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Abstract: It was found that electromagnetic and weak
gravitational fields can be unified by diamond equations,
which is one of extended Maxwell’s equations. Classical
mechanics is derived from the diamond equation for weak
gravitational field by assuming that gravitational wave is
not generated under the condition of stable motion.
Quantum mechanics is derived from the same equation
by assuming that the square of total energy consists of
square of total momentum, square of the mass, and
imaginary part of the energy creation-annihilation rate.

I. Introduction

Maxwell’s equations have the serious problem
to prohibit carrier generation-recombination in
semiconductors. We found that the carrier
generation-recombination needs the charge
creation-annihilation scalar field, 1-7) which is
almost equivalent to Nakanishi-Lautrup field8, 9) of
quantum electrodynamics. The extended
Maxwell’s equations can be simply written by 4 
4 complex differential operator matrix as a square
root of d’ Alembertian □ 02 2, which we
call diamond operator ◇ by analogy of nabla 
as one of the square roots of Laplacian  .10) It is
found that the extended Maxwell’s equations
written by the diamond operator, which should be
called diamond equations, also describe weak
gravitational field. Furthermore, classical and
quantum mechanics can be derived from the
diamond equations for weak gravitational field by
assuming that the gravitational wave is not
generated under the condition of weak
gravitational field and stable motion.

II. Extended Maxwell’s equations

Maxwell’s equations are given by
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where E, B, D, and H are electric, magnetic,
displacement, and magnetizing fields, respectively,
and J and  are current and charge densities,
respectively.
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0
t


  


J . (5)

On the other hand, electron current density Jn,
hole current density Jp, electron charge density n,
and hole charge density p in semiconductors
satisfy the following equation11)
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where GR is carrier generation-recombination rate.
Since electromagnetic fields induced by electrons
and holes should individually satisfy (1) and (2),
(5) and (6) contradict each other in the case of GR
 0. In other words, Maxwell’s equations prohibit
carrier generation-recombination in
semiconductors. In order to solve the problem, we
introduced charge creation-annihilation scalar
field N, which is almost equivalent to
Nakanishi-Lautrup field in quantum
electrodynamics. Then, (1) and (2) are rewritten as
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where  and  are permittivity and permeability in
the material, respectively. Then, carrier
generation-recombination rate, in other words,
charge creation-annihilation rate GR is given by
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where □ denotes d’Alembertian defined by
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Here, cm is the speed of light in the material given
by
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Then 0 is defined as
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III. Diamond operator and equations

We define the diamond operator ◇ as
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where * denotes the complex conjugate operator
which satisfies

*A A   , (14)
and
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for A as a complex scalar, vector, or matrix, and
A* as the complex conjugate of A. The diamond
operator satisfies
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For electromagnetic and gravitational forces,

the four current C and the four field F satisfy
gC F ◇ . (17)

In (17), g is a coupling constant and
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where D, R, and S are divergent, rotational, and
scalar fields, respectively. (17) – (19) give
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The four field F with gauge parameter  and
four potential A satisfy
F A ◇ , (24)

where
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We call (17) and (24) diamond equations.

The extended Maxwell’s equations are obtained
by substituting four current J for C and
permeability for g as
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Then four field F is substituted by electric and
magnetic fields E and B, and charge
creation-annihilation field N as
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Therefore, the extended Maxwell’s equations are
given by
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Since displacement field D and magnetizing field
H are equal to E and B / , respectively, in most
cases, (32) – (35) are equivalent to (7), (8), (3),
and (4).

IV. Linear gravitational field

Einstein’s gravitational equation is given by
G T  (36)

where G is Einstein tensor and  is Einstein’s
gravitational constant. T is momentum density
tensor written by
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where v and v are  and  component of the
velocity. When the momentum density is enough
small, metric tensor g is given by
g h    , (38)

where  and h are tensors which satisfy
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Here we define h as
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In Lorentz gauge condition of , 0h
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The above equation is regarded as the wave
equation for linear gravitational field.12) In order
to obtain Lorentz vector, we assume small volume
. Then the gravitational vector potential Ag and
gravitational current Cg are given by
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Then the gravitational fields Fg = (Dg + iRg, iSg)t

and gF = (Dg + iRg, iSg)t satisfy
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where Dg, Rg, and Sg are the divergent, rotational,
and scalar fields of the linear gravitational field.
Since the four current vector Cg is equivalent to
the four momentum vector P  (P, iP0)t, where P
and cP0 are 3D momentum and energy,
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V. Classical and quantum mechanics

If we assume existence of the four potential V 
(V, i/c)t, the total four momentum  is given by
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3D total momentum  and total energy E satisfy
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where Dtotal, Rtotal, and Stotal are the total divergent,
rotational, and scalar fields considering the four
potential, respectively. If the four potential is
appropriate and the motion is stable, the wave
sources of the total divergent and rotational fields
should be zero as
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By using special relativity, we obtain
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In the case of classical mechanics of |P| << mc,

 2 2

2
E mc

m



  

π V
. (57)

By defining v as a 3D velocity vector,  E is
calculated as

 
3

1

j j j
i

j i i i

P V
E

m x x x
 



   
       


3

1

j j
j

j i i i

V
v

x x x
 



   
      
 . (58)

Therefore, (54) and (58) give
i i idP d dV

dt dt d t
   

 
3 3

1 1

j ji i i i

j jj j

dx dx V V
dt x t dt x t

 
 

    
         
 
3 3 3 3

1 1 1 1

j ji i i
j j j j

j j j jj i i j i

V V Vv v v v
x x x x t x

 
   

    
     

        

      i
i i

i

V
t x

 
          

 
v π v V

.
(59)

Since the first term of (59) is zero by using (55),
we obtain
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The above equation shows Newton’s second law
of motion. In electromagnetic field case, the right
side of (60) is equivalent to the sum of Lorentz
and Coulomb forces.
By using (54), (55), and a appropriate scalar field
Sc,  and E are written as
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(61) and (62) are equivalent to Hamilton-Jacobi
equations, where Sc is Hamilton’s principle
function. Here we call Sc energy



creation-annihilation field, because energy
creation-annihilation rate  is defined by
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Next we consider about quantum mechanics.
When we define the wave function as
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In the case of □Sc = 0, we obtain Klein-Gordon
equation of
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If we assume existence of the potential U, the
above equation is rewritten as13)
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Since □Sc  0 in the above case, we obtain
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The above equation suggests the principle of
quantum mechanics, that it is equivalent to
classical mechanics when the absolute value of
ħis much smaller than 2c2, otherwise the
imaginary part of energy creation-annihilation
field creates or annihilates quantized interactive
energy depending on the potential U.
If 2c2 and the absolute value of ħare much

smaller than m2c4, we obtain
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When we assume E and  0Sc do not depend on
time, and redefine the total energy excluding the
rest energy Ê  E  mc2 and the potential V
U/2mc2, we obtain
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the time independent Schrödinger equation is
obtained as
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VI. Conclusion

We found that electromagnetic and weak
gravitational fields can be unified by the diamond
equations, which include a 4  4 complex
differential operator matrix as a square root of
d’Alembertian. The diamond equations for weak
gravitational field derive classical and quantum
mechanics, including Hamilton-Jacobi,
Klein-Gordon, and time independent Schrödinger
equations. It was found that imaginary part of the
energy creation-annihilation field creates or
annihilates quantized interactive energy
depending on the potential.
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