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Keywords

Abstract

In 2014 Steven Weinberg noted that quantum mechanics can avoid various
difficulties, such as the many worlds hypothesis, by taking the quantum
states to be density matrices without reference to state vectors. An im-
mediate consequence of Weinberg’s idea is that electron spin can be taken
to follow SO(3) instead of SU(2). This radical departure from present un-
derstanding motivates our exploration of density matrices as a method of
going beyond the Standard Model.

An important tool for Standard Model calculations is the Feynman
path integral formulation of quantum field theory. When the path integral
is Wick rotated from time to imaginary time or temperature it becomes
a method of cooling down density matrices. While this does not show
that one goes beyond the Standard Model by Wick rotation, it does show a
close relation between this method of cooling density matrices and quantum
field theory of the Standard Model. We explore these ideas and exhibit toy
models with particle content and symmetry similar to the Standard Model.

Quantum Mechanics; Electron Spin; Density Matrix; Symmetry

1. Introduction

Weinberg’s analysis of density matrices[1] suggests a look at density matri-
ces as the origin of the particle content and symmetries seen in the Stan-
dard Model of elementary particles. The Standard Model’s weak SU(2)
symmetry is broken at low temperatures and becomes unbroken above the
electroweak or Fermi scale of around 250 GeV. This is a change in sym-
metry that depends on temperature. To model it with density matrices,
suppose a grand canonical ensemble is pure neutrino at low temperatures
but the ensemble becomes mixed neutrinos and electrons at temperatures
where the heat bath can provide W¥s. With a mass of about 90 GeV, it
requires 180 GeV to produce a W¥ particle pair, comparable to the energy
where SU(2) symmetry breaks.
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Weinberg’s observation [1] is that several of the unexplained behaviors
of quantum mechanics are eliminated when one switches from state vec-
tors to density matrices. State vectors famously imply that measurements
cause the instantaneous modification of the mathematical representation
of distant isolated systems when they are entangled. While such measure-
ments cannot be used to transmit information, their effect on state vectors
casts doubt on their being a true description of reality. Unitary evolution
of state vectors cause an ontological problem when measurements are con-
sidered. A solution is the many-worlds interpretation which would create
a ridiculously large number of branches of history. Weinberg notes that
these problems can all be solved by an interpretation of quantum mechan-
ics where the density matrix, rather than the state vector or wave function
is the description of reality.

A difficulty in understanding the application of symmetry principles to
density matrices is that the physics community is well educated in the ap-
plication of symmetry to state vectors and this knowledge can make Wein-
berg’s version of density matrix symmetry confusing. Section 2.0 covers
the symmetry of density matrix models of spin-1/2. The section is elemen-
tary and a readers might consider skipping or skimming the section if the
following paragraph already makes sense to them:

The state-vector model of spin-1/2 is a doublet or 2 representa-
tion of SU(2). A density matrix model of spin-1/2 is given by a
2 x 2 representation of SU(2). The rules of SU(2) symmetry are
that 2 = 2 and 2 x 2 = 3 + 1 so a density matrix model must
follow the 3 4 1 representation of SU(2). The 1 is the arbitrary
complex phase that is cancelled in a density matrix so we have
that a density matrix model of spin-1/2 follows the 3 represen-
tation of SU(2) which is the same as the 3 representation of
SO(3). What representation of SU(2) or SO(3) does a density
matrix model of spin-3/2 follow? !

Since density matrices and state vectors are equivalent formulations of
quantum mechanics,[2] we lose no experimental predictions by moving to
density matrices. However, conversion between different formulations of
quantum mechanics can be difficult. Quantum field theory is a version of
state vector quantum mechanics where the vector components are occu-
pation numbers for each possible energy. To use density matrices as the
source of the SU(3)xSU(2)xU(1) symmetry of the Standard Model we need
to relate density matrices to a quantum field theory. Our approach is to
analyze an idealized Stern-Gerlach experiment from the two approaches
and to compare their symmetry as a component of the SU(3)xSU(2)xU(1)
Standard Model symmetry. This is the subject of Section 3.0 which ends
with a derivation, using generalized Stern-Gerlach apparatus, of the well
known fact that when fermions follow the defining representation of an
SU(n) symmetry, their vector bosons follow the adjoint representation.

Section 4.0 discusses the derivation and symmetry consequences of den-
sity matrix cooling. In the example of weak SU(2) symmetry breaking
the low temperature limit are two particles with different charges. This
is typical of density matrix symmetry breaking. The word “algebra” in
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mathematics defines a set of objects that can be multiplied and added (and
some other stuff). As an example the 3x3 complex matrices form an al-
gebra, called a matrix algebra. Generalized Stern-Gerlach experiments in
a fundamental representation of SU(n) can be represented by the primi-
tive idempotents of nxn complex matrices. We show that combinations of
these experiments provide all the elements of the matrix algebra so that
examining algebras is a natural way of explaining the Standard Model.

If we are to take density matrices as the fundamental object, then the
industry’s preferential use of state vectors has been due only to their math-
ematical convenience. A spinor is the square root of a vector in the same
way that a Dirac operator is a square root of a Laplacian. That is the so-
lution of a Dirac equation gives four solutions of a Laplace wave equation.
The reverse is not true, that is, four arbitrary solutions to the Laplace
wave equation cannot always be assembled into a solution of the Dirac
equation. This suggests that the Dirac equation arises from couplings be-
tween Laplace wave equations. These couplings are encoded in the gamma
matrices, so we propose that they are physical and their symmetry explains
the Standard Model particle content. The details are in Section 5.0

Section 6.0 is a conclusion.

2. SO(3) Spin Symmetry

Elementary particle theory is typically taught using gamma matrices and
bispinors (i.e. “Dirac spinors” or “4-component spinors”). This paper uses
spinors (or “2-component spinors”) and the Pauli spin matrices, a method
that is sometimes used in supersymmetry but is not commonly taught. If
the reader is unfamiliar with this application of spinors, an excellent review
paper that shows how to convert between spinor and bispinor calculations
as well as a complete set of spinor Feynman diagrams for the Standard
Model is [3]. Since we will be using spinors instead of bispinors in this
paper, spin-1/2 is a natural choice for familiarizing the reader with the
Weinberg method of density matrix symmetry.

Weinberg pointed out[1] that some of the bizarre behavior of quantum
mechanics disappears when density matrices (DM) are considered without
state vectors (SV). This allows symmetry operations more general than
with state vectors. When density matrices are considered in the traditional
way, as a sum over products of kets and bras, a symmetry operator U is
applied twice, once to the bra side and once to the ket side, for example:

U(la){al ) = U la){a| U (1)

With n-dimensional state vectors, U is an n X n unitary matrix, while |a)(a|
is an Hermitian n X n matrix.

For most of this section we will specialize to spin-1/2 so our state vectors
are 2-dimensional complex vectors, our density matrices are 2 x 2 Hermitian
matrices, and the symmetry operator U is a 2 x 2 unitary matrix. The
density matrix has a total of 2x2 = 4 complex components. Weinberg’s
observation is that the four complex components of a density matrix allow
symmetry operators appropriate to four complex components, that is, our
symmetry operators can be 4 x 4 matrices. Another way of describing this
is that Weinberg is allowing the density matrices to have two distinct types
of multiplication; for the multiplication of density matrices the traditional
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2x 2 matrix multiplication is used. But for symmetry operations the density
matrix is rewritten as a 4 element vector and symmetry operators are 4 x 4
matrices (with additional restrictions beyond being unitary).

Having two different multiplications defined for the density matrix can
be confusing. So to give the reader a hint of which type of multiplication
we are assuming we will use “SV” and “DM” for the traditional state
vector type of multiplication and the new, density matrix only method
of multiplication discussed in this section. Then the usual and Weinberg
methods of symmetry operations on a density matrices p are:

UVip) = U p UV, Usual )
UPM(p) = UPM p, Weinberg.

The matrix multiplication in the “Usual” line of the above is 2 x 2 matri-
ces while the “Weinberg” line consists of a 4 x 4 matrix U multiplying p
considered as a 4-dimensional vector.

Weinberg illustrated his idea with a 3x3 Hermitian matrix:

ap bz b
pab= | b3 az b (3)
bQ bT as

where the ay, transform as SU(3)V singlets subject to a; +az +az = 1 and
the by transforms as an SU(3)°" triplet. This gives 3x3 =3+3+1+1+1
rather than the expected result of 3 x 3 = 8 + 1.

Weinberg’s example has state vectors packed into a density matrix. This
paper will consider a slight modification; we will pack density matrices into
density matrices. This seems more compatible with the assumption that
density matrices are the fundamental formulation of quantum mechanics.

We will find it useful to have a closed form result for the pure density
matrix corresponding to spin-1/2 in an arbitrary direction @ = (ug, uy, u.)
a real 3-vector of length 1. A derivation with SU(2) state vectors might use
Fuler angles to rotate the spin-up state vector. This is a calculation which
is much longer than the density matrix calculation, see Appendix C.1, pp
167-172, of [3]. We will now give the SU(2)PM density matrix calculation.

The spin operator for spin in the @ direction is given by the dot product

—

U-0:

au—ﬁ‘5—< +us ux—zuy>. )
Uy + 1Uy — Uy

The reader can verify that, like the Pauli spin matrices, o, squares to unity
and has trace zero. We seek an eigenvector |u) with oy, |u) = |u). We can
then make the pure density matrix p, by

pu = |u)(ul. (5)
We see that p, will be a double-sided eigenvector of o, with eigenvalue 1:
Oy Pu = Pu Ou = Pu (6)

But since
ou (1 + 0y) =0y +02=0,+1=1+0,, (7)
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we have that (1 + o,,) is a double sided eigenvector of o, and so p, is pro-
portional to (1 4 oy). The proportionality constant is defined by requiring
that the trace be unity giving:

1 o

2\ ugtiuy 1-—wu,

To convert p, to a spinor, take any non-zero column and normalize.

We could also derive p, from the SO(3) symmetry of spin-1/2 density
matrices. First, parameterize the Hermitian 2x2 matrices using the Pauli
spin matrices and the unit matrix.? So an arbitrary Hermitian 2x2 matrix
can be written using four real parameters a,:

H(a) = a1l+a,0,+ayoy + a0,
B ar+a; oy —iay (9)
o ay +ioy ar—a; )

Since in SO(3) vectors transform as vectors, we deduce that (ag, oy, o) is
proportional to « and the requirements of idempotency and trace =1 gives
the result up to the sign of +4.

We’ve shown that the spin-1/2 density matrix transforms under the
SO(3) fundamental representation. This is the same representation as spin-
1 SU(2). Thus Weinberg’s method could be described as having kept the
symmetry the same as with state vectors (i.e. SU(2)) but the representa-
tion has changed from the SU(2) fundamental representation of the usual
spin-1/2 state vectors to the SU(2) adjoint representation. This is a gen-
eral property of Weinberg’s method; a state vector that transforms under
the SU(n) fundamental representation corresponds to a density matrix that
transforms under the SU(n) adjoint representation. Thus the up quarks,
which transform under color SU(3) as a triplet in state vector form, cor-
respond to density matrices that transform under the SU(3) adjoint repre-
sentation.

That Weinberg’s method can be thought of as changing the representa-
tion (from fundamental to adjoint) but leaving the symmetry alone suggests
we could have titled this paper as “Electron Spin Transforms as SU(2) Ad-
joint Representation.” We’ve not done so for two good reasons. The first is
that Weinberg’s idea is that density matrices are to be considered without
respect to state vectors. The second is that we will show in Section 5 that
color SU(3) can be derived from SO(3) combined with a discrete symmetry
implied by the gamma matrices. A further reason is that the paper title
would be slightly less shocking.

As an exercise for the reader, consider a general Hermitian 3x3 matrix.
Just as we parameterized the 2x2 Hermitian matrices with the three Pauli
spin matrices we can parameterize the 3x3 Hermitian matrices using the
eight Gell-Mann matrices A\;. Then any 3x3 pure density matrix p, can be
written with eight real numbers ay:

1
pa=g(1+ She10k Ak)- (10)

2Physicists are likely to find this confusing because the Pauli spin matrices are the infinitesimal generators for SU(2) rotations.
We are not using them in any sort of Lie algebra way. Instead, we are using them as three elements of a basis set for a real
vector space. The vector space consists of the Hermitian 2x2 matrices. Any 2x2 Hermitian matrix can be written using a basis
consisting of the Pauli spin matrices and the unit matrix. No infinitesimal rotations involved.
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Find a quadratic equation that the a; must satisfy. The quadratic equation
for the 2x2 case was u2 + ug +u2 = 1 and any solution to this equation
defined a pure 2x2 density matrix. In the 3x3 case additional restrictions
are needed.

3. Density matrices and QFT

To apply Weinberg’s density matrix symmetry methods to the symmetry
of the Standard Model fermions we need a method of relating density ma-
trix symmetry to QFT symmetry. We will use generalized Stern-Gerlach
experiments. These experiments do not change the number of particles so
they can be modeled with density matrices and the matrices can be finite
dimensional which is compatible with our concerns with spin and internal
symmetries.

A method of relating density matrices to QFT is implied by the “mea-
surement algebra” that Julian Schwinger developed in the 1950s and pub-
lished in a series of four papers: [4, 5, 6, 7]. In creating the measurement
algebra, Schwinger’s objective was to create a foundation for QFT but he
did not realize that goal. He did use the measurement algebra as an in-
troduction to quantum mechanics when teaching and his class notes were
compiled into two textbooks [8, 9] that were used by some of his students
when they eventually taught introductory quantum mechanics. These texts
develop the usual subjects of introductory quantum mechanics with the
measurement algebra as the foundation and the reader interested in how
quantum mechanics can be developed from the measurement algebra are
referred to them. These textbooks quickly move from the measurement al-
gebra to state vectors. Also see this author’s paper [10] on the application
of the measurement algebra to classical and quantum binary measurements.

Hints of how Schwinger saw his measurement algebra as a foundation
for QF'T are seen in his definition of a vacuum state (called the “null state”)
and creation and annihilation operators in the first pages of [5]. The an-
nihilation operator fits into the measurement algebra the way that a bra
is part of a density matrix while the creation operator is the ket. This
makes a density matrix where the created particle of type a replaces an
annihilated particle of type b:

Pab = |a)(b] (11)

In the above, (b|, called M(0,b") = ®(b') in Schwinger’s paper, is the anni-
hilator and |a) which he labels M (a’,0) = ¥(a’) is the creator. The annihi-
lation operator eliminates a particle in the state b leaving what Schwinger
calls the “nonphysical state”, the null state 0 or vacuum. The creation
operator adds the state a to the vacuum. The overall effect of p,p, which
Schwinger calls M(a’,b') = M(a’,0) M(0,V), is to annihilate a particle
in state b and replace it with a particle in state a. These hints of how
the measurement algebra could work as a foundation for QFT are from
Schwinger’s PNAS journal articles and do not appear in the later measure-
ment algebra textbooks, perhaps indicating that Schwinger abandoned it.
In relating density matrices to QFT, it’s possible we will illuminate some
of the problems that Schwinger faced.

Since our interest is in density matrices, we will not split Schwinger’s
measurements into bras and kets, but instead will use only measurements
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of the “first type” i.e. |a)(a| which he labels M (a') in [4]. Our approach
avoids the introduction of arbitrary complex phases.

Schwinger’s measurements of the “second type” M (a’,b’) convert states
from a state b to a state a. While we will not be using these type measure-
ments, they are worth discussing as they are important in his derivation of
quantum mechanics and they illustrate the meaning of the quantum vacuum
from Schwinger’s point of view or density matrices. Note that we will be
concerned with extensions of the Standard Model where all the fermions are
related by a continuous symmetry. For example, the left-handed electron
and left-handed neutrinos of the Standard Model transform as a doublet
according to weak SU(2) but appear as two separate particles at the low
energy limit. We assume that at sufficiently high energies all the Standard
Model fermions (of the same handedness) are related by continuous sym-
metries. For these situations, it is always possible to define a measurement
of the second type as a real multiple of products of measurements of the
first type. If M(a’') = p, and M (V') = pp do not annihilate, then M (a’, V)
can be defined as a real multiple of the product M(a’) M (V') = ps pp. In
terms of density matrices made from bras and kets, this is:

M@ V) = pa py | /5T (papn) = m (12)

which depends on (bla) # 0. To make this sort of definition work when the
b and a state annihilate, consider b = +z as spin-up and a = —z as spin-
down so that M(+z,—=z) is the raising operator for spin-1/2. Since these
states annihilate, that is, M (4+z) M(—z) = 0, we cannot use the product.
For these cases we insert an intermediate state(s) so that the products do
not annihilate. For example, we can use spin in the +y direction to define

1—|—021+0y1—02_<0 —i/2>

M(+z,—2) x 5 5 5 0 0

(13)

The complex phase —i is a matter of choice of the intermediate state. The
usual value 1 is obtained by using +z.

Our interest is in the Standard Model symmetry SU(3)xSU(2)xU(1), the
symmetry of the forces experienced by the elementary fermions. In QFT,
forces are accomplished by the emission and absorption of bosons. Density
matrices preserve the number of particles and so must accomplish forces
another way, typically by potentials. In the usual Stern-Gerlach experiment
for spin, the force is due to a magnetic field so the corresponding QFT
bosons are photons, but the potential is not explicitly defined. This makes
the Stern-Gerlach experiment more compatible with quantum field theory
than situations that explicitly use potentials such as the energy levels of
the hydrogen atom. In addition, while QFT is used for corrections to the
energy levels of hydrogen it is quite difficult to use it to find the energy
levels themselves. The Stern-Gerlach experiment can be approached with
both QFT and density matrices.

Given a particle type defined by a pure density matrix p, there is a
generalized Stern Gerlach experiment that selects for that particle. Such
an experiment keeps the particles of type defined by p and throws all the
others away (into the other branch of the beam splitter, and then to a beam
dump or other safe beam absorption). We can naturally describe such a
Stern-Gerlach experiment by the type of particle it selects for, i.e. p. Note
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that p is an Hermitian idempotent. That is pf = p and p? = p. If we
have two such experiments, say p; and p2, we can connect them together
so that the particle first enters p1, and if it survives continues into ps. This
is a compound Stern-Gerlach experiment, it is represented by the product
of the two Hermitian idempotents: pi12 = po p1. This is a matter of
matrix multiplication of the usual type used in density matrices (rather
than the new method for density matrix symmetry). We will associate
the propagators of QFT with the pure density matrices. Propagators can
handle arbitrary spin directions while density matrices restrict to a single
case but our concern will be in the symmetry of the vector bosons so we
will not discuss this in detail. To understand how density matrices work as
models of Stern-Gerlach machines we will consider products of pure density
matrices.

Note that the matrix p1s representing the compound measurement p;
followed by p2 is not, in general, Hermitian, idempotent or with trace 1. We
can illustrate this fact by looking at the spin-1/2 case and letting p; = py.
and ps = pi;. Then we have

PtzP+z = ‘ + $><+$‘ ‘ + z><+2’7
11 10
<1 1)(0 0)’ (14)
B 1/2 0
- ()
The trace isn’t unity because half the particles have been lost between the
two measurements. The lack of Hermiticity corresponds to the fact that the
measurements do not commute. That is, a compound measurement of spin
in the +x direction followed by +z is not the same as the compound mea-
surement of spin in the 4z direction followed by the +x direction. Finally,

half the particles are lost in the transition from +2z to 4+x. This breaks
idempotency but only by a factor of two. That is, 2p4,p4. is idempotent:

N[

(2p42P+2) (2p420+2) = (20+2p+2), (15)

with trace 1 but it is not Hermitian.

In general, a product of two pure density matrices does not have trace 1
and is not idempotent but so long as the product is not zero, we can repair
these through multiplication with a real number. Hermiticity can also be
repaired; to do this we need to multiply by another pure density matrix so
that the product begins and ends with the same pure density matrix. In
this case, so long as the product is not zero, we can multiply by a complex
number to make the product a pure density matrix, i.e. Hermitian, with
trace 1 and idempotent. As an example with spin-1/2, we have

1-7/1 0
P+zP+yP+zP+z = 4 < 00 ) ) (16)

so 2(1 + i) multiplies p;.p4yp+ap+- to give the pure density matrix p, ..
That such a complex number can be found for non zero products of pure
density matrices that begin and end with the same matrix is generally true
in all finite dimensions. For the above, the phase of (1 —i)/v/2 is —7/4.
This is for an octant. If the path encloses half the sphere the phase will be
four times as much so that there will be a factor of —1 as is appropriate
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for swapping two spin-1/2 fermion state vectors. Spin-1 bosons pick up
twice the phase so they will have —m /2 for the octant and —2 for half the
sphere; swapping two boson state vectors does not change the sign.

A force boson QFT interaction, for example, where an electron emits a
photon, is a term in a perturbation calculation where the most basic term is
electron propagation without boson emission. A Stern-Gerlach apparatus
combines these two terms. In addition, our density matrix model of Stern-
Gerlach machines includes a beam dump that is not modeled in QFT.
To bring these into alignment, we will consider Stern-Gerlach apparatus
with very small angles; with these, the electron has a vanishingly small
probability of failing to make the transition.

To obtain Stern-Gerlach experiments with no particle loss, consider an
experiment that changes the spin direction by an angle 6 between two
directions 4 and ¢ with @ - ¥ = cos(f). The probability of making the
transition is tr(p,py) so the probability of failing to make the transition for
small angles is

1 —tr(pupy) = 1 — (14 cos(6))/2 ~ 62 /4. (17)

Replacing the single Stern-Gerlach apparatus of angle 6 with N of
them each with angle /N we see that the loss decreases from 62/4 to
N(6/N)?/4 = 6%/4N so we can eliminate the particle loss by letting N in-
crease arbitrarily. As an exercise for the student, show that the procedure
of replacing 6 with /N does not change the quantum phase.

The pure density matrix p, has several interpretations. Mathematically,
it is a projection operator with trace 1. It’s symmetry is SO(3) so the @
specifies a direction in space. That direction is the spin orientation of
the particle and in a Stern-Gerlach apparatus it is the direction of the
inhomogeneity of the magnetic field. Thus it simultaneously describes the
symmetry of the selected particle spin and also the symmetry of the device
that selects it. Thus the product p,p, has the symmetry of a device that
alters the spin direction from « to ¢. That is, in some way this product is
a description of the vector boson that causes the spin direction to change
from « to ¥. But it also includes various other things; to extract just the
symmetry of the vector boson we can consider the reverse product p,p,.
The reverse product corresponds to a vector boson with the opposite effect.
We can think of these as describing the same vector boson if one emits
while the other absorbs. So to obtain the symmetry of that vector boson
we subtract:

Yuv = (pvpu - pupv)/z (18)

Writing & = (01, 092,03) and similarly with @ and ¢ so we can use the
summation convention we use Eq. 8 to write the above in terms of Pauli
matrices. All the terms cancel but the products of Pauli matrices leaving:

Yuv = (Ujaj UROk — UROE Ujgj)/2’
= vjuk (0jo — 0k0;)/2, (19)
= vj ug [0j,0%]/2.

Note that in the above, we have not been using the Pauli spin matrices as
the infinitesimal generators of SU(2). Instead, we’'ve been using them as
part of a basis set for the Hermitian 2x2 matrices. Nevertheless, we can
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reduce the commutator [0, 0] by using the structure constants of SU(2),
ie. fikl = 24kl
[0 o%) = [/¥an, (20)

so that 7, is '
Yuv = U5 Uk fjkl al, (21)

and thus 7,, has the symmetry of the structure constants and we have
that the vector bosons follow the adjoint or spin-1 representation of SU(2).
This is the same as the spin-1 representation of SO(3). The calculation
works similarly with SU(3) so that, under color rotations, gluons follow the
adjoint representation of SU(3).

4. Charge, Temperature and Symmetry Breaking

Our interest here is in the symmetry of single particles rather than particle
interactions so we will follow the lecture notes of Michael Cross’s Physics
127c¢ class “Statistical Mechanics” at Caltech. The evolution operator for
a single particle moving under a Hamiltonian H is

U(x,2';t) = (x| exp(—iHt/h)|'). (22)

Ignoring normalization, so we have only a proportionality instead of an
equality, the formula for an unnormalized density matrix is similar:

p(z,a', B) o (x| exp(—BH)|2'), (23)

where = 1/(kp T) is the thermodynamic beta function that is propor-
tional to inverse temperature and has units of inverse energy. The density
matrix can be obtained by rotating the time ¢ of the evolution operator to
imaginary time / temperature by a rotation in the complex time plane:

t — —iph. (24)

This is known as a “Wick rotation”.
We can use the fact that [ |z)(z| =1 to multiply evolution operators:

U(z,2';t1+t2) = /dm” (x| exp(—iHt1/h)|x")(z" | exp(—iHta/R)|z). (25)

Repeating this process, and using infinitesimal time steps, gives the Feyn-
man path integral. The same can be done with density matrices. Our
interest in density matrices does not include spatial dependence giving a
familiar statistical mechanical equation:

p(B) o< exp(—p H). (26)

The integral over dz” in the evolution operators will become matrix multi-
plication between two density matrices giving an equation for multiplying
density matrices:

p(B1 + B2) = p(B1) pB2) (27)

Let us illustrate this with a concrete example in 2x2 matrices. Let 3y
be small compared to the Hamiltonian energy which we leave implied but
leave its determination as an exercise for the reader:

po(Bo) = (14 0.4000,)/2. (28)

10
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In the above, the 0.400 gives the amount that py differs from the high
temperature limit which is the unit matrix divided by two. Using the
density matrix multiplication equation to compute po(25p) we find:

po(250) (po(B0))?,
(1+2(0.400)0y, + (0.4)%) /4, , (29)
= (1+0.6900,)/2

X
X

so that reducing the temperature by half has the effect of increasing the
0.400 factor to approximately 0.690. If we continue the process, in the
limit of infinite 8 (or zero temperature), this factor will approach 1 and
po(00) = (1 + oy)/2. Replacing the 0.400 with a real number f between 0
and 1, and generalizing from o, to o, we find

p(f) = (1+ fou)/2, and squaring leads to
p(2f) = (L+(2f)a/(1+ f?)/2.

Seeing f — 2f/(1+ f?) reminds us of the formula for tanh(26) so we derive

a general equation for any 2x2 density matrix that depends on temperature
T:

(30)

pulTo/T) = (1 + tanh(Ty/T)oy) /2 (31)

where T} is a positive real constant giving the temperature scale. This
defines the density matrices p(T') as a path in the 2x2 complex matrices.

In the Standard Model, the left handed electron and neutrino form an
SU(2) doublet. This is a natural system to explore symmetry breaking and
charge in density matrices. Putting the neutrino in the top position and
the electron in the bottom position of an SU(2) doublet ket we have the
density matrices for these particles as

puL:<(1)8>7 peL:<8(1)> (32)

(33)

so the weak isospin charge operator is

I3:0.50Z:<+B/2 _f/2>. (34)

We will use the signs of the weak isospin charges to distinguish the two
particles. Then we can write their temperature dependant density matrices
as:

p+(To/T) = (1 £ tanh(Tp/T)o,)/2 (35)

Note that these density matrices have no o, or o, portion; they are made
out of the unit matrix and o, only. Consequently, the Hamiltonian that
is implied by them is a multiple of o,. And the weak isospin operator I3
is also a multiple of ¢, and so commutes with the Hamiltonian. This is a
general property of charge operators, they commute with any Hamiltonian.
In addition, the non zero elements of the above 2x2 matrix consist of two
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1x1 blocks on the diagonal. The block diagonal matrices are important in
the Standard Model as we discuss below.

Since the density matrices in Equation 35 do not have any o, or oy,
component, they describe statistical mixtures of electrons and neutrinos
only. That is, no linear superpositions are included. If we take a random
particle from such an ensemble, it will either be a pure neutrino or a pure
electron and cannot be a superposition of these states. This is compatible
with the idea of “superselection sectors” which limits quantum states to
those that commute with the charge operators. The charge operators divide
the Hilbert space into superselection sectors which are each characterized
by a specific collection of charges. Superselection sectors apply to the cold
temperature limit of quantum states; the subject was explored in the years
before symmetry breaking became popular.

For a theory that describes full SU(2) symmetry breaking the absence
of superpositions between the electron and neutrino is a bit of a problem. It
arises from our using a constant Hamiltonian. If we allowed an initial high
temperature density matrix that included o, or oy, it would cool to a state
that would be a superposition between electron and neutrino and so would
have mixed charge. To fix this, we need to have the Hamiltonian depend on
temperature. Well above the mass of the W* the Hamiltonian can include
o, and oy but at temperatures well below the o, and o, components are
forced to zero. We can use a function ©(7') which is zero when T is well
below the W mass and one when T is well above and define H(T) as

H(T) = O(T)(H, 04 + H, 0,) + H.0. (36)

which at temperatures well above the W+ mass will on cooling, rapidly
converge to (1+(Hyo,+Hyoy+H.0.)/\/H2 + H2 + H? )/2 but on further

cooling to well below the W* mass will converge to (1 + H,o.//HZ )/2.
It should be clear that so long as the function ©(T) is zero near the low
temperature limit and one near the high temperature limit it’s choice does
not effect the symmetry of the low temperature states.

This paper’s objective is an explanation for the symmetry of the low
temperature states so we will use a O(T") that is zero except at tempera-
tures above our range. In other words, we will require our Hamiltonians
to commute with the charge operators and so our low temperature limits
will avoid superpositions between particles with different charges. In this
context, it’s important to note that corresponding particles from different
generations share the same charges and so it is possible, for example, to
form superpositions between an electron and a muon or tau. These suer-
positions of quarks and leptons are seen in the CKM and MNS matrices.

The quantum states that form the low temperature limit of a set of
Hamiltonians (that commute with the charge operators) are contained in
a “subalgebra” of the matrix algebra. When we use the word “algebra” in
this paper we mean it in the mathematical sense of an “algebra over the field
of complex numbers”. This is defined as a vector space over the complex
numbers, that also has a bilinear product. The NxN complex matrices are
an example of an algebra; the bilinear product is matrix multiplication. The
vector space addition is matrix addition and the vector space multiplication
by a complex constant is given by multiplying the matrix by a complex
constant.
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For the neutrino and electron example using the 2x2 matrices, the sub-
algebra that contains the low temperature limit states are the 2x2 matrices
with zeros in their off diagonal positions. Such matrices are closed under
matrix multiplication and vector (matrix) addition, and are closed under
multiplication by complex constants and so form a subalgebra of the matrix
algebra. The low temperature limit density matrix states are exactly those
elements p of this subalgebra that are Hermmititan, have p? = p and have
trace = 1. The mathematicians call these the Hermitian “primitive idem-
potents”. They are the projection operators (idempotents) that cannot be
written as the sum of non zero projection operators (are primitive).

As far as defining the low temperature limit (pure) density matrices,
Hermitian “primitive idempotents” works for defining pure density matrices
but we need to give a physical explanation for why we are considering
subalgebras, as most of the elements of a subalgebra are not pure density
matrices.

In Section 3.0, we briefly introduced Schwinger’s Measurement Algebra.
In considering the paths p(T') of thermal density matrices over tempera-
ture, the space where they live are these algebras described by Schwinger
(expanded to include temperature). If we have two such measurements,
we can add them by combining the beams, which is then described by the
matrix sum of the two measurements. This assumes that we do not nor-
malize the sum so that the trace is 1, but instead follow Schwinger and let
the trace indicate the intensity. The matrix product corresponds to taking
the output beam from one measurement and using it as the input to the
next measurement. Thus matrix addition and multiplication correspond to
physical experiments. As we saw in Section 3.0, the products of Hermitian
matrices are not, in general, Hermitian but can introduce complex phases.

Introducing a phase of —1 makes subtraction a physical operation. Then
we can define a basis for the complex NxN matrices entirely using pure
density matrices. For example, consider:

(Pta = p-a)pt= = (1 +02)/2—(1—02)/2)(1+0:)/2,
_ <0 o> (37)
10 )

The above construct generalizes to any basis element of a complex NxN
matrix and therefore the entire matrix algebra. Thus if a subalgebra of a
matrix algebra can be written in block diagonal form, the individual blocks
can be physically realized as complicated Stern-Gerlach experiments and
we have a reason for assuming that the cold temperature limit of thermal
density matrices can be found in block diagonal matrix subalgebras. But
it is precisely the block diagonal matrix subalgebras that are of interest in
the Standard Model as we now show.

In terms of density matrices, charge operators force the Hamiltonian
into block diagonal form. The full set of first generation left handed
fermions adds the up and down quarks to the electron and neutrino. The
up and down quarks have an internal SU(3) triplet color symmetry and so
in our model (which at this point ignores SU(2) spin-1/2) are represented
by 3x3 blocks. The up and down quarks have the same +1/2 weak isospin
quantum numbers of the electron and neutrino so we need another quan-
tum number to distinguish them; we will use weak hypercharge where the
left handed leptons take —1 while the left handed quarks use +1/3. Then
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if we order the left handed fermions as (ver, er,ur,dr) the weak isospin I3
and weak hypercharge Yy charge operators are:

+1/2
~1/2
+1/2 0 0
I 0 +1/2 0
T 0 0 +1/2 :
+1/2 0 0
0 +1/2 0
0 0 +1/2
(38)
-1
~1
+1/3 0 0
0 +1/3 0
Yw = 0 0 +1/3 - (39)
+1/3 0 0
0 +1/3 0
0 0 +1/3

In the above two matrices, we’ve left blank the components of the Hamilto-
nians that have to be zero in order to commute with both charge operators.
There are two 1x1 blocks on the diagonal that correspond to the neutrino
and electron, and then two 3x3 blocks that correspond to the up and down
quarks.

We've shown above that density matrices of the Standard Model
fermions can be put into block diagonal form; this is generic for any set
of fermions that come as singlets or SU(n) n-plets. This is rather restric-
tive; for example there are an infinite number of representations of SU(3)
but only the observed fundamental representation is compatible with this
structure of density matrices. To look for an explanation for this particular
pattern of blocks we need to look at where matrix subalgebras come from.

Block diagonal algebras appear in Hammermesh’s book on applications
of group theory to physics[11] as the “group algebra over the complex num-
bers” and this book is a good source for a more detailed explanation than
we include here. Our discussion will be concentrated on the symmetry of
mixed density matrices while Hammermesh covers the subject in more gen-
erality and with more mathematical rigor. A complex group algebra can
be put into block diagonal form and so is a natural place to search for the
origin of the Standard Model.

We will illustrate group algebras by taking a particular example. We
start with the permutation group on three elements Ss3, turn it into a vector
space over the complex numbers, and raise that to C[Ss], the complex group
algebra of S3. The S3 group has six elements, the identity, two 3-cycles and
three swaps:

(),

(123), (132) (40)
(12),(13), (23).

We make the group into a vector space by using these six group elements
as a basis for the vector space. With 6 group elements there are six basis
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elements and the vector space is 6-dimensional. An example of vector
addition in the vector space is:

[1.3() +2.19(23)] + [—1.8(123) + (3.0 + 2.07)(23)]
: (41)

= [1.3( ) — 1.8(123) + (3.0 + 4.17)(23)]

In this vector space, multiplication by a complex constant simply means

multiplying the coefficients as in any vector space.

To raise this vector space to an algebra, we need to define how to mul-
tiply two elements. This is done by multiplying terms as one multiplies
polynomials, and then using the finite group multiplication rule to reduce
products such as (12)(13) = (132). For example, 0.5( ) + 0.5(12) is idem-
potent:

(0.5()+0.5(12)] [0.5() 4 0.5(12)],

= 0.25()() +0.25()(12) 4+ 0.25(12)( ) 4 0.25(12)(12),
= 0.25() 4 0.25(12) + 0.25(12) + 0.25( ),

= 0.5() +0.5(12),

(42)

but it is not primitive.

As Hammermesh proves, and demonstrates with the example of C[Ss],
a complex group algebra can be put into block diagonal form. An nxn block
has n? complex degrees of freedom so the six complex degrees of freedom
in C[S3] can be written as a sum of squares. There are two possibilities:

6 = 124+12+12+124+12+1% or
6 = 22+174+1% (43)
But S5 is not Abelian so C[S3] cannot be diagonal. This eliminates the
first possibility and we are left with 6 = 22 4+ 12. The block diagonal form
will have a 2x2 block and two 1x1 blocks and the Hermitian elements of
C|[S3] can be put into this form:

a
. (44)
ctce, Cp—icy

Cx+icy c—c,

where a,b, ¢, ¢z, ¢y, ¢, are six real numbers. The three real numbers a, b, c
define multiples of the unit matrix in the three diagonal blocks. The ele-
ments of the algebra that commute with everything in the algebra (mathe-
maticians call the center, physicists call the charges) are written with only
the a,b,c non zero. They are related to the character table of the finite
group.

With state vectors, the character table for a finite group defines the
possible representations of the symmetry of that group. Contemporary
readers of this paper should be very familiar with the process. Character
tables are also of use in describing the blocks of the block diagonal form
of a complex group algebra. This is an application of character tables to
mixed density matrices and of course it is completely different from the
application of character tables to state vector symmetries. Accordingly,
the reader is advised to forget their understanding of state vector uses of
character tables when reading these next few paragraphs. Instead, they
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should try to read them as if they had never previously considered the
symmetry of mixed density matrices defined by a group algebra.

Hammermesh shows how we can read the block diagonal form of a
complex group algebra from the character table of the group. We will
illustrate this with Ss; if our demonstration is confusing, try Hammermesh
for the same story but with more emphasis on mathematical rigor. Each
line in the character table corresponds to a nxn diagonal block. For S3 we
have 6 = 12412 +22 so there are three lines in the character table. Labeling
the lines with the size of the block they define we have the character table
for Ss:

x(9) | () (123)+(132) (12) + (13) + (23)

a,lx1]| 1 1 1
bhl1x1| 1 1 —1 (45)
¢,2x2| 2 ~1 0

The three rows are labeled with a, b, ¢ according as they correspond to the
three diagonal blocks of Equation 44.

The six group elements fall into three classes, the identity, the 3-cycles
and the swaps. If we sum over one of these classes, we get a charge and
these charges are used as the heads of the columns of the character table.
For example, the three swaps (12), (13),(23) form an equivalence class so
their sum (12) + (13) 4 (23) is a charge of the algebra. That is, any element
of the algebra commutes with (12) + (13) + (23).

The three diagonal blocks of Equation 44 have unit matrices given by
the a, b, c parameters. There the parameters are defined in terms of where
they appear in the matrix. The lines of the character table show how
to define these terms using the finite group basis. For example, b is the
coefficient for the second 1x1 diagonal block of Equation 44. That block
is defined in the second row of the character table with charge coefficients
1,1, —1. This means that when we put C[Ss] into block diagonal form, the
second diagonal or b block will be defined by

B[( )+ (123) + (132) — (12) — (13) — (23)]/6
0
b ' (46)

00

0 0
In the above, the character table coefficients have been divided by 6, the
size of the group. The general rule is that we multiply by the block size
and divide by the group size. The block size for block “c” is 2x2 so that

unit matrix takes a 2/6 factor and is given by [2( ) —(123) —(132)]2/6. The
unit matrices for the three blocks add up to (), the algebra’s identity.

5. Gamma Matrices and the Standard Model

In the previous section we’ve seen that the states available to a generalized
Stern-Gerlach experiment and combinations of those experiments define an
algebra and that algebras are in block diagonal form. Each block defines
a particle with generally distinct charges and the nxn blocks are particles
with internal symmetry such as the quarks which have color SU(3). And the
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block diagonal structure can be read off of the character table of the finite
group. With this information, we could look through the finite groups and
find those that are compatible with the observed structure of the Standard
Model fermions. Rather than do that, we will instead expand Weinberg’s
idea on density matrices to the gamma matrices and deduce the finite group
that defines the group algebra.

The difference between density matrices and state vectors is that, es-
sentially, a state vector is the square root of a density matrix. State vectors
are easier to use because they are linear. So we can generalize Weinberg’s
observation to one where Nature is more naturally described by bilinear
equations but our mathematics works best on linear problems so part of
our difficulty in understanding Nature is that we try too hard to describe
her bilinear simplicity with complicated linear mathematics.

This concept of Nature being simpler with bilinear equations has an
echo in the Dirac equation. The Dirac operator is rather complicated. For
the Dirac basis:

on 0 0, Op — 10y
0 0 Oy + 10 -0
) — z T Yy z
7O 0. 0. +id, -0 0 (47
—0p — 10y 0, 0 -0
When the above matrix is squared, it becomes much simpler:
10 00
0100
LA \2 _ (92 92 92 2
0 001

In this paper we are working in the spinor formalism so our Dirac equation
is massless:

—

(’yuaﬂ)w(xvyaz’t) =0, (49)

and therefore @E is a solution to the square of the Dirac operator:

10 00 Y1
@-2-ax-o) | o0 ﬁ ~ 0. (50)
0 001 N
This gives four independent wave equations:
(0F = 07 = 05 — )y =0 (51)

for j =1,2,3,4.

The four independent wave equations given in Equation 51 are much
simpler; why don’t we use them instead of the Dirac equation? Of course
the answer is that while the Dirac equation gives four solutions to the sim-
ple wave equation the reverse is not the case. If we have four independent
solutions to the simple wave equation they cannot, in general be put to-
gether to create a solution to the Dirac equation. Apparently we need the
gamma matrices to provide coupling between these simple wave equations.

Dirac’s original reason for postulating gamma matrices was to obtain
a relativistic wave equation. In our modern inclination to treat mass as
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a coupling we have lost our virginity on the subject; why not explore the
rest of the whore house and treat the gamma matrices also as a type of
coupling?

Since we are using spinors instead of bispinors we will leave the coef-
ficients of 0; alone and consider only the spatial gamma matrices. Under
this restriction, the spatial gamma matrices are equivalent to the Pauli spin
matrices, so we will deal with them instead. If these matrices are couplings,
then they are not simply a mathematical representation of a symmetry and
we need to treat them in a way appropriate to physical objects.

Our objective is to detect hidden symmetries in solutions to the Dirac
wave equation. It’s clear that we can make Lie group transformation on
the Pauli spin matrices but our interest here is not in the infinitesimal
transformations. That is, an infinitesimal transformation changes the cou-
plings to a set of new couplings that are physically different. Instead, we're
interested in transformations that lead to couplings that are equivalent.

There are three Pauli spin matrices, 0, 0y,0. and these multiply the
three partial derivatives 0, 0y, 0, but in truth we do not know which goes
where. The tradition is to combine them as

V = 0,0, + 0,0, + 0.0, (52)
but it works just as well to cycle them and instead use:
V =0y0; + 0.0y + 0,0.. (53)

These two choices give the same physics; they cannot be distinguished.
The rules for quantum mechanics are clear. We must symmetrize over the
various possible methods of using the Pauli spin matrices.

Cycling the Pauli spin matrices amounts to performing a 120 deg ro-
tation about the (1,1,1) axis. Rotating them by 90 deg around the z-axis
gives

V =0,0; — 0,0y + 0.0.. (54)

This again gives physics that we cannot distinguish, here with a minus sign
introduced. More general transformations are restricted by the requirement
that [0, 0, = {0, which allows only the proper rotations.

Excluding the improper rotations, there are 6 places to send o, i.e.
+x, £y, £z Fixing o, leaves four choices for o, and our choice for o,
determines o,. Thus the finite group of sigma-matrix transformations has
6x4=24 members. It is a point group with Hermann-Mauguin notation 432.
In crystallography it is called gyroidal and the character table is:

432 | E 3 2, 2¢ 4,
A |1 1 1 1 1
A | 1 1 1 -1 -1
E 2 -1 2 0 0 (55)
Ty 3 0 -1 -1 1
Ty 3 0 -1 1 -1

In terms of density matrices, there are 5 particles. There are two SU(3)
triplets that we can assign to the up and down quarks, and two singlets for
the leptons. The remaining particle is an SU(2) doublet and is unique in
that it has zero charges in the last two columns. We can assign it as dark
matter.
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The point group 432 is a finite subgroup of SO(3). Together with our
theme that electron spin should follow SO(3), this suggests that the gauge
principle of the Standard Model should follow from expanding the 432 sym-
metry to SO(3). That is, the large finite transformations that define the
density matrices follow the 432 subset of SO(3) while infinitesimal trans-
formations near unity define the gauge transformations. To explore this,
we will consider the internal SU(3) color of the quarks.

To be definite, we’ll look at the down quarks. A complete basis for them
consists of red, green and blue. In terms of state vectors they will be:

1 0 0
dg=| 0], de=(1],ds=1[0|. (56)
0 0 1

State vectors include an arbitrary complex phase but we assume density
matrix states so the phases do not matter.

Infinitesimal gauge transformations do not change the color much but
we can consider a series of them that change the colors, for example from
d, to dg4. Such a series of transformations will be a product of SU(3) Lie
group elements and so will be in the SU(3) Lie group. The transformations
that permute colors form a group. For instance if one transformation swaps
dr and dg and we follow it with a transformation that swaps d, and dy
the product transformation will cycle the three states. Therefore the SU(3)
fundamental Lie group elements that permute colors form a subgroup of
the Lie group. By symmetry, we will require the subgroup to treat the
colors equivalently (which will force these groups to be finite).

To be in the color permutation finite subgroup a 3x3 complex matrix
needs to have 6 zeros and 3 complex phases, with the phases distributed so
that there is one in each row and one in each column. To be in the SU(3)
Lie group it must also have determinant 1. So for a permutation that swaps
green and blue two arbitrary complex phases determine the third, and such
a matrix is of the form:

o 0 0
(GB)ag = 0 0 I} (57)
0 —a*s* 0

Squaring this matrix gives a matrix that is the identity as far as permuta-

tions go:
a? 0 0
(GB)2s=()a=| 0 —a* 0 (58)
0 0 —af

In addition to the above, we also have the usual identity = the unit matrix,
and treating colors equally, there are two more cases of the above:

—* 0 0 —a* 0 0
0 —a* 0 |, 0 o> 0 . (59)
0 0 a? 0 0 —a*

This gives a total of four copies of the identity. Requiring that these four
representatives of the identity be closed under multiplication implies that
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« = 1 and the four representations of the permutation identity are:

1 00 0 0

0 1 0 B O -1 0 ’

0 01 0 0 -1
-1 0 0 -1 0 0 (60)
0o 1 0 |, 0 -1 0

0 0 -1 0 0 1

It remains to determine f3.

The other permutations can be multiplied by these four, so they will
also have multiplicity 4. Since there are 6 permutations, the total size of
the finite group of SU(3) color permutations will be 24. It should not be a
surprise that the group will be the same as the 432 we derived earlier in this
section. Thus considering the effect of finite gauge transformations on the
color of quarks reveals the same hidden symmetry group in the Standard
Model.

Putting @ = 1 in Equation 57 and multiplying by the four identities
gives the four versions of the green blue swap:

1 0 O -1 0 0

0 0 /B ) 0 0 _ﬂ )

0 —B* 0 0 -8 0
-1 0 0 10 0 (61)
o 0o 81,0 0o -8
0 B* 0 0 B 0

Requiring that the colors be treated equally gives the four red green swaps
and four red blue swaps. Multiplying these together eventually leads to a
requirement that 3% = 1 so that there are three solutions 8, = exp(2igm/3)
for g =0,1,2. If we take 8y = 1 our permutations are precisely the proper
SO(3) rotation matrices that take axes to axes and so the group is the 432
seen earlier in this section.

The other two solutions to 3% = 1 give two more copies of the 432 group.
We associate these with the other two generations. This raises the question,
“why didn’t we get three generations in the derivation of 432 in the first half
of this section?” Of course the reason is that this is a density matrix paper
and we used the state vector version of the Pauli spin matrices. Moving
from SU(2) to SO(3) we have three “Pauli density spin” matrices and they
do come in three generations:

0 —if: 0 0 0 iB, 0 0 0
iB, 0 0|, 0 0 0 |,l0 0o —ig |, (62
0 0 0 —ifs 0 0 0 if, O

6. Conclusion

We’ve explored density matrix methods for understanding the symmetry
of the Standard Model fermions. We’ve shown the existence of a hidden
point group symmetry using two methods; the assumption that the gamma
matrices are couplings and the extension of the color gauge symmetry to
transformations that leave the colors unchanged. Either way we obtain the
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same symmetry, the point group 432, and when interpreted as a complex
algebra, it contains room for the leptons and quarks in three generations.

What we are missing is a description of the mass interaction. We need
this to split the particles into left and right handed particles that interact
by mass. The generations are defined by mass matrices so an understanding
of mass should lead to derivations of the CKM and MNS matrices. The
author and collaborators [12] have been working on this. A method of
putting electron spin into SO(4) while keeping mass interactions is given
by de Vries.[13]

The method we’ve used here has been to explore Steven Weinberg’s
observation that making density matrices fundamental leads to fewer cases
of bizarre behavior in quantum mechanics.[1] Our use of density matri-
ces has been according to Julian Schwinger’s measurement algebra. The
measurement algebra suggests an explanation for a few more oddities of
quantum mechanics. Since it is based on Stern-Gerlach experiments, using
it as the foundation of quantum mechanics implies that our understanding
of measurements should follow our understanding of those experiments

And Stern-Gerlach experiments could be the most thoroughly under-
stood, from an intuitive point of view of all quantum experiments. The
description of a particular experiment depends on whether the experiment
has already taken place or is taking place in the future of the observer. It
is only the future experiments that are represented by waves; the past ex-
periments have particle results. This adds the significance of the present in
the interpretation of qautnum mechanics; the measurement process is de-
termined by the passage of time for the observer. This makes the passage of
time in the Schroedinger equation simply a method of extrapolating wave
equations into the future; it cannot be used to model the passage of time
we experience as humans. The result is that the “block time” assumption
of quantum mechanics (and relativity) is invalid and need no longer conflict
with the evidence of our own human observations of reality. Instead, the
confusion of quantum mechanics arises from the mathematics one uses to
define the time dependence of quantum mechanics from the simplicity of
the Stern-Gerlach experiment.

It may not take an extreme amount of effort to add gravitation to the
particle forces. We might take the Weinberg prescription to be “when one
has several different formulations of physics, one should prefer the one that
is the most boring, from the point of view of science fiction.” Applying
this to general relativity, it’s evident that we can avoid worm holes and the
like by using the formulations that have a flat background metric. Such
formulations are also more compatible with astronomical observations.

This author’s favorite flat metric general relativity formulation is the
“Gauge Theory Gravity” described by Lasenby, Doran and Gull in 1998.[14]
It is written in the “geometric algebra”[15] which essentially consists of
the usual gamma matrices but carefully done without reference to any
particular representation. The astute reader might note that this paper
was written with this in mind; for example, we generally use (1 + 0,)/2
as the projection operator for spin-1/2 in the 4z direction rather than
writing it out in matrices that depend on the choice of the Pauli spin
matrix representation.

With Gauge Theory Gravity, the gravitational field is defined by, at
each point in spacetime, using a gamma matrix to define a rotation and
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a boost. Gravity then apppears as a result of the difference in gamma
matrices between nearby spacetime points. (Please forgive the author for
being unable to describe this succinctly and correctly.)

General relativity allows a wide variety of metrics to describe a rotating
black hole. In describing how gravitons act, it’s natural to look at the
metrics that are implied by Gauge Theory Gravity. The mathematics are
well described in an intuitive paper by Hamilton and Lisle’s called “The
River Model of Black Holes”.[16] The boost at each point in spacetime
modifies the speed of light at that point. So at the event horizon of a black
hole the boost has magnitude ¢ and the speed of light is zero going out and
2c¢ going into the black hole.

This modification of the speed of light suggests that the gravitons emit-
ted from the black hole should be altering the speed of photons and the
massless fermions we discuss in this paper. As far as reducing the speed of
light, that’s easy, it’s arranged by absorbing a fermion and then reemitting
it with some delay. For particles to exceed the speed of light we assume
that they are emitted at a point and time faster than their track would
have been.

The author plans to continue working on these problems; he hopes that
the reader has been as well entertained as he has.

Acknowledgement

Thanks to the faculty at Washington State University for their encourage-
ment and assistance; to Mark Mollo and Joseph. P. Brannen for financial
support.

References

[1] S. Weinberg, “Quantum mechanics without state vectors,” PRA,
vol. 90, p. 042102, Oct. 2014.

[2] D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley,
S. T. Forth, J. S. Gaumer, M. A. Kramer, D. C. Oertel, L. H. Park,
M. T. Rinkoski, C. T. Smith, and T. D. Wotherspoon, “Nine formu-
lations of quantum mechanics,” American Journal of Physics, vol. 70,
no. 3, pp. 288-297, 2002.

[3] H. K. Dreiner, H. E. Haber, and S. P. Martin, “Two-component spinor
techniques and Feynman rules for quantum field theory and supersym-
metry,” Phys. Rept., vol. 494, pp. 1-196, 2010.

[4] J. Schwinger, “The Algebra of Microscopic Measurement,” Proceedings
of the National Academy of Science, vol. 45, pp. 1542—1553, Oct. 1959.

[5] J. Schwinger, “The Geometry of Quantum States,” Proceedings of the
National Academy of Science, vol. 46, pp. 257-265, Feb. 1960.

[6] J. Schwinger, “Unitary Transformations and the Action Principle,”
Proceedings of the National Academy of Science, vol. 46, pp. 883-897,
June 1960.

22

K2
#%, Scientific Research Publishing



C. A. Brannen

[7] J. Schwinger, “The Special Canonical Group,” Proceedings of the Na-
tional Academy of Science, vol. 46, pp. 1401-1415, Oct. 1960.

[8] J. Schwinger, Quantum Kinematics And Dynamic. Advanced Books
Classics, Avalon Publishing, 2000.

[9] J. Schwinger and B. Englert, Quantum Mechanics: Symbolism of
Atomic Measurements. Physics and astronomy online library, Springer,
2001.

[10] C. Brannen, “Algebra of Classical and Quantum Binary Measure-
ments,” Journal Mod Phys, vol. 9, pp. 628—650, 2018.

[11] M. Hamermesh, Group Theory and its Application to Physical Prob-
lems. Dover, 1962.

[12] M. Sheppeard, “Lepton Mass Phases and the CKM Matrix.” http:
//vixra.org/abs/1711.0336, Nov. 2017.

[13] H. de Vries, “United Fermion Field for the Standard Model.” https:
/ /thephysicsquest.blogspot.com/, 2018. Accessed: 2019-03-28.

[14] A. Lasenby, C. Doran, and S. Gull, “Gravity, gauge theories and ge-
ometric algebra,” Philosophical Transactions of the Royal Society of
London Series A, vol. 356, p. 487, Mar. 1998.

[15] D. Hestenes, “Real spinor fields,” Journal of Mathematical Physics,
vol. 8, no. 4, pp. 798-809, 1967.

[16] A. J. S. Hamilton and J. P. Lisle, “The River model of black holes,”
Am. J. Phys., vol. 76, pp. 519532, 2008.

K
0::2: Scientific Research Publishing 23

S


http://vixra.org/abs/1711.0336
http://vixra.org/abs/1711.0336
https://thephysicsquest.blogspot.com/
https://thephysicsquest.blogspot.com/

	Introduction
	SO(3) Spin Symmetry
	Density matrices and QFT
	Charge, Temperature and Symmetry Breaking
	Gamma Matrices and the Standard Model
	Conclusion
	Acknowledgement

