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Abstract 

 

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic 
problems about prime numbers. These problems were characterised in his speech as 
"unattackable at the present state of mathematics" and are now known as Landau's problems. 
They are as follows:  

1. Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two 
primes? 

2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime? 
3. Legendre's conjecture: Does there always exist at least one prime between consecutive 

perfect squares? 
4. Are there infinitely many primes p such that p − 1 is a perfect square? In other words: 

Are there infinitely many primes of the form n2 + 1? 

We will solve Landau’s fourth problem by proving there are infinitely many primes of the form 
n2 + 1.  

 

Proof of Infinite Primes of Form n2 + 1 

 

The divergence of the harmonic series was independently proved by Johann Bernoulli in 1689 in 
a counter-intuitive manner (reference 1). His proof is worthy of deep study, as it shows the 
counter-intuitive nature of infinity. We will use Bernoulli’s proof and apply it toward proving 
the prime numbers are infinite. 
 
Let the finite set of, p, primes of form n2 + 1 be listed in reverse order from the largest to 
smallest primes of form n2 + 1 as follows: 

 

n1 = 2p1 – 1 = largest prime of form n2 + 1 
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n2 = 2p2 – 1 = second largest prime of form n2 + 1 

n3 = 2p3 – 1 = third largest prime of form n2 + 1 

. 

. 

. 

np = 2p – 1 = smallest prime of form n2 + 1 

 

This reverse ordering of the finite set of primes of form n2 + 1 is key to our proof. We assume 
that the following primes of form n2 + 1 reciprocal series have a finite sum, which we call S. 

 
1

n1
+ 1

n2
+  1n3

+ ⋯+ 1np
 > 1

2n1
+ 1

3n2
+ 1

4n3
+ ⋯+  1

knp
 = S 

 

Where, k is the denominator factor for the smallest prime of form n2 + 1 that exists in our finite 
set. 

We now proceed to derive a contradiction in the following manner. First we rewrite each term 
occurring in S thus: 
 

1
3n2

=  2
6n2

 = 1
6n2

 + 1
6n2

 , 1
4n3

=  3
12n3

=  1
12n3

+  1
12n3

+  1
12n3

 , …,  
 
Next we write the resulting fractions in an array as shown below: 
 
 

1
2n1

   1
6n2

  1
12n3

  1
20n4

  1
30n5

  1
42n6

  1
56n7

 …  
 

                                    1
6n2

  1
12n3

  1
20n4

  1
30n5

  1
42n6

  1
56n7

 … 
 
                                           1

12n3
  1

20n4
  1

30n5
  1
42n6

  1
56n7

 … 
 
                                                   1

20n4
  1

30n5
  1
42n6

  1
56n7

 … 
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                                                           1

30n5
  1
42n6

  1
56n7

 … 
 
                                                                                          

1
42n6

  1
56n7

 … 
 
                                                                            1

56n7
 … 

 
 

Note that the column sums are just the fractions of the primes of form n2 + 1; thus S is the sum 
of all the fractions occurring in the array. As Bernoulli did, we now sums the rows using the 
telescoping technique. Next we assign symbols to the row sums as shown below, 
 
 

A = 1
2n1

+ 1
6n2

+ 1
12n3

 + 1
20n4

 + 1
30n5

 + 1
42n6

+  1
56n7

 + … , 
 
 

                 B = 1
6n2

+ 1
12n3

 + 1
20n4

 + 1
30n5

 + 1
42n6

+  1
56n7

 + … , 
 
 

                 C = 1
12n3

 + 1
20n4

 + 1
30n5

 + 1
42n6

+  1
56n7

 + … , 
 
 
                 D =  1

20n4
 + 1

30n5
 + 1

42n6
+  1

56n7
 + … , 

 
 
We now rearrange as follows: 
 
 

A = ( 1n1
−  1

2n1
) + ( 1

2n2
− 1

3n2
) + ( 1

3n3
−  1

4n3
) + ( 1

4n4
 − 1

5n4
) + … 

 
 
Since, n1 > n2 > n3 > n4 
 

A = 1n1
+ ( 1

2n2
 −  1

2n1
) + ( 1

3n3
− 1

3n2
) + ( 1

4n4
 −  1

4n3
) + ( 1

5n5
− 1

5n4
) + … 
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Since,  � 1
2n2

 −  1
2n1
� > 0 , � 1

3n3
− 1

3n2
� > 0 , ( 1

4n4
 −  1

4n3
) > 0 , ( 1

5n5
− 

1
5n4

) > 0 

 
 

Then, A > 
1

n1
 

 
 

B = ( 1
2n2

− 1
3n2

) + ( 1
3n3

−  1
4n3

) + ( 1
4n4

 − 1
5n4

) + ( 1
5n5

−  1
6n5

)… 

 
 
Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with B.  
 
 

Then, B > 
1

2n2
 

 
 

C = ( 1
3n3

−  1
4n3

) + ( 1
4n4

 − 1
5n4

) + � 1
5n5

−  1
6n5
� + ( 1

6n5
−  1

7n5
) … 

 
 
Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with C.  
 
 

Then, C > 
1

3n3
 

 
 

D = ( 1
4n4

 − 1
5n4

) + � 1
5n5

−  1
6n5
� + � 1

6n5
−  1

7n5
� +  � 1

7n6
−  1

8n6
�  … 

 
 
Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with D.  
 
 

Then, D > 
1

4n4
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and so on. Thus the sum S, which we had written in the form A + B + C + D + … , turns out to 
be greater than 
 

                                      S >  
1

n1
+  1

2n2
+  1

3n3
+  1

4n4
+ ⋯  

 
 
At the start we had defined S to be the following finite series, 
 
 

S = 
1

2n1
+ 1

3n2
+  1

4n3
+ ⋯+  1

knp
 

 
 
 

And we defined that,  
1

n1
+  1n2

+  1n3
+ 1n4

+ ⋯ > S = 
1

2n1
+ 1

3n2
+ 1

4n3
+ ⋯ 

 
 

However, we just proved that S > 1
n1

+ 1
2n2

+ 1
3n3

+ 1
4n4

+⋯> 𝑆𝑆= 
1

2n1
+ 1

3n2
+

 1
4n3

+ ⋯+  1
knp

 

 
 
However, this is a contradiction, since in the finite realm S can’t be equal to and greater than 
1

2n1
+ 1

3n2
+  1

4n3
+ ⋯+  1

knp
 at the same time. Therefore, S must be infinite. 

 

Now we can rewrite the S, the primes series of form n2 + 1 as, 

 

S > 
1

n1
+ 1

2n2
+  1

3n3
+  1

4n4
+ ⋯ > 1

2n1
+ 1

3n2
+  1

4n3
+ ⋯+  1

knp
 = S  

 
This implies that S > S 

 



6 
 
 

However, no finite number can satisfy such an equation. Therefore, we have a contradiction and 
must conclude that S = ∞. Remember our definition of S from the above series: 

 

1
n1

+ 1
n2

+  1n3
+ ⋯+ 1np

 > S = ∞ 

 

Therefore, 
1

n1
+ 1

n2
+  1n3

+ ⋯+  1np
 > ∞ 

 

Therefore, we have proven that the reciprocal prime series of form n2 + 1 diverges to infinity.  
Obviously, this cannot possibly happen if there are only finitely many of form n2 + 1 prime 
reciprocals of form n2 + 1, therefore the prime reciprocals of form n2 + 1 are infinite in number. 
Since the prime reciprocals of form n2 + 1 are infinite in number, the prime numbers of form n2 + 
1 must be infinite as well.  

The author expresses many thanks to the work of Johann Bernoulli in 1689, without his work 
this proof would not have been possible. It was solely through the study of Johann Bernoulli’s 
work that the author was inspired to see this divergent proof. The author would also like to 
express many thanks to Shailesh Shirali’s work in which he documented Johann Bernoulli’s 
work in the most fascinating and interesting way. 
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