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The effect of the retarded electromagnetic field of an oscillating dipole on this very dipole is 

calculated. In this way, we have verified the method that is used to prove the spin radiation of a 

rotating dipole.  
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1. Introduction 

As is well known, a linear electric dipole oscillator d  radiates energy flux, i.e. power, mainly in the 

plane perpendicular to the dipole [1 (67.8)], [2 (9.24)], [3 (2.74)] 

)12/(d 3

0

24
cP πεω= ,                                               (1.1) 

while a rotating dipole d  radiates energy flux mainly along the axis of rotation of the dipole [1 § 67, 

Problem 1] 
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and emits angular momentum flux, i.e. torque, mainly in the plane of rotation of the dipole [1 (75.7)], [4 

Appendix 1 (17)] 
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In [5-7], it is shown that the angular momentum flux (1.3) is an orbital angular momentum 

flux and is not a radiation. In this regard, we add a quote here: “The angular momentum is contained in 

that region of the field in which the product EH decreases as 
3−r ” (W. Heitler) [8]. 

However, in [5-7], it is shown that a spin angular momentum flux  
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is radiated mainly along the axis of rotation of the rotating dipole. This flux is not described now by the 

modern electrodynamics. 

In Figures 1 and 2, angular distributions of the powers and of the angular momentum fluxes 

are depicted  

 
Fig. 1. An electric dipole oscillating parallel to the z-axis. 

(a) Polarization of the electric field seen by looking from different direction [9].  

(b) Angular distribution of the radiated energy [1 (67.7)], [2 (9.23)], [3 (2.72] 
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Fig. 2. An electric dipole rotating in the x-y plane 

(a) Polarization of the electric field seen by looking from different direction [9].  

(b) Angular distribution of the radiated energy [1, § 67, Problem 1], [2, Table 9.1], [10] 
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(с) Angular distribution of the orbital angular momentum flux [5-7,10] 
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(d) Angular distribution of the spin angular momentum flux [5-7] 
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It is important that the total flux of the angular momentum, orbital plus spin, (1.3) and (1.4), 
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was found in the work [7] by counting the effect of the retarded electromagnetic field of the rotating 

dipole on the dipole itself. In this article, we demonstrate the validity of this method of counting by 

the use it when calculating the radiation of energy by an oscillating dipole (1.1). 

 

2. The use of the Jefimenko's generalizations 

We will obtain the value (1.1) as a result of the action of the electromagnetic field on the dipole itself, 

according to the formula for the volume power density 

)( Ej ⋅−=∧P ;                                                      (2.1) 

here j  and E  are the dipole current density and the electric field strength in the dipole, respectively, 

and the subscript ∧  of ∧P  denotes "density", xdPdP 3

∧= . 

 In this paper, the electric field near the dipole is calculated by the known formula taking into 

account the retardation [2 (6.55)]: 
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and we consider an "elementary vibrator" as a dipole. It means that the current of the dipole is the 

same at all points, and the charges q
(

 are only at the ends (see Figure 3). 

 
Figure 3. Elementary vibrator 
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Expression (2.3) is a complex dipole moment (the symbol breve denotes complex quantities). The 

current of the dipole is obtained by differentiation: 
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 The first term of expression (2.2), 
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 is simply the retarded Coulomb field at the point x . Therefore, replacing 

qdxd ′→ρ′
(3 ,  cxltt /)2/( ±−→  ,  xlr ±→ 2/  

and taking into account the direction of the electric field, we obtain the electric field strength from the 

both charges at the point x : 
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The corresponding contribution of this term to the power generated by the dipole is given by formula 

(2.1) (we replace Idxxjd →3  from (2.4), and the bar, instead of the breve, means complex 

conjugation) 
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Taking into account the small size of the dipole, we consider only two terms of the expansion of the sine 

in a series  
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      Similarly to formula (2.5), we find the electric field provided by the second term of formula (2.2) 
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In contrast to formula (2.5), this formula contains i. 

Formula (2.1) gives the contribution of the second term, xE2 , to the power generated by the dipole 
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Restricting ourselves to the two terms of the cosine expansion in a series, we have 
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Surprisingly, the integrals diverging at the ends of the dipole are shortened upon the addition 21 PP + , 

and the remaining terms are constants. As 3/2/6/ lll −=− , this part of the power is 

3

0

22

21
24

d

с

PP
πε

ω
−=+ .                                               (2.11) 

 The third term of formula (2.2), 
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 uses the derivative of the current 
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To calculate the strength at the point x , we divided the region of integration into two parts by the 

point x  
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Using formula (2.1), dxIExddP x−=⋅−= 3)( Ej , and current (5), we obtain the power corresponding 

to the third term of formula (2.1): 
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Restricting ourselves to one term in the expansion of the sine in a series, we easily obtain 
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Thus, the power radiated by a dipole is equal to the value (1.1)  
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3. Conclusion 

The presented calculation confirms the correctness of the method, which previously proved the 

existence of spin radiation by a rotating dipole [7], found using the spin tensor [5,6] 

I am eternally grateful to Professor Robert Romer for the courageous publication of my 

question: "Does a plane wave really not carry spin?” (was submitted on 07 October, 1999) [11].  
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