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Abstract

The article in the first two sections proves decisively that the Ricci scalar and the norm of the Ricci
tensor are constants on the manifold. In the subsequent sections Ricci tensor and Riemannian curvature
tensor turn out to be null tensors. The Ricci scalar works out to zero.

Introduction

The Ricci scalar™ and the norm of the Ricci tensor!?! are not only invariants but they are constants on a
given manifold, independent of the space time coordinates. This idea is established in the initial stages
of the article. Subsequent calculations show that the Ricci tensor and Riemannian curvature tensor are
the null tensors. Consequently the Ricci scalar works out to zero.
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Ricci Scalar
First we write the Field equations®®!%;

1 8nG
Rap =5 R9ap = —5 Tap €9)

Raﬁ:Ricci Tensor ;R Ricci Scalar ;
Jap:metric coefficients; Ty p:stress energy tensor

1 8nG
9™ Rap _ERgaBgaB = w9

1 816G
R_ERX4=7 apd

8nG
—R=— w9 (2)
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Equation (2) expresses a standard result

We differentiate each side of equation (2)with respectto x¥;y = 0,1,2,3

OR 8nG 0
_ apB
ax¥  c* 9x (Tapg*”)
We use the formula
of _
P

8nG ap 8nG op op
VoR = == V5(9apT™) = —— T**VpGap + apVsT

8nG ap oR
— Ve (9apT )=ﬁ=0 3)

R is independent of space time coordinates.

Detailed Explanation

Covariant derivative of a scalar is equivalent to its partial derivative

We prove
4 afB) — af
o7 (BapA™?) = AagVy B + BapVyAap (4)

Proof:

We consider the following relations

AP

0
VyAaﬁ — Aaﬁ;y — — + FysaAsB + F],SBA“S

9Bup

W + FsyaBsB + FsyﬁBaS

VyBap = Bapiy =
[The above relations do not assume A% and Bgp as symmetric tensors]

We obtain,

0

e (BapA®F) = Bop(V, A% —T,,s*A%F — T, P A7) + A% (V, Bag + T4 Bsp + I'° ) pBas)



0
P (BapA™) = Bog(~T,s"A%F — T, PA%) + A% (15,4 Bsg + T° ) pBys) + A%V, Byg + BV, Agg
= —1,s°9°PBug — Ty’ 9% Bop + 1,0 AP Top + T, g A By, + A%V, Byg + BV, Ayp
d
PP (BapA®) = (—Tys“AF Bag + T5,qA%F Byg) + (T, p A% Bys — TP A% Bog) + A%V, By
+ B“ﬁVyAaﬁ (5)
[In the above a, s, § are dummy indices]
We work out the two parentheses separately.
With the second term in the first parenthesis to the right we interchange as follows
aes
(—T,s“AFByg + T5,,A%Bgg) = (—T,s“AF T, + T%, AP Byp) = 0

We do not have to worry about reflections on the left side of (5)because alpha and beta on the left side

also disappear on contraction.

Indeed recalling (5) and using the reIation:BaﬁA"‘ﬁ = BWA‘“’we may rewrite it [equation (5)] in the

following form :
6% (BuwA") = Bog(V, A% — T, *AF — T, P A%) + A®F(V, By + T o Bsg + T 5Bus)
+ A%V, Byp + BV, Ayp
There is no a, 8 on the left side of the above.
With the second term in the second parenthesis
pes

(19,849 Bys — TP A% Bop) = (19, 5A%F Bys — T g*A% Bys) = 0

d
P (BupA*F) = A®FV, Bog + BYPV, Ayp (6)
From(3) R is independent of space and time coordinates. Incidentally with the Einstein Hilbert Action®

we do not treat the Ricci scalar as a constant: it depends on the space-time coordinates through the
metric coefficients[implicit dependence].

Ricci Tensor



Recalling equation (1)

1 817G
Rap =5 RGap =3 Tap

ap 1 ap 8nG ap
= R Raﬁ —ERR ga[g = C_4'R Ta[;

1 87TG
= R Ryp — ER2

aB

ap 8nG ap 1,
> R Raﬁ :7}? Taﬁ +§R

8nG 0
dx B(Raﬁ p) = ct axﬁ( aﬁTﬁ)+__(R)

R being a constant

_ 2N —

32 (R9)=0
Therefore

8nG 0
(R “FR aﬁ) c4 axﬁ (RaBTaB)

8nG
= Vp(R%¥Typ) = % (R¥VyTap + T VgRyp)

8nG ap 8rG ap
ap) = —a R VgTap + —- T VpRap

G
axz (R Tap) = —T“B VgRagp (7)

Applying covariant differentiation on (1)and remembering that R is a constant and that Vﬁgaﬁ =0

VgTap = 0, we have by differentiating the field equations,

1 816G
VRap =5 RVgGap = 3 VgTap

=4 VBR‘ZB =0
Therefore from(7) we have,

8nG 0
aB af —
ﬁ (R aﬁ) C4 axﬁ (R Taﬁ) 0



R*R,p = R*'R,,

0
dxB (R™Ry) =0
RHYR,,,, = C,constant(8)
Norm of the Ricci tensor is a constant on the manifold, independent of space and time coordinates..
Riemannian Curvature Tensor

We start with the formula for the Riemannian Curvature Tensor

P 0%gas 09y 0%9gps  0%gpy )
@By8 "o\ gxPox? 9xPox® 09x*dx¥ = 0x*dx®

In the orthogonal coordinatesR,z,5 = 0 for four distinctindicesa, 8,y and §;also Ryqy5 = Rapyy = 0
for all frames of reference, orthogonal or non orthogonal. If any three indices are equal or if all four
equal, then Ryp,5 = 0

Let us now check whether Rygqs , Ragya@nd Rggpgare non zero or zero . We transform to some other
orthogonal frame of reference. The zeros occur once again [components] every time we transform to
some other arbitrary orthogonal reference frame. All the components have to mix in order to produce
the zeros. Most important, the transformation rules will also change as we select different
frames(orthogonal) of reference.

If a single component—any component---is zero in all frames of reference the tensor will be a null
. . oxH . . .
tensor. This happens because the transformation eIementsmbecome arbitrary covering an infinitude of

orthogonal reference frames.
Some zeros occurring in all frames is thus impossible unless
Repas = 0; Ragya = 0; Rappa = 0 (10)
If the Riemannian Tensor is null in one frame of reference it will be null in all other frames of reference.

Alternatively if we analyze in terms of the general coordinate systems[orthogonal or non orthogonal]we
shall use Ryqys = Regyy = 0 for same components in all reference frames [and not Rqgys = Reygs =

0 JPossibly Rygas » Rapyar Ragys Raygsand Rqpgq are non zero

The zeros will occur [components] every time we transform to some other arbitrary reference frame. All
the components have to mix in order to produce the zeros in the same positions. The transformation
elements will also change as we select different frames of reference.

Zeros occurring in all reference is impossible unless Rygqus ; Ragyaw Rapys: Raypsand Rqpgq are each

zZero.



The Riemannian tensor being zero, the Ricci tensor is also a null tensor and the Ricci scalar stands zero.

That the Ricci tensor is zero has been proved by an alternative method towards the beginning of the
section.

Dot Product Preserving Transport

In parallel transport ®! dot product is preserved. We consider here a transport where dot product is
preserved but the two vectors individually are not transported parallel to themselves

We have due to the preservation of dot product,
t'Vi(gapu®vf) = 0 (11)
We have
ti7u® # 0; t'Vvf + 0 (12)
since each vector is not transported parallel to itself.
We transform to a frame of reference where t! has only one non zero component.

tk’Vk,(gaB’u“'vﬁ’) = 0[no summation on k’: prime denotes the new frame of reference and not

differentiation]

Vi (gapu®vP") = 0(13)

ualvﬁlvi/(gaﬁ’) + ga[;'Vi,(u“'vﬁ') =0
Since Vi(gaﬁ) = 0,we have,
9ap'Vi(u®vF") = 0 (14)

The vectors u®and v#’ and consequently their individual components are arbitrary. Therefore
9ap = 0= gap =0 (15)

[the null tensor remains null in all frames of reference]That implies that the Riemann tensor , Ricci
tensor and the Ricci scalar are all zero valued objects.

Part Il

We start with the standard relation given by equation (2)

i aﬁgaﬁ = —R =Constant

c?



Tapg® =C  (16)
[To take note of the fact that Typ is a symmetric tensor]
Manifold Independent Properties

Juv and g*’are not independent:

B Cofactor of g,

gt
g

g*Vis fully dependent on the set {gw}

=1

o v guCofactor of g,
4 Iwd" = g

zzguvglw =4
nov

The above holds for all manifolds
Equation (16)
guwT" = K[constant]
It has been derived consistently from the field equations which hold across all manifolds
Equation(16) holds for all manifolds since it has been derived from the Field Equations

Solution to(16)

K
TR =2 g" + 2 (A7)

such that
Juwx* =0 (18)

Field Equations



L, 1\ 8nG(K_ y
Vy (R” ‘zRg")=—c4 (zvvg” +W‘)

=V, x* =0 (20)
for all manifolds

ay*v
axV

=

+ FVS#XSV + Fvsv)(us =0

The above has to hold across all manifolds that is for different sets of Christoffel symbols and metric
tensors produced by different manifolds. The metric coefficients and hence the Christoffel symbols
would be represented by arbitrary functions. That is impossible unless

xH =0oryt =gt = y# = Cg“v = C6*, (21)

[For tensors equations the metric coefficients and correspondingly the Christoffel symbols change in a
particular manner without any change of the line element, as we pass from one coordinate system to
another on the same manifold. The same cannot be asserted for manifold changes]

If V,x*V = 0 held for all manifolds the field equations would have been modified to
RHYV — le‘“’ + kxy*v = —87TG ™
2 ct
Either side would have become identical on taking covariant derivative
1
v, <RW — ERg’W + k)(’”) =0
8nG v
Vi <7T ) =0
By contrast V;g"¥ = 0 is a standard result!”) that holds for all manifolds

ag
Vigpn/ = WMLV - Fiusgsv - Fivs.gus

_ ag“ _1 sp <agpi agup _ agiﬂ) _ 1 sp (agpi n agvp _ agiv)
= sv us

dxt 2 9 dx*  Oxt  OxP f‘g dxv  Oxt  OxP

aguv _1 sp <agpi agup _ agiy) _ 1g5p <agpi agvp _ agiv)
sv 2 us

T oxt 2 9 dx#  Oxt  OxP 2 dxv  oxt  oxP

_ aguv _ 15 D agpi n agup _ agiu —E(S D a.gpi n agvp _ 09iv
oxt 27V \ox*  9xt  oxp 2 °F \axv = oxt  9xP



T axt 2\ axt | oxi axY 2\ dxv  Oxt  OxH

_ aguv 1<agvi aguv _ agiu) . 1<agui agv,u . agiv) -0
Viguv =0(22)

Equation (22) holds does not matter what be the manifold. Same is true with the Bianchi identity in that
it applies to all manifolds.

So long as we are on the same manifold, the line element is preserved. This is not true for distinct
manifolds

Example: A room with a flat floor and a hemispherical roof is considered. A small arc is drawn on the
roof and its projection is taken on the floor. With this transformation

ds'? # ds?

Only if
ds'? = ds?

then g, behaves as a rank two tensor. Indeed

ds'? = ds?

= gupdxtdx’ = gaﬁdx“dxﬁ

Therefore
uv _K wv
T =gt (23)

K -
But Typ = 2 9ap makes the stress energy tensor trivial

We now consider the Field Equations given by (1)

1 8nG
Raﬁ —EgaﬁR =?T{ZB



10

R%B = 9 (24)

Again from the Field equations

P 1 81G\>2 g
(R ~59°7R) (Rap =3 R0as) = () T/Tas

From relation (8)
RaﬁR"‘ﬁ =Constant (26)

= T"‘BTO,B =constant[from (8) and (25)] (27)

Now the metric tensor is a diagonal tensor: off diagonal elements are all zero. They are zero for the in
all reference frames. Therefore g, = 0 for all components diagonal or off diagonal.

_ x* oxP
Iwv = 3zn 570 9B (28)

All components g,z mix to produce each gy, . If g, = 0 for any component in all frames of reference

. dx% .
all Jap have to be zero because the transformation elements, ai—,u,are arbitrary to the extent the

transformation is non singular.
Part Il
[Alternative Treatment: Brute Force Calculations]
From (27)we have,
TPV, Typ + TapViT* =0
TapV:T* = 0;i = 0,1,2,3 (29)

Indeed



11

TFViTep = 9°* 9" T Vi(9argp T™)
= 9 9P T [9ar9p Vi (TH) + THVi(gargp)]
= 99" 9o 95 Ty Vi (T'*)
= 8,8, T, Vi (TH)

= Ty ViTH = TopV, T

Therefore
Tap VT =0 (30)
From (8)
RaﬁR“B = constant
We have,
RapViR* + R*PV,R,p = 0
Now
RPViRap = g 9" R Vi(gargpR™)
= 9“gP Ry [9ar 95 Vi (R*) + R*V;(gargpi)]
= 99"’ 9ax 9p1Ruw Vi(R™)
= 8;"8,"R Vi (R¥)
= Ry ViR¥ = RygV;R*
Therefore
RepViR¥ =0 (31)
From (16)
Tapg™ =C
= gw%+aagT“ivT“v =0 (32
From(30)

TapViT* =0
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oT*# agst agsj agi} (?g ag i 8g-- .
_ iB ﬁs si si_ %9\ raj _
= Tap o *+ Tapg™ 2<6x1 Tt “ow )T T\ 50 T o "o )T 70

aT“ﬁ
B oxi

. oTh 7578 <6gs.l- 1995 agi,-> SR <6951 L 995 _agij> o

Te

agst agsj 6gij agsz ags j agi j
T,z TP g% = L _ Tup T ﬁs L _ =9
Tlapt™g <6x1 Toxt Toxs) T g o T oxi  ox

B oxi dx) ' axi  axS dx) ' axi  oxS

aTaﬁ agsz agsj agu
' <6x1 ot o) 0 (33)

Now considering the fact that dummy indices can always be interchanged without affecting the value of
an expression we have,

| dg;i 0g;s g dgsi 0g;s 09
TJBT55< Iii | 291 _ g‘?) TSBT15< Isi | 2is _ 6x5> (34)

0xs oxt 0x’ ox’ oxt
We have
oT” 9gsi  09s; 09y
0 = 2T, VT = 2T, 2T5, TR [ = J Y
ap Vi ok gt T <6x1 "o ox

Applying (34) on the above,

=, B s (. ) e (2 228
aT“ﬁ 09ji a9;js
2T VT = 2T,p ot (TP —TSBTJB) ~ 4+ (17gTF +TSBTJB) L
+(T°pT/F = T/pTF) == g‘s (36)
Now,
T/ TSP = g TIKTSP
TSpTIP = gg TKTIP = g, g TSPTI* = T pT5P
Therefore

T/ TSP —T°T/F =0 (37)

An alternative technique for deriving (37) would be as follows. By the interchange of dummy indices j w
and s we may assert that
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g}l gJS

(T/pTsP — TSﬁTJﬁ) = (T7pT*F + TSﬁTJﬁ)

; o\ [(0gii 0g;s
TJ TSP —TS,TIP L4+ =0
( B B )(axs + O xt

P
(TJ TSP —Ts Tfﬁ)lsatensor whlle( it ag;s

product may not be zero in all frames of reference unless we have (37): TJ TsB — T°g TJB. By quotient

) is not a tensor and their product is not a tensor. The

agji . 9
law!'®, (i + g’S) should be a tensor unless (T/3T# — T4 T/F) = 0The only solution is T, —

xS a
a a
kgap = 0..1F (2L 4 22

to be not so from its transformation.

) = 0in all reference frames it becomes the null tensor. We are considering it

The alternative technique has been discussed since it will be used in the final stages to bring out
important results.

From (36) and (37) we have

aT"‘B aTaB da.
2TapViT® = 2Top — =+ (To' T + T°T) 5 g,s = 2Top ——+ 2T’ T*F ag]is
X
Tk ag
2TapViT™ = 2Tap —— +ZTﬁJTSB ~ (38)
Using TpV;T% = 0 and (38)we have
Tk ; ag;
j Js
Tap T + 10T 55 = 0
oT*# g9
=T, — 4Ttk =0 (39
aﬁ axl + axl ( )

From (32)
aT“B aglm
Jap 5t t re=0
aT“B agl
ap 5+ 57 9 T =0 (40)

From(38) and(39)

oT*F

dx i (Taﬂ kgaﬂ)"’ glm

T (T —kgi!) =0
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oT#
o (Tap —kgap) + = glmT’"" 9" (Tep = kgip) = 0

6T0‘
(Taﬁ kgaﬁ) + glm Tmegth (T B~ kgaﬁ) =0

6Ta‘8 agl
(Taﬁ - kgaﬁ)( Jxt +?7in7~maglﬁ> =0 (41

.Now the second factor on the left of (36) may be written as:

aT**  dgm p OT* 0™ g,) | 15 0T
oxt oxt gt = dxt + oxi Y ’ = gmg" dxt
af ma ma
oxt oxt dxt
_ oT P N A(T™ gm) " 9T *B
T 9xt dxt 9 dxt
aTl .
B
T 9xt 9

Therefore

TP 6glm O9m -ma 15 _ aTlf 18
Oxt 6x‘ 0xt

The above is not a tensor [derivative of a tenor is not a tensor in the curved space time context]

a

aT,
(Tap — kgaﬁ)ﬁglﬁ =

(Ta[; - kgaﬁ) is a rank two covariant tensor.

(Tup — ke o g =0 42)

a

. aT,
(T,' — k6, o7 =0 (43)

. . . aT*
(Tal - k6al)|s a rank two mixed tensor.By quotient law a—xll.should be a tensor unlessT,” — k5al =0

Therefore the left side of (17) is not a tensor. It may not transform to zero in all frames of reference

unless

T,! — k6, =0
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glﬁ(Tal - kgal) =0
Tap = kgap (44)

It is important to take note of the fact that equation (43) is derived from tensor equations. Hence it
preserves form in all reference frames though it is not expected to do so considering the fact that it is

. I aT® ,
not a tensor equation. By division rule % should be a tensor unless T3 — kgap = 0The only solution

is Taﬁ - kgaﬁ =0..
Similarly by using (31°) and (32) we may prove
Raﬁ = k,gaﬁ (45)

but we have seen in part | that g, = 0. The same result was derived n the manuscript [Dot Product

Preserving Transport]
We recall(43)

a1,

1 l _
(T,' — k8,") il
Ifl=«a
oT,*
(Taa - k) Dt =0
« T, oT,* _ 0
“ 9xt axt

1
T,%dT,* — kdT,* = 0 = EdTa"‘2 — kdT,* =0

1
:ETa“Z—kTa“—czo:Ta“Z—ZkTa“—CZO

2k +VAKZ +4C 9

T(l
@ 2

6)
The field is constant .But we have seen(T,' — kSal) =0

Therefore

_ 2k +V4k? + 4C

Ta
“ 2

—k=k>+C=0 (47)
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The point is the right hand side of equation (43) is not expected to have zero on its right hand side in all
frames of reference since it is not a tensor equation. Nevertheless the form of (43)is preserved since

Tep — kgap = 0 which is a tensor equation.

Forl+a
laTla _ 0
* 9xt
la
— is not a tensor. Therefore
oxt
T, =0 (48)

The last equation may be compared with T,' = kg', = k&', = Oforl # a
Conclusion

We have unexpected constants on the manifold like the Ricci Scalar and the norm of the Ricci Tensor.
They are independent of the space time coordinates. They are not only invariants but they are also
constants. The article renders the fact that the Ricci tensor and the Riemannian curvature tensor are
the null tensors.The metric tensor also happens to be a null tensor. There is a requirement for
restructuring the subject.
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