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Abstract

If a free photon’s wave function is taken to be a four-vector function of its space-time coordinates that
has vanishing four-divergence (the Lorentz condition), it isn’t uniquely determined by the free-photon
Schrödinger equation. This gauge indeterminacy can be eliminated by taking that wave function to be a
three-vector function of its space-time coordinates—at the expense of its Lorentz-covariant form. These
conflicts are resolved by taking a free photon’s wave function to be an antisymmetric-tensor function of
its space-time coordinates which has vanishing four-divergence and also satisfies the Lorentz-covariant
cyclic Gauss-Faraday equation that is satisfied by all antisymmetric-tensor real-valued electromagnetic
fields. It is shown that for every source-free antisymmetric-tensor real-valued electromagnetic field, there
exists a corresponding free-photon antisymmetric-tensor complex-valued wave function.

A free photon’s configuration-representation wave function is sometimes taken to be a four-vector function
of space-time Υµ(r, t) that satisfies the following free-photon Schrödinger equation and Lorentz condition,(

ih̄∂t − h̄c(−∇2)
1
2

)
Υµ = 0 and ∂µΥµ = 0, (1a)

where the entity h̄c(−∇2)
1
2 is the massless free photon’s Hamiltonian operator Ĥ = (|cp̂|2)

1
2 = c(p̂ · p̂)

1
2 ,

since p̂ = −ih̄∇ in configuration representation. The four-vector form of Υµ in Eq. (1a) is suitably Lorentz-
covariant , but Eq. (1a) doesn’t uniquely determine Υµ because, given any scalar function of space-time χ(r, t)
which satisfies the source-free wave equation,(

(1/c)2∂2t −∇2
)
χ = ∂ν∂

νχ = 0, (1b)

it is the case that if Υµ satisfies the two equations of Eq. (1a), then so does,

Υµ
χ

def
= Υµ +

(
−ih̄∂t − h̄c(−∇2)

1
2

)
∂µχ. (1c)

That Υµ
χ satisfies the Lorentz condition of Eq. (1a) follows from the two facts that Υµ satisfies that Lorentz

condition and that ∂µ∂
µχ = 0. That Υµ

χ satisfies the Schrödinger equation of Eq. (1a) follows from the fact
that Υµ satisfies that Schrödinger equation and the fact that,(

ih̄∂t − h̄c(−∇2)
1
2

)(
−ih̄∂t − h̄c(−∇2)

1
2

)
∂µχ = (h̄c)2

(
(1/c)2∂2t −∇2

)
∂µχ = (h̄c)2∂µ(∂ν∂

νχ) = 0, (1d)

where the final equality of Eq. (1d) follows from Eq. (1b). This gauge indeterminacy of Υµ can be eliminated
by setting Υ0 to zero, which modifies the two equations of Eq. (1a) to,(

ih̄∂t − h̄c(−∇2)
1
2

)
Υ = 0 and ∇ ·Υ = 0, (1e)

but the three-vector form of Υ isn’t Lorentz-covariant . These conflicts with gauge invariance or formal
Lorentz covariance are resolved by assigning the free photon the antisymmetric-tensor wave function,

Ψµν = ∂µΥν − ∂νΥµ, (2a)

which of course satisfies the free-photon Schrödinger equation,(
ih̄∂t − h̄c(−∇2)

1
2

)
Ψµν = 0, (2b)

because Υν and Υµ satisfy the free-photon Schrödinger equation as per Eq. (1a). Also, crucially ,

∂µ(∂νχ)− ∂ν(∂µχ) = 0 ⇒ Ψµν
χ

def
= ∂µ(Υν

χ)− ∂ν(Υµ
χ) = ∂µΥν − ∂νΥµ = Ψµν , (2c)

so within the antisymmetric-tensor Ψµν the gauge indeterminacy of Υµ cancels out .
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In addition to the property of Ψµν = ∂µΥν − ∂νΥµ of its being antisymmetric,

Ψνµ = −Ψµν , (2d)

it also satisfies the Lorentz-covariant cyclic Gauss-Faraday equation,

∂λΨµν + ∂µΨνλ + ∂νΨλµ =
(
∂λ∂µΥν + ∂µ∂νΥλ + ∂ν∂λΥµ

)
−
(
∂λ∂νΥµ + ∂µ∂λΥν + ∂ν∂µΥλ

)
= 0, (2e)

and its four-divergence vanishes because,

∂µΨµν = ∂µ∂
µΥν − ∂ν(∂µΥµ), (2f)

and Eq. (1a) imposes (∂µΥµ) = 0, and it also implies that ∂µ∂
µΥν = 0 via its Υν Schrödinger equation,

0 =
[
(1/(h̄c))2

(
−ih̄∂t − h̄c(−∇2)

1
2

)](
ih̄∂t − h̄c(−∇2)

1
2

)
Υν =

(
(1/c)2∂2t −∇2

)
Υν = ∂µ∂

µΥν . (2g)

Although in Eq. (2a) we synthesized the gauge-invariant antisymmetric-tensor Ψµν = ∂µΥν −∂νΥµ from
the gauge-indeterminate four-vector Υµ, Ψµν in fact is characterized by its Eq. (2b) free-photon Schrödinger
equation, its Eq. (2d) antisymmetry , its Eq. (2e) Lorentz-covariant cyclic Gauss-Faraday equation and its
Eq. (2f)–(2g) vanishing four-divergence. The Eq. (2d)–(2g) properties of Ψµν are exact analogs of the Lorentz-
covariant Heaviside-Maxwell equations for source-free antisymmetric-tensor real-valued electromagnetic fields
Fµν , i.e., the Eq. (2d)–(2g) properties of Ψµν are exact analogs of ,

F νµ = −Fµν , ∂λFµν + ∂µF νλ + ∂νFλµ = 0 and ∂µF
µν = 0. (3a)

Also, it turns out that for every such source-free real-valued electromagnetic field Fµν , there exists a corre-
sponding free-photon complex-valued wave function Ψµν that is given by,

Ψµν(r, t) = N− 1
2

(
−ih̄∂t − h̄c(−∇2)

1
2

)
Fµν(r, t), (3b)

where N− 1
2 is regarded here as an arbitrary positive constant, whose value we further on can legitimately

select to normalize Ψµν . In light of Eq. (3a), it is apparent that the Eq. (3b) Ψµν does satisfy the Eq. (2d)–
(2g) properties of Ψµν . We next use Eq. (3a) to establish the lemma that,

0 = ∂λ
(
∂λFµν + ∂µF νλ + ∂νFλµ

)
= ∂λ∂

λFµν − ∂µ∂λFλν + ∂ν∂λF
λµ = ∂λ∂

λFµν , (3c)

which enables us to show that the Eq. (3b) Ψµν does satisfy the Eq. (2b) Schrödinger equation for Ψµν ,(
ih̄∂t − h̄c(−∇2)

1
2

)
Ψµν =

(
ih̄∂t − h̄c(−∇2)

1
2

)
N− 1

2

(
−ih̄∂t − h̄c(−∇2)

1
2

)
Fµν =

N− 1
2 (h̄c)2

(
(1/c)2∂2t −∇2

)
Fµν = N− 1

2 (h̄c)2(∂λ∂
λFµν) = 0,

(3d)

where the final equality of Eq. (3d) follows from the Eq. (3c) lemma. Having established that the Eq. (3b)
Ψµν does indeed satisfy the Eq. (2b) Schrödinger equation, we can now legitimately select the particular value
of the positive constant N− 1

2 in Eq. (3b) which normalizes Ψµν ,

1 =
∑3
µ,ν=0

∫
|Ψµν(r, t)|2d3r =

∑3
µ,ν=0

∫ (
Ψµν(r, t)

)∗(
Ψµν(r, t)

)
d3r =

N−1
∑3
µ,ν=0

∫
[(+ih̄∂tF

µν)− (h̄c(−∇2)
1
2Fµν)][(−ih̄∂tFµν)− (h̄c(−∇2)

1
2Fµν)]d3r =

N−1
∑3
µ,ν=0

∫ [
(h̄∂tF

µν)2 + (h̄c(−∇2)
1
2Fµν)2

]
d3r.

(3e)

Before evaluating N from the Eq. (3e) result, we establish the equality,∑3
µ,ν=0

∫
(h̄∂tF

µν)2d3r =
∑3
µ,ν=0

∫
(h̄c(−∇2)

1
2Fµν)2d3r, (3f)

from conservation of the well-known energy E of the source-free electromagnetic field Fµν , namely,

E = (1/4)
∑3
µ,ν=0

∫
(Fµν)2d3r = (1/2)

∫ [
|E|2 + |B|2

]
d3r. (3g)
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To establish that E is conserved , we insert the Source-Free Maxwell Law ∇×B = (1/c)(∂tE) and the Faraday
Law ∇×E = −(1/c)(∂tB) into the time derivative of the second Eq. (3g) expression for E ,

∂tE = (1/2)
∑3
µ,ν=0

∫
(∂tF

µν)Fµνd3r =
∫

[(∂tE) ·E + (∂tB) ·B] d3r =

c
∫

[(∇×B) ·E− (∇×E) ·B] d3r = c
∫

[B · (∇×E)− (∇×E) ·B] d3r = 0,

(3h)

where we in addition used c
∫

[(∇×B) ·E ] d3r = c
∫

[B · (∇×E)] d3r, which follows from integration by parts.

Once more taking the derivative with respect to t, this time of h̄2 times the Eq. (3h) ∂tE , produces,

h̄2∂2t E = (1/2)
∑3
µ,ν=0

∫
(h̄∂tF

µν)2d3r + (1/2)
∑3
µ,ν=0

∫
(h̄c)2

(
(1/c)2∂2t F

µν
)
Fµνd3r = 0. (3i)

Eq. (3i), together with 0 = ∂λ∂
λFµν = (1/c)2∂2t F

µν −∇2Fµν , which is a consequence of Eq. (3c), yields,∑3
µ,ν=0

∫
(h̄∂tF

µν)2d3r =
∑3
µ,ν=0

∫
(h̄c)2

(
−∇2Fµν

)
Fµνd3r =

∑3
µ,ν=0

∫
(h̄c(−∇2)

1
2Fµν)2d3r, (3j)

where the last equality follows from the Hermitian nature of the free-photon Hamiltonian operator Ĥ =
h̄c(−∇2)

1
2 . Eq. (3j) establishes Eq. (3f), which together with Eq. (3e) implies that,

N = 2
∑3
µ,ν=0

∫
(h̄c(−∇2)

1
2Fµν)2d3r. (3k)

Insertion of the Eq. (3k) value of N into Eq. (3b) yields,

Ψµν =
(
−ih̄∂t − h̄c(−∇2)

1
2

)
Fµν

/(
2
∑3
µ,ν=0

∫ (
h̄c(−∇2)

1
2Fµν

)2
d3r
) 1

2 , (3l)

the free-photon complex-valued wave function which corresponds to the source-free real-valued electromagnetic
field Fµν . It is readily seen that Ψµν is independent of both the scale of Fµν and the value of h̄.

One might speculate that the gauge-invariant free-photon antisymmetric-tensor wave function Ψµν could
lead to the derivation of a different class of Feynman rules for quantum electrodynamics which is gauge
invariant at the fundamental propagator/vertex level—the existing Feynman rules are gauge-invariant only
for sufficiently comprehensive sets of Feynman diagrams.
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