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Abstract: 
As described previously, the concept of a “Net Charged Universe” (NCU) assumes that the expansion 
of the universe is driven by a slight excess of positive charge in the universe’s matter. This excess 
charge comes into being by means of quantum fluctuations at the universe’s horizon. Excess protons 
experience electrostatic acceleration and therefore gain high relativistic mass, which is the source of 
the creation of neutral matter at the universe’s horizon. 
Based on the NCU model, the present article aims to explain the observed fraction of Helium 
(approximately 7%) in the universe’s baryonic matter. For this purpose, calculations on collision rates 
of excess protons are performed and applied to determine the Helium fraction in the universe’s matter. 
The results of these calculations correspond very well to the observations and thus, they further 
support the NCU model.   



0. Introduction 
As described in [1,2,3], the NCU model assumes that the expansion of the universe is driven 
by a slight excess of positive charge in the universe’s matter (Xpn). This charge excess is 
carried by un-neutralized, “naked”, protons (pn) in the amount of Npn. The pn are not of 
constant number but are steadily “imported” by quantum fluctuations at the NCU horizon. 
Based on this concept, the quite implausible idea of “Dark Energy” (DE), which is favored by 
today’s cosmology, can be avoided, or we can even identify DE with the Coulomb force 
brought about by pn.  
 
In [2], I have further described and calculated how neutral matter (NM) can be created 
continuously by the decomposition of relativistic pn, which gain their high mass by Coulomb 
acceleration. 
The relativistic pn are here regarded to be almost completely concentrated at the NCU horizon 
[3] and, in turn, all decompositions of them occur there. This assumption will be checked in 
more detail by further calculations in this article.  
In terms of creation and amount of NM in the NCU, the previous calculations [2, 3] yielded a 
result that is consistent to considerations by Dirac [4], who discussed a proportionality of the 
number of all protons (𝑁𝑃

𝑎𝑙𝑙) to the universe’s horizon area. Eq.[1a] expresses that 
proportionality together with the magnitude of  𝑁௉

௔௟௟(“Dirac number”):  
  

𝑁𝑃
𝑎𝑙𝑙 ≅ ൬
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൰
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 (Dirac[4])        Eq.[1a] 

and for comparison:  
  

𝑁𝑝
𝑎𝑙𝑙 ≅  

1

3𝜋
൬
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𝑅𝑝
൰
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 (NCU concept [2, 3])     Eq.[1b] 

(𝑁𝑝
𝑎𝑙𝑙 ≡ number of protons in the universe, 𝑅𝑈 ≡ radius of universe, 𝑅𝑝 ≡ radius of proton) 

  
After article [3] had been published, a friend asked me if the NCU model could explain the 
observed fraction of Helium cores (XHe ≈ 7,3%) in the universe’s NM. At first glance, I was 
convinced I was unable to answer that question. But after some deeper reflection, I had an idea 
how to estimate XHe via calculations on collision rates of pn at the horizon. The results of these 
calculations and underlying considerations will be presented in this article.  
 
All calculations below are based on the plausible assumption that NM is generally released 
from relativistic pn by collision events between them.  
When we therefore compare collision numbers at the horizon with changes of 𝑁𝑝

𝑎𝑙𝑙 according 
to Eq.[1b], we can establish a particle balance that allows for calculations on the relation 
between 𝐻1  cores (= protons) and 𝐻𝑒 4 cores in NM.  
 
 

1. Distribution and movement of pn between Horizon and Inner NCU, Fm “Mixing Factor” 
 
In order to calculate collision rates of pn, we have to know the pn fraction at the horizon.That is 
because the collision probability in the inner NCU is far too low to allow for any NM 
formation [3]. Therefore, all pn in the inner regions of NCU are “lost” for NM creation and 
NM can emerge only from the horizon, where the pn density is presumably high enough [3]. 



So we have to determine an estimate of the Fm “mixing factor”, which was introduced in my 
last article [3]. The Fm factor expresses the fraction of pn that is distributed more or less 
homogenously over the entire space inside the horizon (“mixed” with NM). This pn fraction 
pushes each single pn towards the horizon by Coulomb force against the gravitational force 
brought about by NM. 

So Fm can be calculated from the balance of both forces when they equal each other and no 
further pn can enter the inner NCU regions. In that case, the number of mixed pn (=Fm*Npn) 
will remain constantly close to the equilibrium, value and the calculations in this chapter will 
estimate Fm via the equilibrium of forces.  

According to Newton’s shell theorem [5], we can imagine both the entire NM and the mixed pn 
fraction inside the horizon as being condensed in the center of the NCU. Based on this idea, 
the calculations on gravitational and Coulomb forces are conducted.  

If one imagines a “sample pn” close to but inside the horizon, this pn will not experience the 
Coulomb force of pn located at the horizon – because of Newton’s shell theorem [5].  
Therefore, the “sample pn” will experience only the attracting gravity of the entire NM inside 
the horizon and the repelling Coulomb force of the mixed pn fraction there. For these 
competing forces (expressed here as accelerations), the following equations (Eqs.[2…5c])are 
valid:  
 

𝑎𝑔𝑟𝑎𝑣 = −
𝐹𝑔𝑟𝑎𝑣

𝑚𝑃
= −

𝑚𝑃∗𝑀𝑈∗𝐺

𝑚𝑃∗𝑅𝑈
2         Eq.[2] 

(agrav ≡ gravitational acceleration towards the inner NCU,𝑚𝑃 ≡ mass of proton, 𝑀𝑈≡ mass of 
the universe, G ≡ gravitation constant) 

 
According to Mach’s principle, the time-variable G is given as:  
 

𝐺 ≅
ோೆ∗௖మ

ெೆ
 [2, 3]         Eq.[3] 

(c ≡ speed of light)  
 
Inserting Eq.[3] in Eq.[2] yields 𝑎𝑔𝑟𝑎𝑣 for the “sample pn” through the following equation: 
 

𝑎𝑔𝑟𝑎𝑣 ≅ −
c2

𝑅𝑈
          Eq.[4] 

 

For the Coulomb acceleration of one pn, brought about by the mixed pn fraction(=Fm*Npn), we 
obtain [2]:  
 
 

𝑎𝑒𝑙𝑠𝑡𝑎𝑡 =
𝐹𝑚∗𝑁𝑝𝑛∗𝛼∗ℎ∗𝑐 

2𝜋∗𝑚𝑃∗𝑅𝑈
2          Eq.[5a] 

(aelstat ≡ Coulomb acceleration to horizon, 𝛼 ≡ fine structure constant, h ≡ Planck’s constant)
  
With 𝛼 ≅ 1 (valid for pn close to horizon [3]) and 𝑁𝑝𝑛 ≅ (𝑅𝑈 𝑅𝑃⁄ )3 2⁄ [2], Eq.[5a] changes to: 
 

𝑎𝑒𝑙𝑠𝑡𝑎𝑡 ≅
𝐹𝑚∗ℎ∗𝑐 

2𝜋∗𝑚𝑃∗𝑅𝑃
3 2⁄

∗𝑅𝑈
1 2⁄         Eq.[5b] 

 



With 𝑅𝑃 ≅ 3 4⁄ ∗
ℎ

𝑚𝑃 𝑐
 (≅ 10ିଵହ𝑚, 3/4 of the Compton wave length [2]) one obtains: 

 

𝑎𝑒𝑙𝑠𝑡𝑎𝑡 ≅
2∗𝐹𝑚∗𝑐2

3𝜋∗𝑅𝑃
1 2⁄

∗𝑅𝑈
1 2⁄          Eq.[5c] 

 
In the case of “equilibrium of forces” when the “sample pn” does not experience any 
acceleration, the following equation is valid: 

 

𝑎𝑒𝑙𝑠𝑡𝑎𝑡 =  −𝑎𝑔𝑟𝑎𝑣; 
2∗𝐹𝑚∗𝑐2

3𝜋∗𝑅𝑃
1 2⁄

∗𝑅𝑈
1 2⁄ ≅

c2

𝑅𝑈
       Eq.[6a] 

  
After solving for Fm, we obtain from Eq.[6a]:  
 

𝐹𝑚 ≅
3𝜋

2
∗ ቀ

RP

RU
ቁ

1 2⁄

≪ 1        Eq.[6b] 

 
This means, an extremely low fraction (currently ≅  10ିଶ଴) of mixed pn is sufficient to prevent 
all further pn from leaving the horizon towards the inner regions of the NCU. So the 
assumption that all pn are concentrated at the horizon is basically certain by now.  
 
Please note that mixed pn are completely decoupled from NM inside the NCU horizon. That is 
because of the extremely low collision probability there [3]. Thus, NM carries no net charge 
and is therefore influenced exclusively by gravity. So NM is able to form galaxies by 
gravitationally driven compression of cosmic gas.  
In opposition, mixed pn repel each other by Coulomb force and therefore stay spatially 
isolated. 
 
Note further, that all pn at the horizon should form a monolayer or double layer (see below) 
because of the electrostatic pressure from mixed pn in the inner universe. Thus, each pn at the 
horizon experiences the repelling Coulomb force of all pn in the NCU (i.e. the mixed fraction 
and all pn at the horizon). This partially tangential and partially radial force drives all pn away 
from each other and towards the horizon. As a result, the horizon tends to expand in lateral and 
radial directions, leading to expansion of the universe as described and calculated in [2]. 

Since new pn steadily appear at the horizon, the whole pn layer there should be permanently 
“stirred” and pn collisions occur just like collisions of molecules in a gas.  
 
 

2. Collision Rate of pn at the Horizon  
 
Firstly, I will consider which distance (𝐿ଵ)  a “sample pn” at the horizon has to move on 
average to experience one collision with a “partner pn”. The collision between two pn exhibits 
a cross sectional area (CS). We thus have to regard a tube-shaped volume 𝑉1𝑝𝑛 = 𝐶𝑆 ∗ 𝐿1 that 
contains exactly one pn (the “partner pn”) according to a certain density of  pn (𝜌𝑝𝑛):  

 
𝑉1𝑝𝑛 ∗ 𝜌𝑝𝑛 = 𝐶𝑆 ∗ 𝐿1 ∗ 𝜌𝑝𝑛 = 1       Eq.[7a] 



 
The relativistic pn at the horizon moves with a speed close to c and therefore the time interval 
for one collision is:  
  

∆𝑡ଵ ≅
௅భ

௖
  

 
Since RU grows with a speed close to c as well, the change of RU during ∆𝑡ଵ (= ∆𝑅𝑈1) equals 
L1 and Eq.[7a] can be transformed to:  
 
𝐶𝑆 ∗ ∆𝑅௎ଵ ∗ 𝜌௣௡ = 1         Eq.[7b] 
 
This means, RU grows by ∆𝑅𝑈1 during the time one collision needs, and the number of all 
collisions at the horizon during that growth of RU is:  
 
∆𝑁஼௢௟௟

ு௢௥ = 𝐶𝑆 ∗ ∆𝑅௎ଵ ∗ 𝜌௣௡ ∗ 𝑁௣௡       Eq.[8a] 
 
Replacing ∆𝑅𝑈1 by a generalized 𝑅𝑈 fraction ∆𝑅𝑈 ≡ 𝑋𝑅𝑢 ∗ 𝑅𝑈 yields the following equation 
expressing the number of pn collisions during any 𝑅𝑈 growth by 𝑋𝑅𝑢 ∗ 𝑅𝑈:  
 
∆𝑁஼௢௟௟

ு௢௥ = 𝐶𝑆 ∗ 𝑋ோ௨ ∗ 𝑅௎ ∗ 𝜌௣௡ ∗ 𝑁௣௡      Eq.[8b] 
 
The following expressions for the factors in Eq.[8b] are valid:  
 
𝐶𝑆 = 4𝜋𝑅௣௡

ଶ  where  ℎ/𝑚𝑃 𝑐 ≥ 𝑅𝑝𝑛 ≥ 𝑅𝑝0 .  

(𝑅𝑝0 ≡ 𝑅𝑝 measured on earth ≅ 8,5*10-16 m, 𝑅𝑝𝑛 ≡ 𝑅𝑝, effective value in collision events) 
 
CS is the area of a circle with the radius of  2𝑅௣௡, which means that the pn should form a kind 
of double layer, and the horizon where pn are located exhibits a “thickness” of  4𝑅𝑝𝑛. Thus, we 
can associate a volume VpnHor to the range where pn are located at the horizon and 𝜌𝑝𝑛 can be 

written as:  
 

𝜌௣௡ =
ே೛೙

௏೛೙ಹ೚ೝ
=

ே೛೙

ସగ∗ோೆ
మ ∗ସோ೛೙

  

 

Since 𝑁𝑝𝑛 ≅ ൬
𝑅𝑈

𝑅𝑝𝑛
൰

𝑛+1

with 𝑛 ≅ 0.5 [2], we obtain:  

 

𝜌௣௡ =
ே೛೙

௏೛೙ಹ೚ೝ
=

ோೆ
೙శభ

ସగ∗ோೆ
మ ∗ସோ೛೙∗ோ೛೙

೙శభ =  
1

ଵ଺ ∗ோೆ
భష೙∗ோ೛೙

మశ೙  

 
Finally, the number of collisions at the horizon with a double layer of pn applies as:  
 

∆𝑁஼௢௟௟
ு௢௥ ≅ 4𝜋𝑅௣௡

ଶ ∗
௑ೃೠ∗ோೆ

ଵ଺గோೆ
భష೙∗ோ೛೙

మశ೙ ∗ ൬
ோೆ

ோ೛೙
൰

௡ାଵ

= 𝑋ோ௨ ∗
ோೆ

మ೙శభ

ସோ೛೙
మ೙శభ   Eq.[8c] 

 
Please note that the condition 𝑋𝑅𝑢 ≪ 1 must be fulfilled, since RU must be approximately 
constant during its growth by ∆𝑅𝑈 = 𝑋𝑅𝑢 ∗ 𝑅𝑈.   



 
It is indeed uncertain that pn at the horizon form a double layer. They might instead move at 
the horizon like the balls on a billiard table. That means they might be distributed as a 
monolayer at the horizon area. In that case, the pn layer would exhibit a “thickness” of  2𝑅௣௡ 
and the following equations would be valid:   
 
𝐶𝑆 = 4𝑅௣௡ ∗ 2𝑅௣௡ =  8𝜋𝑅௣௡

ଶ  
(Geometrically, CS is a “rectangle” which includes two pn touching each other)  
 

𝜌௣௡ =
ே೛೙

௏೛೙ಹ೚ೝ
=

ோೆ
೙శభ

ସగ∗ோೆ
మ ∗ଶோ೛೙∗ோ೛೙

೙శభ =  
1

଼గ∗ோೆ
భష೙∗ோ೛೙

మశ೙  

 

∆𝑁஼௢௟௟
ு௢௥ ≅ 8𝑅௣௡

ଶ ∗
௑ೃೠ∗ோೆ

଼గோೆ
భష೙∗ோ೛೙

మశ೙ ∗ ൬
ோೆ

ோ೛೙
൰

௡ାଵ

= 𝑋ோ௨ ∗
ோೆ

మ೙శభ

గோ೛೙
మ೙శభ   Eq.[9] 

 
Comparing Eq.[8c] and Eq.[9], one can see that the collision rates ∆𝑁஼௢௟௟

ு௢௥ for both types of 
“pn layers” exhibit the relation of 𝑑𝑜𝑢𝑏𝑙𝑒 𝑚𝑜𝑛𝑜⁄ = 𝜋 4⁄  as the only difference between them.
  
  

3. Determining XHe in NM from Collision Rates of pn – Concept and Equations  
 
Considering particles possibly formed in collision events, 𝐻 ଵ and 𝐻𝑒 ସ are by far the most 
stable ones [6]. Hence, I assume that regardless of specific reaction chains each collision 
ultimately creates either a 𝐻 ଵ or a 𝐻𝑒 ସ core. In order to determine the fraction of 𝐻𝑒 ସ cores 
created in pn collisions, it is therefore crucial to know the relation between ∆𝑁஼௢௟௟

ு௢௥  and the 
change of 𝑁𝑝

𝑎𝑙𝑙 (∆𝑁௣
௔௟௟ ) during a certain ∆𝑅௎ interval. This is why the lower the pn collision 

rate, the higher the average relativistic mass of the pn, and, in turn, the probability of 
𝐻𝑒 ସ formation. Note that all neutrons bound in 𝐻𝑒 ସ cores are subsumed here in the value 

of ∆𝑁௣
௔௟௟ .    

If  
∆ே಴೚೗೗

ಹ೚ೝ

∆ே೛
ೌ೗೗ = 1, each collision will release one 𝐻 ଵ  as the most stable particle. If  

∆ே಴೚೗೗
ಹ೚ೝ

∆ே೛
ೌ೗೗ <1, each 

"missing" collision must be compensated for by a higher mass release of a collision that 
actually occurs. After all, each collision that releases more mass than one 𝐻 ଵ may produce 
unstable cores which are finally transformed into 𝐻𝑒ସ  cores (for reasons of stability). Thus, 
the mass of 3 additional protons/neutrons (compared to 𝐻 ଵ ) is captured after one of these 
“ 𝐻𝑒ସ collisions”, which compensates for 3 “missing” collisions.  
 
These considerations lead finally to Eq.[13], which can be seen below. Based on that concept, 
the fraction of 𝐻𝑒 ସ cores created in pn collisions will be determined. But initially, Eq.[1b] 
must be written more generally with variable n, as derived in [2, 3]:  
  

𝑁𝑝
𝑎𝑙𝑙 ≅  

1

3𝜋
൬

𝑅𝑈

𝑅𝑝0
൰

2𝑛+1

         Eq.[1c] 

 
This is necessary because the value of n is probably not exactly 0.5. The value of n was 
derived in [2] as 0.511 and will be calculated here anew by the following alternative method to 



conduct an independent check of that value:  
From Mach’s principle (see Eq.[3], 𝑀𝑈 =  𝑚𝑃 ∗ 𝑁𝑝

𝑎𝑙𝑙 ) and Eq.[1c], the following equation can 
be established (with * for the current values):  
 

𝑁𝑝
𝑎𝑙𝑙 ≅

1

3𝜋
൬

𝑅𝑈
∗

𝑅𝑝0
൰

2𝑛+1

≅
𝑅𝑈

∗ ∗𝑐2

𝑚𝑃∗𝐺∗        Eq.[10a] 

 
Assuming that equation to be exact and not an estimate, a certain value of n must be given. 
Solving for n yields:  
 

𝑛 =
ଵ

ଶ
∗ ቎

௟௢௚ቆ
యഏ∗ೃೆ

∗ ∗೎మ

೘ು∗ಸ∗ ቇ

௟௢௚൬
ೃೆ

∗

ೃುబ
൰

− 1቏ = 0.483       Eq.[10b] 

 
Thus, we find n most probably in the range between 0.483 and 0.511.  
 
Besides n, the value of Rpn (effective collision radius of pn) is not exactly known, but again we 
probably know the range it is in:  

1.33 ∗ 10ିଵହ𝑚 =
௛

௠ು ௖
≥ 𝑹𝒑𝒏 ≥ 𝑅௣଴ =  8.5 ∗ 10ିଵ 𝑚  

 
Furthermore, we need to express ∆𝑁௣

௔௟௟ during the RU growth by ∆𝑅௎. According to Eq.[1c], 
the following equation applies:  
  

∆𝑁௣
௔௟௟ ≅

ଵ

ଷగ
∗ ቈ൬

ோೆା∆ோೆ

ோ೛బ
൰

ଶ௡ାଵ

− ൬
ோೆ

ோ೛బ
൰

ଶ௡ାଵ

቉ =  
ଵ

ଷగ
∗ ቈ൬

ோೆା௑ೃೠ∗ோೆ

ோ೛బ
൰

ଶ௡ାଵ

− ൬
ோೆ

ோ೛బ
൰

ଶ௡ାଵ

቉ Eq.[11] 

 

From Eqs.[8c, 11] we thus obtain (for the “double layer model” of pn): 

 

𝑋஼௢௟௟ ≡
∆ே಴೚೗೗

ಹ೚ೝ

∆ே೛
ೌ೗೗ ≅  

௑ೃೠ∗
ೃೆ

మ೙శభ

రೃ೛೙
మ೙శభ

భ

యഏ
∗ቈ൬

ೃೆశ೉ೃೠ∗ೃೆ
ೃ೛బ

൰
మ೙శభ

ି൬
ೃೆ

ೃ೛బ
൰

మ೙శభ

቉

  

 
After factoring out the term 𝑅𝑈

2𝑛+1and rearranging, that equation changes to:  

𝑋஼௢௟௟ ≅  

యഏ೉ೃೠ

రೃ೛೙
మ೙శభ

ቈ൬
భశ೉ೃೠ

ೃ೛బ
൰

మ೙శభ

ି൬
భ

ೃ೛బ
൰

మ೙శభ

቉

=
ଷగ

ସ
∗

௑ೃೠ

(ଵା௑ೃೠ)మ೙శభିଵ
∗ ൬

ோ೛బ

ோ೛೙
൰

ଶ௡ାଵ

   Eq.[12a] 

 
For the “monolayer model” of pn, we obtain corresponding to Eq.[9]:  
  

𝑋஼௢௟௟ ≅  

యഏ೉ೃೠ

ഏೃ೛೙
మ೙శభ

ቈ൬
భశ೉ೃೠ

ೃ೛బ
൰

మ೙శభ

ି൬
భ

ೃ೛బ
൰

మ೙శభ

቉

= 3 ∗
௑ೃೠ

(ଵା௑ೃೠ)మ೙శభିଵ
∗ ൬

ோ೛బ

ோ೛೙
൰

ଶ௡ାଵ

   Eq.[12b] 

 
 



Finally, the stoichiometric concept described above allows for determining 𝑋ு௘ from 𝑋஼௢௟௟: 
  

𝑋ு௘ =
ଵ

ଷ
∗ ቀ

ଵ

௑಴೚೗೗
− 1ቁ (valid for

ଵ

ସ
≤ 𝑋஼௢௟௟ ≤ 1)     Eq.[13] 

 
 

4. Results 
 
In order to determine the fraction of 𝐻𝑒 ସ in the universe’s NM, Eqs.[12a, 12b, 13] were 
applied, while n and Rpn were varied within the ranges specified above. The following tables 
show the results of the respective calculations:  
  
Double layer model:  

Monolayer model:  

 
As one can see from both tables, the NCU concept of our universe is able to explain the 
observed He fraction (23…25% of mass ≅ 7.3% mole fraction) in baryonic matter. Within the 
plausible ranges of n and Rpn, we obtain very satisfying results while regarding the NCU 
concept as the underlying idea for all thoughts and calculations.   
 
 

5. Conclusions 
 
Based on the NCU model, the present article aims to explain the observed fraction of Helium 
(approximately 7%) in the universe’s baryonic matter. For this purpose, calculations on 
collision rates of excess protons are performed and applied to determine the Helium fraction in 
the universe’s matter.  
The results of these calculations correspond very well to the observations and thus further 
support the NCU model. 

 
 

Rpn [m] 0,48 0,485 0,49 0,495 0,5 0,505 0,51 0,515 0,52 <--n
9,70E-16 0,0259 0,0282 0,0305 0,0328 0,0351 0,0375 0,0398 0,0421 0,0445 <--X_He
9,80E-16 0,0332 0,0356 0,0380 0,0404 0,0428 0,0452 0,0476 0,0500 0,0525
9,90E-16 0,0405 0,0430 0,0455 0,0480 0,0505 0,0530 0,0555 0,0580 0,0606
1,00E-15 0,0480 0,0505 0,0531 0,0557 0,0583 0,0609 0,0635 0,0661 0,0687
1,01E-15 0,0555 0,0581 0,0608 0,0635 0,0662 0,0688 0,0715 0,0742 0,0770
1,02E-15 0,0631 0,0658 0,0686 0,0713 0,0741 0,0769 0,0797 0,0825 0,0853
1,03E-15 0,0707 0,0735 0,0764 0,0793 0,0821 0,0850 0,0879 0,0908 0,0937
1,04E-15 0,0784 0,0814 0,0843 0,0873 0,0902 0,0932 0,0962 0,0992 0,1022
1,05E-15 0,0862 0,0893 0,0923 0,0954 0,0984 0,1015 0,1046 0,1077 0,1108
1,06E-15 0,0941 0,0972 0,1004 0,1035 0,1067 0,1099 0,1131 0,1163 0,1195

yellow: better than 0.5% deviation from measured value of X_He (=7,3%) 

Rpn [m] 0,48 0,485 0,49 0,495 0,5 0,505 0,51 0,515 0,52 <--n
1,10E-15 0,0276 0,0304 0,0332 0,0360 0,0388 0,0417 0,0445 0,0473 0,0502 <--X_He
1,11E-15 0,0341 0,0370 0,0398 0,0427 0,0456 0,0485 0,0515 0,0544 0,0574
1,12E-15 0,0406 0,0436 0,0465 0,0495 0,0525 0,0555 0,0585 0,0615 0,0646
1,13E-15 0,0472 0,0502 0,0533 0,0563 0,0594 0,0625 0,0656 0,0687 0,0719
1,14E-15 0,0538 0,0569 0,0601 0,0632 0,0664 0,0696 0,0728 0,0760 0,0792
1,15E-15 0,0605 0,0637 0,0669 0,0702 0,0734 0,0767 0,0800 0,0833 0,0866
1,16E-15 0,0672 0,0705 0,0739 0,0772 0,0805 0,0839 0,0873 0,0907 0,0941
1,17E-15 0,0740 0,0774 0,0808 0,0843 0,0877 0,0912 0,0946 0,0981 0,1016
1,18E-15 0,0809 0,0844 0,0879 0,0914 0,0949 0,0985 0,1021 0,1057 0,1093
1,19E-15 0,0878 0,0914 0,0950 0,0986 0,1022 0,1059 0,1095 0,1132 0,1170

yellow: better than 0.5% deviation from measured value of X_He (=7,3%) 
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