d has to zero. Then, since H = V , we have

0 =
0

0
.

5.2 Examples of 1/0 = 0

For constants a and b satisfying

1

a
+

1

b
= k, (̸= 0, const.)

the function
x

a
+
y

b
= 1
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passes the point (1/k, 1/k). If a = 0, then, by the division by zero, b = 1/k
and y = 1/k; this result is natural.

We will consider the line y = m(x−a)+b through a fixed point (a, b); a, b >
0 with its gradient m. We set A(0,−am + b) and B(a − (b/m), 0) that are
common points with the line and both lines x = 0 and y = 0, respectively.
Then,

AB
2
= (−am+ b)2 +

(
a− b

m

)2

.

If m = 0, then A(0, b) and B(a, 0), by the division by zero, and furthermore

AB
2
= a2 + b2.

Then, the line AB is a corresponding line between the origin and the point
(a, b). Note that this line has only one common point with both lines x = 0
and y = 0. Therefore, this result will be very natural in a sense. – Indeed,
we can understand that the line AB is broken into two lines (0, b) − (a, b)
and (a, b)− (a, 0), suddenly. Or, the line AB is one connecting the origin and
the point (a, b).

The general line equation through fixed point (a, b) with its gradient m
is given by

y = m(x− a) + b (5.1)

or, for m ̸= 0
y

m
= x− a+ b

m
.

By m = 0, we obtain the equation x = a, by the division by zero. This
equation may be considered as the cases m = ∞ and m = −∞, and these
cases may be considered by the strictly right logic with the division by zero.

By the division by zero, we can consider the equation (5.1) as a general
line equation.

For the Newton’s formula; that is, for a C2 class function y = f(x), the
curvature K at the origin is given by

K = lim
x→0

∣∣∣∣x22y
∣∣∣∣ = ∣∣∣∣ 1

f ′′(0)

∣∣∣∣ ,
we have for f ′′(0) = 0,

K =
1

0
= 0.
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Recall the formula

bn =
1

π

∫ 2π

0

x sinnxdx = − 2

n
,

for
n = ±1,±2, ..., ....

Then, for n = 0, we have

b0 = −
2

0
= 0.

5.3 Trigonometric functions

In order to see how elementary of the division by zero, we will see the division
by zero in trigonometric functions as the fundamental object. Even the cases
of triangles and trigonometric functions, we can derive new concepts and
results.

Even the case

tanx =
sinx

cosx
,

we have the identity, for x = π/2

0 =
1

0
.

Note that from the inversion of the both sides

cotx =
cosx

sinx
,

for example, we have, for x = 0,

0 =
1

0
.

By this general method, we can consider many problems.

In the Lami’s formula for three vectors A,B,C satisfying

A+B+C = 0,
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∥A∥
sinα

=
∥B∥
sin β

=
∥C∥
sin γ

,

if α = 0, then we obtain

∥A∥
0

=
∥B∥
0

=
∥C∥
0

= 0.

Here, of course, α is the angle of B and C, β is the angle of C and A, and
γ is the angle of A and B.

We will consider a triangle ABC with BC = a, CA = b, AB = c. Let θ
be the angle of the side BC and the bisector line of A. Then, we have the
identity

tan θ =
c+ b

c− b
tan

A

2
, b < c.

For c = b, we have

tan θ =
2b

0
tan

A

2
.

Of course, θ = π/2; that is,

tan
π

2
= 0.

Here, we used
2b

0
= 0

and we did not consider that by the division by zero calculus

c+ b

c− b
= 1 +

2b

c− b

and for c = b
c+ b

c− b
= 1.

In the Napier’s formula

a+ b

a− b
=

tan(A+B)/2

tan(A−B)/2
,

there is no problem for a = b and A = B.
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We have the formula

a2 + b2 − c2

a2 − b2 + c2
=

tanB

tanC
.

If a2 + b2 − c2 = 0, then by the Pythagorean theorem C = π/2. Then,

0 =
tanB

tan π
2

=
tanB

0
.

Meanwhile, for the case a2 − b2 + c2 = 0, B = π/2, and we have

a2 + b2 − c2

0
=

tan π
2

tanC
= 0.

Let H be the perpendicular leg of A to the side BC and let E and M
be the mid points of AH and BC, respectively. Let θ be the angle of EMB
(b > c). Then, we have

1

tan θ
=

1

tanC
− 1

tanB
.

If B = C, then θ = π/2 and tan(π/2) = 0.

Thales’ theorem

We consider a triangle BAC with A(−1, 0), C(1, 0),∠BOC = θ;O(0, 0)
on the unit circle. Then, the gradients of the lines AB and CB are given by

sin θ

cos θ + 1

and
sin θ

cos θ − 1
,

respectively. We see that for θ = π and θ = 0, they are zero, respectively.
For many similar formulas, see [34].

5.4 Examples of Ctesibios and E. Torricelli

As a typical case, we recall

Ctesibios (BC. 286-222): We consider a flow tube with some fluid. Then,
when we consider some cut with a plane with area S and with velocity v of
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the fluid on the plane, by continuity, we see that for any cut plane, Sv = C;
C : constant. That is,

v =
C

S
.

When S tends to zero, the velocity v tends to infinity. However, for S = 0,
the flow stopped and so, v = 0. Therefore, this example shows the division by
zero C/0 = 0 clearly. Of course, in the situation, we have 0/0 = 0, trivially.

We can find many and many similar examples, for example, in Archimedes’
principle and Pascal’s principle.

We will state one more example:

E. Torricelli (1608 -1646): We consider some water tank and the initial
high h = h0 for t = 0 and we assume that from the bottom of the tank with
a hole of area A, water is fall down. Then, by the law with a constant k

dh

dt
= − k

A

√
h,

we have the equation

h(t) =

(√
h0 −

k

2A

)2

.

Similarly, of course, for A = 0, we have

h(t) = h0.

5.5 Bhāskara’s example – sun and shadow

We will consider the circle such that its center is the origin and its ra-
dius R. We consider the point S (sun) on the circle such that ∠SOI = θ;
O(0, 0), I(R, 0). For fixed d > 0, we consider the common point (−L,−d) of
two line OS and y = −d. Then we obtain the identity

L =
R cos θ

R sin θ
d,

([7], page 77.). That is the length of the shadow of the segment of (0, 0) −
(0,−d) onto the line y = −d of the sun S.
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When we consider θ → +0 we see that, of course

L→∞.

Therefore, Bhāskara considered that

1

0
=∞. (5.2)

Even nowadays, our mathematics and many people consider so.
However, for θ = 0, we have S=I and we can not consider any shadow on

the line y = −d, so we should consider that L = 0; that is

1

0
= 0. (5.3)

Furthermore, for R = 0; that is, for S=O, we see its shadow is the point
(0,−d) and so L = 0 and

L =
0 cos θ

0 sin θ
d = 0;

that is
0

0
= 0.

This example shows that the division by zero calculus is not
almighty.

Note that both identities (5.2) and (5.3) are right in their senses. De-
pending on the interpretations of 1/0, we obtain INFINITY and ZERO,
respectively.

6 Division by zero calculus

We will see several typical results of the division by zero calculus.

6.1 Double natures of the zero point z = 0

Any line on the complex plane arrives at the point at infinity and the point
at infinity is represented by zero. That is, a line, indeed, contains the origin;
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the true line should be considered as the sum of a usual line and the origin.
We can say that it is a compactification of the line and the compacted point
is the point at infinity, however, it is represented by z = 0. Later, we will
see this property by analytic geometry and the division by zero calculus in
many situations.

However, for the general line equation

ax+ by + c = 0,

by using the polar coordinates x = r cos θ, y = r sin θ, we have

r =
−c

a cos θ + b sin θ
.

When a cos θ + b sin θ = 0, by the division by zero, we have r = 0; that is,
we can consider that the line contains the origin. We can consider so, in the
natural sense. We can define so as a line with the compactification and the
representation of the point at infinity - the ideal point.

For the envelop of the lines represented by, for constants m and a fixed
constant p > 0,

y = mx+
p

m
, (6.1)

we have the function, by using an elementary ordinary differential equation,

y2 = 4px. (6.2)

The origin of this parabolic function is excluded from the envelop of the
linear functions, because the linear equations do not contain the y axis as
the tangential line of the parabolic function. Now recall that, by the division
by zero, as the linear equation for m = 0, we have the function y = 0, the x
axis.

– This function may be considered as a function with zero gradient and
passing the point at infinity; however, the point at infinity is represented by
0, the origin; that is, the line may be considered as the x axis. Furthermore,
then we can consider the x axis as a tangential line of the parabolic function,
because they are gradient zero at the point at infinity. –

Furthermore, we can say later that the x axis y = 0 and the parabolic
function have the zero gradient at the origin; that is, in the reasonable sense
the x axis is a tangential line of the parabolic function.
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Indeed, we will see the surprising property that the gradient of the parabolic
function at the origin is zero.

Anyhow, by the division by zero, the envelop of the linear functions may
be considered as the whole parabolic function containing the origin.

When we consider the limiting of the linear equations as m→ 0, we will
think that the limit function is a parallel line to the x axis through the point
at infinity. Since the point at infinity is represented by zero, it will become
the x axis.

Meanwhile, when we consider the limiting function as m → ∞, we have
the y axis x = 0 and this function is a native tangential line of the parabolic
function. From these two tangential lines, we see that the origin has double
natures; one is the continuous tangential line x = 0 and the second is the
discontinuous tangential line y = 0.

In addition, note that the tangential point of (6.2) for the line (6.1) is
given by (

p

m
,
2p

m

)
and it is (0, 0) for m = 0.

We can see that the point at infinity is reflected to the origin; and so,
the origin has the double natures; one is the native origin and another is the
reflected one of the point at infinity.

6.2 Difficulty in Maple for specialization problems

For the Fourier coefficients an

an =

∫
t cosnπtdt =

cosnπt

n2π2
+

t

nπ
cosnπt,

we obtain, by the division by zero calculus,

a0 =
t2

2
.

Similarly, for the Fourier coefficients an

an =

∫
t2 cosnπtdt =

2t

π2n2
cosnπt− 2

n3π3
sinnπt+

t2

nπ
sinnπt,

20



we obtain

a0 =
t3

3
.

For the Fourier coefficients ak of a function

akπk
3

4

= sin(πk) cos(πk) + 2k2π2 sin(πk) cos(πk) + 2π(cos(πk))2 − πk,
for k = 0, we obtain, by the division by zero calculus, immediately

a0 =
8

3
π2.

We have many such examples.

6.3 Ratio

On the real x line, we fix two different points P1(x1) and P2(x2) and we will
consider the point, with a real number r

P (x; r) =
x1 + rx2
1 + r

.

If r = 1, then the point P (x; 1) is the mid point of two points P1 and P2 and
for r > 0, the point P is on the interval (x1, x2). Meanwhile, for −1 < r < 0,
the point P is on (−∞, x1) and for r < −1, the point P is on (x2,+∞).
Of course, for r = 0, P = P1. We see that when r tends to +∞ and −∞,
P tends to the point P2. We see the pleasant fact that by the division by
zero calculus, P (x,−1) = P2. For this fact we see that for all real numbers
r correspond to all real line points.

In particular, we see that in many text books at the undergraduate course
the formula is stated as a parameter representation of the line through two
pints P1 and P2. However, if we do not consider the case r = −1 by the
division by zero calculus, the classical statement is not right, because the
point P2 can not be considered.

For fixed two vectors OA = a and OB = b (a ̸= b), we consider two
vectors OA′ = a′ = λa and OB′ = b′ = µb with parameters λ and µ. Then,
the common point x of the two lines AB and A′B′ is represented by

x =
λ(1− µ)a+ µ(λ− 1)b

λ− µ
.
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For λ = µ, we should have x = 0, by the division by zero. However, by the
division by zero calculus, we have the curious result

x = (1− µ)a+ µb.

On the real line, the points P (p), Q(1), R(r), S(−1) form a harmonic
range of points if and only if

p =
1

r
.

If r = 0, then we have p = 0 that is now the representation of the point at
infinity (H. Okumura: 2017.12.27.)

6.4 Equalites and inequalities

In the identity

1

x
− nC1

x+ 1
+

nC2

x+ 2
+ · · ·+ (−1)n nCn

x+ n

=
n!

x(x+ 1)(x+ 2) · · · (x+ n)
,

from the singular points, we obtain many identities, for example, from x = 0,
we obtain the identity

−nC1 +
nC2

2
+ · · ·+ (−1)n nCn

n

= −
(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
.

We can derive many identities in this way.

For the rational equation

2(x− 1)

(x− 1)(x+ 1)
= 1,

we obtain the natural solution x = 1 by the division by zero calculus. How-
ever, we did not consider so; that is, there is no solution for the equation.
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For the equation

x− 4y + 2z

x
=

2x+ 7y − 4z

y
=

4x+ 10y − 6z

z
= k,

from k = 1, we have the solution with parameter λ

x = y = λ, z = 2λ.

We obtain also the natural solution

x = y = z = 0.

However, then k = 0.

For the problem

f ′(x) =
1

(x− 1)(x− 2)
< 0,

we have the solution
1 < x < 2

in the usual sense. However, note that by the division by zero calculus

f(1) = −1

and
f(2) = −1.

Therefore, we have the solution

1 ≤ x ≤ 2.

Meanwhile, we know

Growth Lemma ([28], 267 page) For the polynomial

P (z) = a0 + a1z + ...+ anz
n(a0, an ̸= 0, n > 1)

we have the inequality with a sufficient r, for |z| ≥ r

|an|
2
|z|n ≤ |P (z)| ≤ 3|an|

2
|z|n.

At the point at infinity, since P (z) takes the value a0, the inequality is
not valid more.

Therefore, for inequalities, for the values of singular points by means of
the division by zero calculus, we have to check the values, case by case.
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6.5 Discontinuity in geometrical meanings

The division by zero calculus shows an interesting discontinuity in the sense
of geometrical properties. We will show typical cases.

• The area S(x) surrounded by two x, y axes and the line passing a fixed
point (a, b), a, b > 0 and a point (x, 0) is given by

S(x) =
bx2

2(x− a)
.

For x = a, we obtain, by the division by zero calculus, the very inter-
esting value

S(a) = ab.

• For example, for fixed point (a, b); a, b > 0 and fixed a line y = (tan θ)x, 0 <
θ < π, we will consider the line L(x) passing two points (a, b) and
(x, 0). Then, the area S(x) of the triangle surrounded by three lines
y = (tan θ)x, L(x) and the x axis is given by

S(x) =
b

2

x2

x− (a− b cot θ)
.

For the case x = a− b cot θ, by the division by zero calculus, we have

S(a− b cot θ) = b(a− b cot θ).

Note that this is the area of the parallelogram through the origin and
the point (a, b) formed by the lines y = (tan θ)x and the x axis.

• We consider the circle

h(x2 + y2) + (1− h2)y − h = 0

through the points (−1, 0), (1, 0) and (0, h). If h = 0, then we have

y = 0.

However, from the equation

x2 + y2 +

(
1

h
− h
)
y − 1 = 0,

by the division by zero, we have an interesting result

x2 + y2 = 1.
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• We consider the regular triangle with the vertices

(−a/2,
√
3a/2), (a/2,

√
3a/2).

Then, the area S(h) of the triangle surrounded by the three lines that
the line through (0, h+

√
3a/2) and

(−a/2,
√
3a/2),

the line through (0, h +
√
3a/2) and (a/2,

√
3a/2) and the x- axis is

given by

S(h) =

(
h+ (

√
3/2)a

)2
2h

.

Then, by the division by zero calculus, we have, for h = 0,

S(0) =

√
3

2
a2.

• Similarly, we will consider the cone formed by the rotation of the line

kx

a(k + h)
+

y

k + h
= 1

and the x, y plane around the z- axis (a, h > 0, and a, h are fixed).
Then, the volume V (x) is given by

V (k) =
π

3

a2(k + h)3

k2
.

Then, by the division by calculus, we have the reasonable value

V (0) = πa2h.

6.6 Sato hyperfunctions

As a typical example in A. Kaneko ([9], page 11) in the theory of hyperfunc-
tion theory we see that for non-integers λ, we have

xλ+ =

[
−(−z)λ

2i sin πλ

]
=

1

2i sinπλ
{(−x+ i0)λ − (−x− i0)λ}
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where the left hand side is a Sato hyperfunction and the middle term is the
representative analytic function whose meaning is given by the last term. For
an integer n, Kaneko derived that

xn+ =

[
− zn

2πi
log(−z)

]
,

where log is a principal value on {−π < arg z < +π}. Kaneko stated there
that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, around an integer n,

−(−z)λ

2i sin πλ

=
−zn

2πi

1

λ− n
− zn

2πi
log(−z)

−
(
log2(−z)zn

2πi · 2!
+

πzn

2i · 3!

)
(λ− n) + ...

([9], page 220).
However, we can derive this result from the Laurent expansion, immedi-

ately, by the division by zero calculus.
Meanwhile, M. Morimoto derived this result by using the Gamma function

with the elementary means in [16], pages 60-62.

7 Derivatives of functions

On derivatives, we obtain new concepts, from the division by zero calculus.
At first, we will consider the fundamental properties. From the viewpoint of
the division by zero, when there exists the limit, at x

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

=∞ (7.1)

or
f ′(x) = −∞, (7.2)

both cases, we can write them as follows:

f ′(x) = 0. (7.3)
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This property was derived from the fact that the gradient of the y axis is

zero; that is,

tan
π

2
= 0. (7.4)

We will look this fundamental result by elementary functions. For the
function

y =
√
1− x2,

y′ =
−x√
1− x2

,

and so,
[y′]x=1 = 0, [y′]x=−1 = 0.

Of course, depending on the context, we should refer to the derivatives
of a function at a point from the right hand direction and the left hand
direction.

Here, note that, for x = cos θ, y = sin θ,

dy

dx
=
dy

dθ

(
dx

dθ

)−1

= − cot θ.

Note also that from the expansion

cot z =
1

z
+

+∞∑
ν=−∞,ν ̸=0

(
1

z − νπ
+

1

νπ

)
(7.5)

or the Laurent expansion

cot z =
∞∑

n=−∞

(−1)n22nB2n

(2n)!
z2n−1,

we have
cot 0 = 0.

The differential equation

y′ = −x
y

with a general solution
x2 + y2 = a2
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is satisfied for all points of the solutions by the division by zero. However,
the differential equations

x+ yy′ = 0, y′ · y
x
= −1

are not satisfied for the points (−a, 0) and (a, 0).
In many and many textbooks, we find the differential equations, however,

they are not good in this viewpoint.
For the function y = log x,

y′ =
1

x
, (7.6)

and so,
[y′]x=0 = 0. (7.7)

For the elementary ordinary differential equation

y′ =
dy

dx
=

1

x
, x > 0, (7.8)

how will be the case at the point x = 0? From its general solution, with a
general constant C

y = log x+ C, (7.9)

we see that

y′(0) =

[
1

x

]
x=0

= 0, (7.10)

that will mean that the division by zero 1/0 = 0 is very natural.
In addition, note that the function y = log x has infinite order derivatives

and all values are zero at the origin, in the sense of the division by zero
calculus.

However, for the derivative of the function y = log x, we have to fix the
sense at the origin, clearly, because the function is not differentiable in the
usual sense, but it has a singularity at the origin. For x > 0, there is no
problem for (7.8) and (7.9). At x = 0, we see that we can not consider the
limit in the usual sense. However, for x > 0 we have (7.9) and

lim
x→+0

(log x)′ = +∞. (7.11)
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In the usual sense, the limit is +∞, but in the present case, in the sense of
the division by zero, we have the identity[

(log x)′
]
x=0

= 0

and we will be able to understand its sense graphically.
By the new interpretation for the derivative, we can arrange the formulas

for derivatives, by the division by zero. The formula

dx

dy
=

(
dy

dx

)−1

(7.12)

is very fundamental. Here, we considered it for a local one to one correspon-
dence of the function y = f(x) and for nonvanishing of the denominator

dy

dx
̸= 0. (7.13)

However, if a local one to one correspondence of the function y = f(x) is
ensured like the function y = x3 around the origin, we do not need the
assumption (7.13). Then, for the point dy/dx = 0, we have, by the division
by zero,

dx

dy
= 0.

This will mean that the function x = g(y) has the zero derivative and the
tangential line at the point is a parallel line to the y- axis. In this sense the
formula (7.12) is valid, even the case dy/dx = 0.

The derivative of the function

f(x) =
√
x(
√
x+ 1)

f ′(x) =
1

2
√
x
(
√
x+ 1) +

√
x · 1

2
√
x

=
1

2
√
x
+

√
x√
x

is valid at even the origin by using the function
√
x√
x
(V. V. Puha: 2018, June).

He derived such formulas by using the function x/x.
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8 Differerential equations

From the viewpoint of the division by zero calculus, we will see many incom-
pleteness mathematics, in particular, in the theory of differential equations at
an undergraduate level; indeed, we have considered our mathematics around
an isolated singular point for analytic functions, however, we did not con-
sider mathematics at the singular point itself. At the isolated singular point,
we considered our mathematics with the limiting concept, however, the lim-
iting value to the singular point and the value at the singular point of the
function are, in general, different. By the division by zero calculus, we can
consider the values and differential coefficients at the singular point. From
this viewpoint, we will be able to consider differential equations even at sin-
gular points. We find many incomplete statements and problems in many
undergraduate textbooks. In this section, we will point out the problems in
concrete ways by examples.

This section is an arrangement of the paper [28] with new materials.

8.1 Missing a solution

For the differential equation

2xydx− (x2 − y2)dy = 0,

we have a general solution with a constant C

x2 + y2 = 2Cy.

However, we are missing the solution y = 0. By this expression

x2 + y2

C
= 2y,

for C = 0, by the division by zero, we have the missing solution y = 0.
For the differential equation

x(y′)2 − 2yy′ − x = 0,

we have the general solution

C2x2 − 2Cy − 1 = 0.
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However, x = 0 is also a solution, because

xdy2 − 2ydydx− xdx2 = 0.

From

x2 − 2y

C
− 1

C2
= 0,

by the division by zero, we obtain the solution.
For the differential equation

2y = xy′ − x

y′
,

we have the general solution

2y = Cx2 − 1

C
.

For C = 0, we have the solution y = 0, by the division by zero.

8.2 Differential equations with singularities

For the differential equation

y′ = −y
x
,

we have the general solution

y =
C

x
.

From the expression
xdy + ydx = 0,

we have also the general solution

x =
C

y
.

Therefore, there is no problem for the origin. Of course, x = 0 and y = 0 are
the solutions.

For the differential equation

y′ =
2x− y
x− y

, (8.1)
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we have the beautiful general solution with constant C

2x2 − 2xy + y2 = C. (8.2)

By the division by zero calculus we see that on the whole points on the
solutions (8.2) the differential equation (8.1) is satisfied. If we do not consider
the division by zero, for y = x(̸= 0), we will have a serious problem. However,
for x = y ̸= 0, we should consider that y′ = 0, not by the division by zero
calculus, but by 1/0 = 0.

8.3 Continuation of solution

We will consider the differential equation

dx

dt
= x2 cos t. (8.3)

Then, as the general solution, we obtain, for a constant C

x =
1

C − sin t
.

For x0 ̸= 0, for any given initial value (t0, x0) we obtain the solution satisfying
the initial condition

x =
1

sin t0 +
1
x0
− sin t

. (8.4)

If ∣∣∣∣sin t0 + 1

x0

∣∣∣∣ < 1,

then the solution has many poles and L. S. Pontrjagin stated in his book
that the solution is disconnected at the poles and so, the solution may be
considered as infinitely many solutions.

However, from the viewpoint of the division by zero, the solution takes
the value zero at the singular points and the derivatives at the singular points
are all zero; that is, the solution (8.4) may be understood as one solution.

Furthermore, by the division by zero, the solution (8.4) has its sense for
even the case x0 = 0 and it is the solution of (8.3) satisfying the initial
condition (t0, 0).

We will consider the differential equation

y′ = y2.
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For a > 0, the solution satisfying y(0) = a is given by

y =
1

1
a
− x

.

Note that the solution satisfies on the whole space (−∞,+∞) even at the
singular point x = 1

a
, in the sense of the division by zero, as

y′
(
1

a

)
= y

(
1

a

)
= 0.

8.4 Singular solutions

We will consider the differential equation

(1− y2)dx = y(1− x)dy.

By the standard method, we obtain the general solution, for a constant C
(C ̸= 0)

(x− 1)2

C
+ y2 = 1.

By the division by zero, for C = 0, we obtain the singular solution

y = ±1.

For the simple Clairaut differential equation

y = px+
1

p
, p =

dy

dx
,

we have the general solution

y = Cx+
1

C
, (8.5)

with a general constant C and the singular solution

y2 = 4x.

Note that we have also the solution y = 0 from the general solution, by the
division by zero 1/0 = 0 from C = 0 in (8.5).
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8.5 Solutions with singularities

1). We will consider the differential equation

y′ =
y2

2x2
.

We will consider the solution with an isolated singularity at a point a taking
the value −2a in the sense of division by zero.

First, by the standard method, we have the general solution, with a con-
stant C

y =
2x

1 + 2Cx
.

From the singularity, we have, C = −1/2a and we obtain the desired solution

y =
2ax

a− x
.

Indeed, from the expansion

2ax

a− x
= −2a− 2a2

x− a
,

we see that it takes −2a at the point a in the sense of the division by zero
calculus. This function was appeared in ([14]).

2). We will consider the singular differential equation

d2y

dx2
+

3

x

dy

dx
− 3

x2
y = 0. (8.6)

By the series expansion, we obtain the general solution, for any constants
a, b

y =
a

x3
+ bx. (8.7)

We see that by the division by zero

y(0) = 0, y′(0) = b, y′′(0) = 0.

The solution (8.7) has its sense and the equation is satisfied even at the origin.
The value y′(0) = b may be given arbitrary, however, in order to determine
the value a, we have to give some value for the regular point x ̸= 0. Of
course, we can give the information at the singular point with the Laurent
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coefficient a, that may be interpreted with the value at the singular point
zero. Indeed, the value a may be considered at the value

[y(x)x3]x=0 = a.

3). Next, we will consider the Euler differential equation

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = 0.

We obtain the general solution, for any constants a, b

y =
a

x
+

b

x2
.

This solution is satisfied even at the origin, by the division by zero and
furthermore, all derivatives of the solution of any order are zero at the origin.

4). We will note that as the general solution with constants C−2, C−1, C0

y =
C−2

x2
+
C−1

x
+ C0,

we obtain the nonlinear ordinary differential equation

x2y′′′ + 6xy′′ + 6y′ = 0.

5). For the differential equation

y′ = y2(2x− 3),

we have the special solution

y =
1

(x− 1)(2− x)

on the interval (1, 2) with the singularities at x = 1 and x = 2. Since the
general solution is given by, for a constant C,

y =
1

−x2 + 3x+ C
,

we can consider some conditions that determine the special solution.
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8.6 Solutions with an analytic parameter

For example, in the ordinary differential equation

y′′ + 4y′ + 3y = 5e−3x,

in order to look for a special solution, by setting y = Aekx we have, from

y′′ + 4y′ + 3y = 5ekx,

y =
5ekx

k2 + 4k + 3
.

For k = −3, by the division by zero calculus, we obtain

y = e−3x

(
−5

2
x− 5

4

)
,

and so, we can obtain the special solution

y = −5

2
xe−3x.

For example, for the differential equation

y′′ + a2y = b cosλx,

we have a special solution

y =
b

a2 − λ2
cosλx.

Then, for λ = a (reasonance case), by the division by zero calculus, we obtain
the special solution

y =
bx sin(ax)

2a
+
b cos(ax)

4a2
.

We can find many examples.
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8.7 Special reductions by division by zero of solutions

For the differential equation

y′′ − (a+ b)y′ + aby = ecx, c ̸= a, b; a ̸= b,

we have the special solution

y =
ecx

(c− a)(c− b)
.

If c = a( ̸= b), then, by the division by zero calculus, we have

y =
xeax

a− b
.

If c = a = b, then, by the division by zero calculus, we have

y =
x2eax

2
.

For the differential equation

m
d2x

dt2
+ γ

dx

dt
+ kx = 0,

we obtain the general solution, for γ2 > 4mk

x(t) = e−αt
(
C1e

βt + C2e
−βt
)

with
α =

γ

2m
and

β =
1

2m

√
γ2 − 4mk.

For m = 0, by the division by zero calculus we obtain the reasonable solution
α = 0 and β = −k/γ.

We will consider the differential equation, for a constant K

y′ = Ky.

Then, we have the general solution

y(x) = y(0)eKt.
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For the differential equation

y′ = Ky
(
1− y

R

)
,

we have the solution

y =
y(0)eKt

1 + y(0)(eKt−1)
R

.

If R = 0, then, by the division by zero, we obtain the previous result, imme-
diately.

For the differential equation

x′′(t) = −g + k(x′(t))2

satisfying the initial conditions

x(0) = 0, x′(0) = V,

we have

x′(t) = −
√
g

k
tan(

√
kgt− α),

with

α = tan−1

√
k

g
V

and the solution

x(t) =
1

k
log

cos
(√

kgt− α
)

cosα
.

Then we obtain for k = 0, by the division by zero calculus

x′(t) = −gt+ V

and

x(t) = −1

2
gt2 + V t.

We can find many and many such examples. However, note the following
fact.

For the differential equation

y′′′ + a2y′ = 0,
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we obtain the general solution, for a ̸= 0

y = A sin ax+B cos ax+ C.

For a = 0, from this general solution, how can we obtain the corresponding
solution

y = Ax2 +Bx+ C,

naturally?
For the differential equation

y′ = aeλxy2 + afeλxy + λf,

we obtain a special solution, for a ̸= 0

y = −λ
a
e−λx.

For a = 0, from this solution, how can we obtain the corresponding solution

y = λfx+ C,

naturally?

8.8 Open problems

As important open problems, we would like to propose them clearly. We have
considered our mathematics around an isolated singular point for analytic
functions, however, we did not consider mathematics at the singular point
itself. At the isolated singular point, we consider our mathematics with the
limiting concept, however, the limiting values to the singular point and the
values at the singular point in the sense of division by zero calculus are,
in general, different. By the division by zero calculus, we can consider the
values and differential coefficients at the singular point. We thus have a
general open problem discussing our mathematics on a domain containing
the singular point.

We referred to the reduction problem by concrete examples; there we
found the delicate property. For this interesting property we expect some
general theory.
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9 Euclidean spaces and division by zero cal-

culus

In this section, we will see the division by zero properties on the Euclidean
spaces. Since the impact of the division by zero and division by zero calculus
is widely expanded in elementary mathematics, here, elementary topics will
be introduced as the first stage.

9.1 Broken phenomena of figures by area and volume

The strong discontinuity of the division by zero around the point at infinity
will appear as the destruction of various figures. These phenomena may be
looked in many situations as the universe one. However, the simplest cases
are disc and sphere (ball) with their radius 1/R. When R → +0, the areas
and volumes of discs and balls tend to +∞, respectively, however, when
R = 0, they are zero, because they become the half-plane and half-space,
respectively. These facts may be also looked by analytic geometry, as we
see later. However, the results are clear already from the definition of the
division by zero.

The behavior of the space around the point at infinity may be considered
by that of the origin by the linear transform W = 1/z (see [2]). We thus see
that

lim
z→∞

z =∞, (9.1)

however,
[z]z=∞ = 0, (9.2)

by the division by zero. Here, [z]z=∞ denotes the value of the function W =
z at the topological point at the infinity in one point compactification by
Aleksandrov. The difference of (9.1) and (9.2) is very important as we see
clearly by the functionW = 1/z and the behavior at the origin. The limiting
value to the origin and the value at the origin are different. For surprising
results, we will state the property in the real space as follows:

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞,

however,
[x]+∞ = 0, [x]−∞ = 0.
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Of course, two points +∞ and −∞ are the same point as the point at infinity.
However, ± will be convenient in order to show the approach directions. In
[15], we gave many examples for this property.

In particular, in z → ∞ in (9.1), ∞ represents the topological point on
the Riemann sphere, meanwhile ∞ in the left hand side in (9.1) represents
the limit by means of the ϵ - δ logic. That is, for any large number M , when
we take for some large number N , we have, for |z| > N , |z| > M.

9.2 Parallel lines

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2.

The common point is given by, if a1b2 − a2b1 ̸= 0; that is, the lines are not
parallel (

b1c2 − b2c1
a1b2 − a2b1

,
a2c1 − a1c2
a1b2 − a2b1

)
.

By the division by zero, we can understand that if a1b2 − a2b1 = 0, then the
common point is always given by

(0, 0),

even two lines are the same.
We write a line by the polar coordinate

r =
d

cos(θ − α)
,

where d = OH > 0 is the distance of the origin O and the line such that OH
and the line is orthogonal and H is on the line, α is the angle of the line OH
and the positive x axis, and θ is the angle of OP (P = (r, θ) on the line) from
the positive x axis. Then, if θ−α = π/2; that is, OP and the line is parallel
and P is the point at infinity, then we see that r = 0 by the division by zero
calculus; the point at infinity is represented by zero and we can consider that
the line passes the origin, however, it is in a discontinuous way.

This will mean simply that any line arrives at the point at infinity and
the point is represented by zero and so, for the line we can add the point at
the origin. In this sense, we can add the origin to any line as the point of the
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compactification of the line. This surprising new property may be looked in
our mathematics globally.

The distance d from the origin to the line determined by the two planes

Πk : akx+ bky + ckz = 1, k = 1, 2,

is given by

d =

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2
.

If the two lines are coincident, then, of course, d = 0. However, if two planes
are parallel, by the division by zero, d = 0. This will mean that any plane
contains the origin as in a line.

9.3 Tangential lines and tan π
2 = 0

We looked the very fundamental and important formula tan π
2
= 0 in Sec-

tion 6. In this subsection, for its importance we will furthermore see its
geometrical meanings.

We consider the high tan θ
(
0 ≤ θ ≤ π

2

)
that is given by the common point

of two lines y = (tan θ)x and x = 1 on the (x, y) plane. Then,

tan θ −→∞; θ −→ π

2
.

However,

tan
π

2
= 0,

by the division by zero. The result will show that, when θ = π/2, two lines
y = (tan θ)x and x = 1 do not have a common point, because they are
parallel in the usual sense. However, in the sense of the division by zero,
parallel lines have the common point (0, 0). Therefore, we can see the result
tan π

2
= 0 following our new space idea.

We consider general lines represented by

ax+ by + c = 0, a′x+ b′y + c′ = 0.

The gradients are given by

k = −a
b
, k′ = −a

′

b′
,
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respectively. In particular, note that if b = 0, then k = 0, by the division by
zero.

If kk′ = −1, then the lines are orthogonal; that is,

tan
π

2
= 0 = ± k − k′

1 + kk′
,

which shows that the division by zero 1/0 = 0 and orthogonality meets in a
very good way.

Furthermore, even in the case of polar coordinates x = r cos θ, y = r sin θ,
we can see the division by zero

tan
π

2
=
y

0
= 0.

The division by zero may be looked even in the rotation of the coordinates.
We will consider a 2 dimensional curve

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0

and a rotation defined by

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ.

Then, we write, by inserting these (x, y)

AX2 + 2HXY +BY 2 + 2GX + 2FY + C = 0.

Then,

H = 0⇐⇒ tan 2θ =
2h

a− b
.

If a = b, then, by the division by zero,

tan
π

2
= 0, θ =

π

4
.

For h2 > ab, the equation

ax2 + 2hxy + by2 = 0
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represents 2 lines and the angle θ made by two lines is given by

tan θ = ±2
√
h2 − ab
a+ b

.

If h2 − ab = 0, then, of course, θ = 0. If a + b = 0, then, by the division by
zero, θ = π/2 from tan θ = 0.

For a hyperbolic function

x2

a2
− y2

b2
= 1; a, b > 0

the angle θ made by two asymptotic lines y = ±(b/a)x is given by

tan θ =
2(b/a)

1− (b/a)2
.

If a = b, then θ = π/2 from tan θ = 0.

We consider the unit circle with its center at the origin on the (x, y)
plane. We consider the tangential line for the unit circle at the point that is
the common point of the unit circle and the line y = (tan θ)x

(
0 ≤ θ ≤ π

2

)
.

Then, the distance Rθ between the common point and the common point of
the tangential line and x-axis is given by

Rθ = tan θ.

Then,
R0 = tan 0 = 0,

and
tan θ −→∞; θ −→ π

2
.

However,

Rπ/2 = tan
π

2
= 0.

This example shows also that by the stereographic projection mapping of the
unit sphere with its center at the origin (0, 0, 0) onto the plane, the north
pole corresponds to the origin (0, 0).

In this case, we consider the orthogonal circle CRθ
with the unit circle

through at the common point and the symmetric point with respect to the
x-axis with its center ((cos θ)−1, 0). Then, the circle CRθ

is as follows:
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CR0 is the point (1, 0) with curvature zero, and CRπ/2
(that is, when

Rθ = ∞, in the common sense) is the y-axis and its curvature is also zero.
Meanwhile, by the division by zero calculus, for θ = π/2 we have the same
result, because (cos(π/2))−1 = 0.

The points (cos θ, 0) and ((cos θ)−1, 0) are the symmetric points with re-
spect to the unit circle, and the origin corresponds to the origin.

In particular, the formal calculation√
1 +R2

π/2 = 1

is not good. The identity cos2 θ + sin2 θ = 1 is valid always, however 1 +
tan2 θ = (cos θ)−2 is not valid formally for θ = π/2.

This equation should be written as

cos2 θ

cos2 θ
+ tan2 θ = (cos θ)−2,

that is valid always.
Of course, as analytic functions, in the sense of the division by zero cal-

culus, the identity is valid for θ = π/2.
From the point at

x =
1

cos θ

when we look the unit circle, we can see that the length L(x) of the arc that
we can see is given by

L(x) = 2 cos−1 1

x
.

For θ = π/2 that is for x = 0 we see that L(x) = 0.
We fix B(0, 1) and let ∠ABO = θ with A(tan θ, 0). Let H be the point

on the line BA such that two lines OH and AB are orthogonal. Then we see
that

AH =
sin2 θ

cos θ
.

Note that for θ = π/2, AH = 0.
On the point (p, q)(0 ≤ p, q ≤ 1) on the unit circle, we consider the

tangential line Lp,q of the unit circle. Then, the common points of the line
Lp,q with x-axis and y-axis are (1/p, 0) and (0, 1/q), respectively. Then, the
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area Sp of the triangle formed by three points (0, 0), (1/p, 0) and (0, 1/q) is
given by

Sp =
1

2pq
.

Then,
p −→ 0; Sp −→ +∞,

however,
S0 = 0

(H. Michiwaki: 2015.12.5.). We denote the point on the unit circle on the
(x, y) plane with (cos θ, sin θ) for the angle θ with the positive real line. Then,
the tangential line of the unit circle at the point meets at the point (Rθ, 0)
for Rθ = [cos θ]−1 with the x-axis for the case θ ̸= π/2. Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,

Rπ/2 =
[
cos
(π
2

)]−1

= 0,

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2 (H. Michiwaki: 2015.12.5.).

The line through the points (0, 1) and (cos θ, sin θ) meets the x axis with
the point (Rθ, 0) for the case θ ̸= π/2 by

Rθ =
cos θ

1− sin θ
.

Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,
Rπ/2 = 0,

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2.

Note also that [
1− sin

(π
2

)]−1

= 0.
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9.4 Newton’s method

The Newton’s method is fundamental when we look for the solutions for some
general equation f(x) = 0 numerically and practically. We will refer to its
prototype case.

We will assume that a function y = f(x) belongs to C1 class. We consider
the sequence {xn} for n = 0, 1, 2, . . . , n, . . . , defined by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

When f(xn) = 0, we have
xn+1 = xn, (9.3)

in the reasonable way. Even the case f ′(xn) = 0, we have also the reasonable
result (9.3), by the division by zero.

9.5 Cauchy’s mean value theorem

For the Cauchy mean value theorem; that is, for f, g ∈ Differ(a, b), differen-
tiable, and ∈ C0[a, b], continuous and if g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0,
then there exists ξ ∈ (a, b) satisfying that

f(a)− f(b)
g(a)− g(b)

=
f ′(ξ)

g′(ξ)
,

we do not need the assumptions g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, by the
division by zero. Indeed, if g(a) = g(b), then, by the Rolle theorem, there
exists ξ ∈ (a, b) such that g′(ξ) = 0. Then, both terms are zero and the
equality is valid.

9.6 Length of tangential lines

We will consider the inversion A(1/x, 0) of a point X(x, 0), 0 < x < 1 with
respect to the unit circle with its center the origin. Then the length T (x) of
the tangential line AB (B(x,

√
1− x2)) is given by

T (x) =
1

x

√
1− x2.
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For x = 0, by the division by zero calculus, we have

T (0) = 0

that was considered as +∞.
We will consider a function y = f(x) of C1 class on the real line. We

consider the tangential line through (x, f(x))

Y = f ′(x)(X − x) + f(x).

Then, the length (or distance) d(x) between the point (x, f(x)) and
(
x− f(x)

f ′(x)
, 0
)

is given by, for f ′(x) ̸= 0

d(x) = |f(x)|

√
1 +

1

f ′(x)2
.

How will be the case f ′(x∗) = 0? Then, the division by zero shows that

d(x∗) = |f(x∗)|.

Meanwhile, the x axis point (Xt, 0) of the tangential line at (x, y) and y
axis point (0, Yn) of the normal line at (x, y) are given by

Xt = x− f(x)

f ′(x)

and
Yn = y +

x

f ′(x)
,

respectively. Then, if f ′(x) = 0, we obtain the reasonable results:

Xt = x, Yn = y.

9.7 Curvature and center of curvature

We will assume that a function y = f(x) is of class C2. Then, the curvature
radius ρ and the center O(x, y) of the curvature at point (x, f(x)) are given
by

ρ(x, y) =
(1 + (y′)2)3/2

y′′
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and

O(x, y) =

(
x− 1 + (y′)2

y′′
y′, y +

1 + (y′)2

y′′

)
,

respectively. Then, if y′′ = 0, we have the results

ρ(x, y) = 0

and
O(x, y) = (x, y),

by the division by zero. They are reasonable.
We will consider a curve r = r(s), s = s(t) of class C2. Then,

v =
dr

dt
, t =

dr(s)

ds
, v =

ds

dt
,
dt(s)

ds
=

1

ρ
n,

by the principal normal unit vector n. Then, we see that

a =
dv

dt
=
dv

dt
t+

v2

ρ
n.

If ρ(s0) = 0: (consider a line case), then

a(s0) =

[
dv

dt
t

]
s=s0

and [
v2

ρ

]
s=s0

=∞

will be funny. It will be the zero.

9.8 Our life figure

As an interesting figure which shows an interesting relation between 0 and
infinity, we will consider a sector ∆α on the complex z = x+ iy plane

∆α =
{
| arg z| < α; 0 < α <

π

2

}
.

We will consider a disc inscribed in the sector ∆α whose center (k, 0) with
its radius r. Then, we have

r = k sinα.
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Then, note that as k tends to zero, r tends to zero, meanwhile k tends to
+∞, r tends to +∞. However, by our division by zero calculus, we see that
immediately

[r]r=∞ = 0.

On the sector, we see that from the origin as the point 0, the inscribed
discs are increasing endlessly, however their final disc reduces to the origin
suddenly - it seems that the whole process looks like our life in the viewpoint
of our initial and final.

9.9 H. Okumura’s example

The suprising example by H. Okumura will show a new phenomenon at the
point at infinity.

On the sector ∆α, we shall change the angle and we consider a fixed circle
Ca, a > 0 with its radius a inscribed in the sectors. We see that when the
circle tends to +∞, the angles α tend to zero. How will be the case α = 0?
Then, we will not be able to see the position of the circle. Surprisingly
enough, then Ca is the circle with its center at the origin 0. This result is
derived from the division by zero calculus for the formula

k =
a

sinα
.

The two lines arg z = α and arg z = −α were tangential lines of the circle Ca

and now they are the positive real line. The gradient of the positive real line
is of course zero. Note here that the gradient of the positive y axis is zero
by the division by zero calculus that means tan π

2
= 0. Therefore, we can

understand that the positive real line is still a tangential line of the circle Ca.
This will show some great relation between zero and infinity. We can see

some mysterious property around the point at infinity.
These two subsections were taken from [15].

9.10 Interpretation by analytic geometry

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2, 3.

50



The area S of the triangle surrounded by these lines is given by

S = ±1

2
· △2

D1D2D3

,

where △ is ∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
and Dk is the co-factor of △ with respect to ck. Dk = 0 if and only if
the corresponding lines are parallel. △ = 0 if and only if the three lines
are parallel or they have a common point. We can see that the degeneracy
(broken) of the triangle may be stated by S = 0 beautifully, by the division
by zero.

Similarly we write lines by

Mk : ak1x+ ak2y + a3k = 0, k = 1, 2, 3.

The area S of the triangle surrounded by these lines is given by

S =
1

A11A22A33

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
where Akj is the co-factor of akj with respect to the matrix [akj]. We can
see that the degeneracy (broken) of the triangle may be stated by S = 0
beautifully, by the division by zero.

For a function

S(x, y) = a(x2 + y2) + 2gx+ 2fy + c, (9.4)

the radius R of the circle S(x, y) = 0 is given by

R =

√
g2 + f 2 − ac

a2
.

If a = 0, then the area πR2 of the disc is zero, by the division by zero. In
this case, the circle is a line (degenerated).

The center of the circle (9.4) is given by(
−g
a
,−f

a

)
.
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Therefore, the center of a general line

2gx+ 2fy + c = 0

may be considered as the origin (0, 0), by the division by zero.

We consider the functions

Sj(x, y) = aj(x
2 + y2) + 2gjx+ 2fjy + cj.

The distance d of the centers of the circles S1(x, y) = 0 and S2(x, y) = 0 is
given by

d2 =
g21 + f 2

1

a21
− 2

g1g2 + f1f2
a1a2

+
g22 + f 2

2

a22
.

If a1 = 0, then by the division by zero

d2 =
g22 + f 2

2

a22
.

Then, S1(x, y) = 0 is a line and its center is the origin (0, 0). Therefore, the
result is very reasonable.

The distance d between two lines given by

x− aj
L1

=
y − bj
Mj

=
z − cj
Nj

, j = 1, 2,

is given by
d =∣∣∣∣∣∣

a2 − a1 b2 − b1 c2 − c1
L1 M1 N1

L2 M2 N2

∣∣∣∣∣∣√
(MlN2 −M2N1)2 + (NlL2 −N2L1)2 + (LlM2 − L2M1)2

.

If two lines are parallel, then we have d = 0.
This subsection was taken from [12]. For more examples see it.
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10 Analytic functions and division by zero

calculus

The values of analytic functions at isolated singular points were given by
the coefficients C0 of the Laurent expansions (the first coefficients of the
regular part) as the division by zero calculus. Therefore, their property
may be considered as arbitrary ones by any sift of the image complex plane.
Therefore, we can consider the values as zero in any Laurent expansions by
shifts, as normalizations. However, if by another normalizations, the Laurent
expansions are determined, then the values will have their senses. We will
firstly examine such properties for the Riemann mapping function.

Let D be a simply-connected domain containing the point at infinity
having at least two boundary points. Then, by the celebrated theorem of
Riemann, there exists a uniquely determined conformal mapping with a series
expansion

W = f(z) = C1z + C0 +
C−1

z
+
C−2

z2
+ . . . , C1 > 0, (10.1)

around the point at infinity which maps the domain D onto the exterior
|W | > 1 of the unit disc on the complex W plane. We can normalize (10.1)
as follows:

f(z)

C1

= z +
C0

C1

+
C−1

C1z
+
C−2

C1z2
+ . . . .

Then, this function f(z)
C1

maps D onto the exterior of the circle of radius 1/C1

and so, it is called the mapping radius of D. See [3, 39]. Meanwhile, from
the normalization

f(z)− C0 = C1z +
C−1

z
+
C−2

z2
+ . . . ,

by the natural shift C0 of the image plane, the unit circle is mapped to the
unit circle with center C0. Therefore, C0 may be called as mapping center
of D. The function f(z) takes the value C0 at the point at infinity in the
sense of the division by zero calculus and now we have its natural sense by
the mapping center of D. We have considered the value of the function f(z)
as infinity at the point at infinity, however, practically it was the value C0.
This will mean that in a sense the value C0 is the farthest point from the
point at infinity or the image domain with the strong discontinuity.
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The properties of mapping radius were investigated deeply in conformal
mapping theory like estimations, extremal properties and meanings of the
values, however, it seems that there is no information on the property of
mapping center. See many books on conformal mapping theory or analytic
function theory. See [39] for example.

From the fundamental Bierberbach area theorem, we can obtain the fol-
lowing inequality:

For analytic functions on |z| > 1 with the normalized expansion around
the point at infinity

g(z) = z + b0 +
b1
z
+ · · ·

that are univalent and take no zero point,

|b0| ≤ 2.

In our sense
g(∞) = b0.

See [17], Chapter V, Section 8 for the details.

10.1 Values of typical Laurent expansions

The values at singular points of analytic functions are represented by the
Cauchy integral, and so for given functions, the calculations will be simple
numerically, however, their analytical (precise) values will be given by using
the known Taylor or Laurent expansions. In order to obtain some feelings
for the values at singular points of analytic functions, we will see typical
examples and fundamental properties.

For

f(z) =
1

cos z − 1
, f(0) = −1

6
.

For

f(z) =
log(1 + z)

z2
, f(0) =

−1
2
.

For

f(z) =
1

z(z + 1)
, f(0) = −1.

For our purpose in the division by zero calculus, when a is an isolated
singular point, we have to consider the Laurent expansion on {0 < r <
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|z − a| < R} such that r may be taken arbitrary small r, because we are
considering the function at a.

For

f(z) =
1

z2 + 1
=

1

(z + i)(z − i)
, f(i) =

1

4
.

For

f(z) =
1√

(z + 1)− 1
, f(0) =

1

2
.

For the Bernoulli constants Bn, we have the expansions

1

(exp z)− 1
=

1

z
− 1

2
+

∞∑
n=1

(−1)n−1Bn

(2n)!
z2n−1

=
1

z
− 1

2
+ 2z

∞∑
n=1

1

z2 + 4π2n2

and so, we obtain
1

(exp z)− 1
(z = 0) = −1

2
,

([28], page 444).

From the well-known expansion ([1], page 807) of the Riemann zeta func-
tion

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2(s− 1)2 + ...,

we see that the Euler constant γ is the value at s = 1; that is,

ζ(1) = γ.

Meanwhile, from the expansion

ζ(z) =
1

z
−

∞∑
k=2

Ck
z2k−1

2k − 1

([1], 635 page 18.5.5), we have

ζ(0) = 0.
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From the representation of the Gamma function Γ(z)

Γ(z) =

∫ ∞

1

e−ttz−1dt+
∞∑
n=0

(−1)n

n!(z + n)

([28], page 472), we have

Γ(−m) = Em+1(1) +
∞∑

n=0,n̸=m

(−1)n

n!(−m+ n)

and

[Γ(z) · (z + n)](−n) = (−1)n

n!
.

In particular, we obtain
Γ(0) = −γ,

by using the identity

E1(z) = −γ − log z −
∞∑
n=1

(−1)nzn

nn!
, | arg z| < π

([1], 229 page, (5.1.11)). Of course,

E1(z) =

∫ ∞

z

e−tt−1dt.

From the recurrence formula

ψ(z + 1) = ψ(z) +
1

z

of the Psi (Digamma) function

ψ(z) =
Γ′(z)

Γ(z)
,

([1], 258), we have, for z = 0, 1,

ψ(0) = ψ(1) = −γ.

Note that

ψ(1 + z) = −γ +
∞∑
n=2

(−1)nζ(n)zn−1, |z| < 1
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= −γ +
∞∑
n=

z

n(n+ z)
, z ̸= −1,−2, ...

([1], 259).
From the identity

1

ψ(z + 1)− ψ(z)
= z,

we have

1

ψ(z + 1)− ψ(z)
(z = 0) = 0.

From the identities
Γ(z)

Γ(z + 1)
=

1

z
,

and
Γ(z)Γ(1− z) = π

sinπz
,

note that their values are zero at z = 0
From the expansions

℘(z) =
1

z2
+

∞∑
k=2

Ckz
2k−2

and

℘′(z) =
−2
z3

+
∞∑
k=2

(2k − 2)Ckz
2k−3

([1], 623 page, 18.5.1. and 18.5.4), we have

℘(0) = ℘′(0) = 0.

We can consider many special functions and the values at singular points.
For example,

Y3/2(z) = J−3/2(z) = −
√

2

πz

(
sin z +

cos z

z

)
,

I1/2(z) =

√
2

πz
sinh z,
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K1/2(z) = K−1/2(z) =

√
π

2z
e−z,

and so on. They take the value zero at the origin, however, we can consider
some meanings of the value.

Of course, the product property is, in general, not valid:

f(0) · g(0) ̸= (f(z)g(z))(0);

indeed, for the functions f(z) = z + 1/z and g(z) = 1/z + 1/(z2)

f(0) = 0, g(0) = 0, (f(z)g(z))(0) = 1.

For an analytic function f(z) with a zero point a, for the inversion func-
tion

(f(z))−1 :=
1

f(z)
,

we can calculate the value (f(a))−1 at the singular point a.
For example, note that for the function

f(z) = z − 1

z
,

f(0) = 0, f(1) = 0 and f(−1) = 0. Then, we have

(f(z))−1 =
1

2(z + 1)
+

1

2(z − 1)
.

Hence,

((f(z))−1)(z = 0) = 0, ((f(z))−1)(z = 1) =
1

4
,

((f(z))−1(z = −1) = −1

4
.

Here, note that the point z = 0 is not a regular point of the function f(z).
We, meanwhile, obtain that(

1

log x

)
x=1

= 0.

Indeed, we consider the function y = exp(1/x), x ∈ R and its inverse
function y = 1

log x
. By the symmetric property of the functions with respect

to the function y = x, we have the desired result.
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Here, note that for the function 1
log x

, we can not use the Laurent expansion
around x = 1, and therefore, the result is not trivial.

In particular, note that the function W = exp(1/z) takes the Picard’s
exceptional value 1 at the origin z = 0, by the division by zero calculus.

Meanwhile, for the identity

a− b
log a− log b

,

for a = b, we should consider it in the following way. By substituting log a =
A and log b = B, from

expA− expB

A−B
,

by the division by zero calculus, we have the reasonable result for A = B,

expA = a.

However, substitution methods are very delicate. For example, for the
function

w =
1 + it

1− it
,

for t = −i, by the division by zero calculus, we have a good value w = −1.
However, from the representation z = eiα we have

1 + z

1− z
= i cot

α

2

and for α = 0 and z = 1, we have the contradiction −1 = 0. By considering
the way

1 + eiα

1− eiα
and when we consider it by the division by zero calculus in connection with
α for α = 0, we have the right value 0.

By the Laurent expansion and by the definition of the division by zero
calculus, we note that:

Theorem: For any analytic function f(z) on 0 < |z| <∞, we have

f(0) = f(∞).
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For a rational function

f(z) =
amz

m + · · ·+ a0
bnzn + · · ·+ b0

; a0, b0 ̸= 0; am, bn ̸= 0,m, n ≥ 1

f(0) = f(∞) =
a0
b0
.

Of course, here f(∞) is not given by any limiting z → ∞, but it is the
value at the point at ∞.

10.2 The derivatives of n!:

We shall state an example.

Note that the identity z! = Γ(z + 1) and the Gamma function is a mero-
morphic function with isolated singular points on the entire complex plane.
Therefore, we can consider the derivatives of the Gamma function even at
isolated singular points, in our sense.

10.3 Domain functions

We shall state an example.

The Szegö kernel

For the Szegö kernel K(z, u) and its adjoint L kernel L(z, u) on a regular
region D on the complex z plane, the function

f(z) =
K(z, u)

L(z, u)

is the Ahlfors function on the domain D and it maps the domain D onto
the unit disc |w| < 1 with one to the multiplicity of the connectivity of the
domain D. From the relation L(z, u) = −L(u, z), we see that L(u, u) = 0 in
the sense of the division by zero calculus. Therefore, from the identity

L(z, u) =
1

2π(z − u)
+

1

2π

∫
∂D

K(u, ζ)

ζ − z
|dζ|
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([17], 390 page), we have the identity∫
∂D

K(z, ζ)

ζ − z
|dζ| = 0.

By this method, we can find many new identities.

11 The Descartes circle theorem

We recall the famous and beautiful theorem ([8, 36]):

Theorem (Descartes). Let Ci (i = 1, 2, 3) be circles touching to each
other of radii ri. If a circle C4 touches the three circles, then its radius r4 is
given by

1

r4
=

1

r1
+

1

r2
+

1

r3
± 2

√
1

r1r2
+

1

r2r3
+

1

r3r1
. (11.1)

As well-known, circles and lines may be looked as the same ones in com-
plex analysis, in the sense of stereographic projection and with many reasons.
Therefore, we will consider whether the theorem is valid for line cases and
point cases for circles. Here, we will discuss this problem clearly from the
division by zero viewpoint. The Descartes circle theorem is valid except for
one case for lines and points for the three circles and for one exception case,
we can obtain very interesting results, by the division by zero calculus.

We would like to consider all cases for the Descartes theorem for lines
and point circles, step by step.

11.1 One line and two circles case

We consider the case in which the circle C3 is one of the external common
tangents of the circles C1 and C2. This is a typical case in this paper. We
assume that r1 ≥ r2. We now have r3 = 0 in (11.1). Hence

1

r4
=

1

r1
+

1

r2
+

1

0
± 2

√
1

r1r2
+

1

r2 · 0
+

1

0 · r1
=

1

r1
+

1

r2
± 2

√
1

r1r2
.

This implies
1
√
r4

=
1
√
r1

+
1
√
r2
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in the plus sign case. The circle C4 is the incircle of the curvilinear triangle
made by C1, C2 and C3. In the minus sign case we have

1
√
r4

=
1
√
r2
− 1
√
r1
.

In this case C2 is the incircle of the curvilinear triangle made by the other
three.

Of course, the result is known. The result was also well-known in Wasan
geometry [40] with the Descartes circle theorem itself.

11.2 Two lines and one circle case

In this case, the two lines have to be parallel, and so, this case is trivial,
because then other two circles are the same size circles, by the division by
zero 1/0 = 0.

11.3 One point circle and two circles case

This case is another typical case for the theorem. Intuitively, for r3 = 0, the
circle C3 is the common point of the circles C1 and C2. Then, there does not
exist any touching circle of the three circles Cj; j = 1, 2, 3.

For the point circle C3, we will consider it by limiting of circles attaching
to the circles C1 and C2 to the common point. Then, we will examine the
circles C4 and the Descartes theorem.

We will need the following results:
For real numbers z, and a, b > 0, the point (0, 2

√
ab/z) is denoted by Vz.

H. Okumura and M. Watanabe gave the theorem in [18]:

Theorem 7. The circle touching the circle α: (x−a)2+ y2 = a2 and the
circle β: (x+ b)2 + y2 = b2 at points different from the origin O and passing
through Vz±1 is represented by(

x− b− a
z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
a+ b

z2 − 1

)2

(11.2)

for a real number z ̸= ±1.
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The common external tangents of α and β can be expressed by the equa-
tions

(a− b)x∓ 2
√
aby + 2ab = 0. (11.3)

In Theorem 7, by setting z = 1/w, we will consider the case w = 0; that
is, the case z = ∞ in the classical sense; that is, the circle C3 is reduced to
the origin.

We look for the circles C4 attaching with three circles Cj; j = 1, 2, 3. We
set

C4 : (x− x4)2 + (y − y4)2 = r24. (11.4)

Then, from the touching property we obtain:

x4 =
r1r2(r2 − r1)w2

D
,

y4 =
2r1r2

(√
r1r2 + (r1 + r2)w

)
w

D

and

r4 =
r1r2(r1 + r2)w

2

D
,

where
D = r1r2 + 2

√
r1r2(r1 + r2)w + (r21 + r1r2 + r22)w

2.

By inserting these values to (11.4), we obtain

f0 + f1w + f2w
2 = 0,

where
f0 = r1r2(x

2 + y2),

f1 = 2
√
r1r2

(
(r1 + r2)(x

2 + y2)− 2r1r2y
)

and

f2 = (r21 + r1r2 + r22)(x
2 + y2) + 2r1r2(r2 − r1)x− 4(r1 + r2)y + 4r21r

2
2.

By using the division by zero calculus for w = 0, we obtain, for the first, for
w = 0, the second by setting w = 0 after dividing by w and for the third
case, by setting w = 0 after dividing by w2,
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x2 + y2 = 0, (11.5)

(r1 + r2)(x
2 + y2)− 2r1r2y = 0 (11.6)

and
(r21 + r1r2 + r22)(x

2 + y2) + 2r1r2(r2 − r1)x (11.7)

−4r1r2(r1 + r2)y + 4r21r
2
2 = 0.

Note that (11.6) is the circle with the radius

r1r2
r1 + r2

(11.8)

and (11.7) is the circle whose radius is

r1r2(r1 + r2)

r21 + r1r2 + r22
.

When the circle C3 is reduced to the origin, of course, the inscribed circle
C4 is reduced to the origin, then the Descartes theorem is not valid. However,
by the division by zero calculus, then the origin of C4 is changed suddenly
for the cases (11.5), (11.6) and (11.7), and for the circle (11.6), the Descartes
theorem is valid for r3 = 0, surprisingly.

Indeed, in (11.1) we set ξ =
√
r3, then (11.1) is as follows:

1

r4
=

1

r1
+

1

r2
+

1

ξ2
± 2

1

ξ

√
ξ2

r1r2
+

(
1

r1
+

1

r2

)
.

and so, by the division by zero calculus at ξ = 0, we have

1

r4
=

1

r1
+

1

r2

which is (11.8). Note, in particular, that the division by zero calculus may
be applied in many ways and so, for the results obtained should be examined
for some meanings. This circle (11.6) may be looked a circle touching the
origin and two circles C1 and C2, because by the division by zero calculus

tan
π

2
= 0,

that is a popular property.
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Meanwhile, the circle (11.7) is the attaching circle with the circles C1, C2

and the beautiful circle with its center ((r2 − r1), 0) with its radius r1 + r2.
Each of the areas surrounded by three circles C1, C2 and the circle of radius
r1 + r2 is called an arbelos, and the circle (11.6) is the famous Bankoff circle
of the arbelos. For r3 = −(r1 + r2), from the Descartes identity (10.4), we
have (10.4). That is, when we consider that the circle C3 is changed to
the circle with its center ((r2 − r1), 0) with its radius r1 + r2, the Descartes
identity holds. Here, the minus sign shows that the circles C1 and C2 touch
C3 internally from the inside of C3.

11.4 Two point circles and one circle case

This case is trivial, because, the exterior touching circle is coincident with
one circle.

11.5 Three points case and three lines case

In these cases we have rj = 0, j = 1, 2, 3 and the formula (11.1) shows that
r4 = 0. This statement is trivial in the general sense.

As the solution of the simplest equation

ax = b, (11.9)

we have x = 0 for a = 0, b ̸= 0 as the standard value, or the Moore-Penrose
generalized inverse. This will mean in a sense, the solution does not exist;
to solve the equation (11.9) is impossible. The zero will represent some
impossibility.

In the Descartes theorem, three lines and three points cases, we can un-
derstand that the attaching circle does not exist, or it is the point and so the
Descartes theorem is valid.

This section is based on the paper [20].

12 Horn torus models and division by zero

calculus – a new world

We recall the essence of the paper [6] for horn torus models.
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We will consider the three circles represented by

ξ2 +

(
ζ − 1

2

)2

=

(
1

2

)2

,

(
ξ − 1

4

)2

+

(
ζ − 1

2

)2

=

(
1

4

)2

, (12.1)

and (
ξ +

1

4

)2

+

(
ζ − 1

2

)2

=

(
1

4

)2

.

By rotation on the space (ξ, η, ζ) on the (x, y) plane as in ξ = x, η = y around
ζ axis, we will consider the sphere with 1/2 radius as the Riemann sphere
and the horn torus made in the sphere.

The stereographic projection mapping from (x, y) plane to the Riemann
sphere is given by

ξ =
x

x2 + y2 + 1
,

η =
y

x2 + y2 + 1
,

and

ζ =
x2 + y2

x2 + y2 + 1
.

Of course,
ξ2 + η2 = ζ(1− ζ),

and

x =
ξ

1− ζ
, y =

η

1− ζ
, (12.2)

([2]).

The mapping from (x, y) plane to the horn torus is given by

ξ =
2x
√
x2 + y2

(x2 + y2 + 1)2
,

η =
2y
√
x2 + y2

(x2 + y2 + 1)2
,
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and

ζ =
(x2 + y2 − 1)

√
x2 + y2

(x2 + y2 + 1)2
+

1

2
.

This Puha mapping has a simple and beautiful geometrical correspon-
dence. At first for the plane we consider the stereographic mapping to the
Riemann sphere and next, we consider the common point of the line con-
necting the point and the center (0,0,1/2) and the horn torus. This is the
desired point on the horn torus for the plane point.

The inversion is given by

x = ξ

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ + 1

2

)(−1/2)

(12.3)

and

y = η

(
ξ2 + η2 +

(
ζ − 1

2

)2

− ζ + 1

2

)(−1/2)

. (12.4)

For the properties of horn torus with physical applications, see [5].

12.1 Conformal mapping from the plane to the horn
torus with a modified mapping

W. W. Däumler discovered a surprising conformal mapping from the ex-
tended complex plane to the horn torus model (2018.8.18):

https://www.horntorus.com/manifolds/conformal.html
and
https://www.horntorus.com/manifolds/solution.html

We can represent the direct Däumler mapping from the z plane onto the
horn torus as follows (V. V. Puha: 2018.8.28.22:31):

With
ϕ = 2 cot−1(− log |z|), z = x+ yi, (12.5)

ξ =
x · (1/2)(sin(ϕ/2))2√

x2 + y2
,

67



η =
y · (1/2)(sin(ϕ/2))2√

x2 + y2
,

and

ζ = −1

4
sinϕ+

1

2
.

We have the inversion formula from the horn torus to the x, y plane:

x =
ξ√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 (12.6)

and

y =
η√

ξ2 + η2
exp±


√
ζ − (ξ2 + η2 + ζ2)√
ξ2 + η2 +

(
ζ − 1

2

)2
 . (12.7)

.

12.2 New world and absolute function theory

We will discuss on Däumler’s horn torus model from some fundamental view-
points.

First of all, note that in the Puha mapping and the Däumler mapping,
and even in the classical stereographic mapping, we find the division by zero
1/0 = 0/0 = 0. See [6] for the details.

12.2.1 What is the number system?

What are the numbers? What is the number system? For these fundamental
questions, we can say that the numbers are complex numbers C and the
number system is given by the Yamada field with the simple structure as a
field containing the division by zero.

Nowadays, we have still many opinions on these fundamental questions,
however, this subsection excludes all those opinions as in the above.
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12.2.2 What is the natural coordinates?

We represented the complex numbers C by the complex plane or by the
points on the Riemann sphere. On the complex plane, the point at infinity
is the ideal point and for the Riemann sphere representation, we have to
accept the strong discontinuity. From these reasons, the numbers and the
numbers system should be represented by the Däumler’s horn torus model
that is conformally equaivalent to the extended complex plane.

12.2.3 What is a function? What is the graph of a function?

A function may be considered as a mapping from a set of numbers into a set
of numbers.

The numbers are represented by Däumler’s horn torus model and so,
we can consider that a function, in particular, an analytic function can be
considered as a mapping from Däumler’s horn torus model into Däumler’s
horn torus model.

12.2.4 Absolute function theory

Following the above considerings, for analytic functions when we consider
them as the mappings from Däumler’s horn torus model into Däumler’s horn
torus model we would like to say that it is an absolute function theory.

For the classical theory of analytic functions, discontinuity of functions
at singular points will be the serious problems and the theory will be quite
different from the new mathematics, when we consider the functions on the
Däumler’s horn torus model. Even for analytic function theory on bounded
domains, when we consider their images on Däumler’s horn torus model, the
results will be very interesting.

12.2.5 New mathematics and future mathematicians

The structure of Däumler’s horn torus model is very involved and so, we
will need some computer systems like MATHEMATICA and Isabelle/HOL
system for our research activity. Indeed, for the analytical proof of the con-
formal mapping of Däumler, we had to use MATHEMATICA, already. Here,
we will be able see some future of mathematicans.
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[6] W. W. Däumler, H. Okumura, V. V. Puha and S. Saitoh, Horn Torus
Models for the Riemann Sphere and Division by Zero, viXra:1902.0223
submitted on 2019-02-12 18:39:18.

[7] T. Hayashi, A Study of Indian Algebra, Japanese Translations with
Notes of the B1̄jagannita and B1̄japallava, Kouseisia Kouseikaku (2016).

[8] C. Jeffrey, C. L. Lagarias, A. R. Mallows and A. R. Wilks, Beyond
the Descartes Circle Theorem, The American Mathematical Monthly
109(4) (2002), 338–361. doi:10.2307/2695498. JSTOR 2695498.

[9] A. Kaneko, Introduction to hyperfunctions I (in Japanese), University
of Tokyo Press, (1980).

70



[10] R. Kaplan, THE NOTHING THAT IS A Natural History of Zero, OX-
FORD UNIVERSITY PRESS (1999).

[11] M. Kuroda, H. Michiwaki, S. Saitoh and M. Yamane, New mean-
ings of the division by zero and interpretations on 100/0 = 0 and
on 0/0 = 0, Int. J. Appl. Math. 27 (2014), no 2, pp. 191-198, DOI:
10.12732/ijam.v27i2.9.

[12] T. Matsuura and S. Saitoh, Matrices and division by zero z/0 = 0,
Advances in Linear Algebra & Matrix Theory, 6(2016), 51-58 Published
Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2016.62007.

[13] T. Matsuura, H. Michiwaki and S. Saitoh, log 0 = log∞ = 0 and
applications, Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics, 230 (2018), 293-305.

[14] H. Michiwaki, S. Saitoh and M.Yamada, Reality of the division by zero
z/0 = 0, IJAPM International J. of Applied Physics and Math. 6(2015),
1–8. http://www.ijapm.org/show-63-504-1.html

[15] H. Michiwaki, H. Okumura and S. Saitoh, Division by Zero z/0 = 0 in
Euclidean Spaces, International Journal of Mathematics and Computa-
tion, 28(2017); Issue 1, 1-16.

[16] M. Morimoto, Introduction to Sato hyperfunctions (in Japanese), Ky-
ouritu Publication Co. (1976).

[17] Z. Nehari, Conformal Mapping, Graw-Hill Book Company, Inc. (1952).

[18] H. Okumura and M. Watanabe, The Twin Circles of Archimedes in a
Skewed Arbelos, Forum Geom., 4(2004), 229–251.

[19] H. Okumura, S. Saitoh and T. Matsuura, Relations of 0 and∞, Journal
of Technology and Social Science (JTSS), 1(2017), 70-77.

[20] H. Okumura and S. Saitoh, The Descartes circles theorem and division
by zero calculus, https://arxiv.org/abs/1711.04961 (2017.11.14).

[21] H. Okumura, Wasan geometry with the division by 0,
https://arxiv.org/abs/1711.06947 International Journal of Geome-
try, 7(2018), No. 1, 17-20.

71



[22] H. Okumura and S. Saitoh, Harmonic Mean and Division by Zero, Ded-
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