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Abstract

We modify Sondow’s geometric proof of the irrationality of e. The
modification uses sector areas on circles, rather than closed intervals.

Using this circular version of Sondow’s proof, we see a way to un-
derstand the irrationality of a series. We evolve the idea of proving

all possible rational value convergence points of a series are excluded
because all partials are not expressible as fractions with the denom-
inators of their terms. If such fractions cover the rationals, then the

series should be irrational.

Introduction

Jonathan Sondow’s geometric proof that e is irrational [6] uses nested

closed intervals and the Bolzano-Weierstrass theorem [1]. It’s a trap:
the endpoints of the intervals are systematically excluded as possible
values for e. They are collectively all possible rational values, so e is

proven to be irrational. The intervals he uses seem a little unwieldy, so
we replace them with concentric circles giving values as sector areas.

The sector areas are determined at points around the circle; these
points correspond to classes from natural number moduli. We call

such sets of points a circular moduli lattice (CML).
Using this CML idea, we give Sondow’s proof. The CML seems

to help with making the proof completely transparent. Giddy, we
attempt to use the same CML technique to show ζ(2) is irrational,

but it doesn’t work: no nesting. But from our consideration of these
two series a general criterion for the irrationality of a series emerges.
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We prove both e and ζ(n) are irrational using this criterion. The
latter is an unsolved number theory problem [2, 3]. The criterion does

involve a limit construction that seems to be novel. Proofs for the
n = 2 and n = 3 cases using ε − δ reasoning are given in [3].

Sondow’s e proof

Here’s Sondow’s proof verbatim. The irrationality of e is a conse-
quence of the following construction of a nested sequence of closed

intervals In. Let I1 = [2, 3]. Proceeding inductively, divide the inter-
val In−1 into n (≥ 2) equal intervals, and let the second one by In (see
Figure 2. For example, I2 = [ 5

2! ,
6
2! ], I3 = [ 16

3! ,
17
3! ], and I4 = [ 65

4! ,
66
4! ].

Figure 1: The intervals I1, I2, I3, and I4.

The intersection
∞
⋂

n=1

In = {e} (1)

is then the geometric equivalent of the summation

∞
∑

n=0

1

n!
= e.

When n > 1 the interval In+1 lies strictly between the endpoints
In, which are a/n! and (a+1)/n! for some integer a = a(n). It follows

that the point of intersection (1) is not a fraction with denominator n!
for any n ≥ 1. Since a rational number p/q with q > 0 can be written

p

q
=

p · (q − 1)!

q!
,

we conclude that e is irrational.

2



Circular moduli lattice

Let’s suppose the circle in Figure 2 has a radius of 1/
√

π. Then its

area is 1. We’ve placed equally spaced moduli classes for modulus
5 around the circle. Now sector areas correspond to fractions with

numerators given by classes and denominators with the value of the
modulus. The area associated with the radial in the figure is 3/5.

Clearly, for any rational number m/n, 0 < m < n, this procedure can
be done.

Definition 1. We will designate the set of such points in this arrange-

ment with CKn, where n is the modulus used and refer to such sets

as clocks.
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Figure 2: The shaded area is given by a modulo class.

Additional clocks can be added. In order to make them all sweep
the same areas we use radii of

√

n/π. For example, in Figure 3(a) there

are a 3-clock and a 5-clock. The radial given in this figure sweeps the
same area in the inner circle and the annulus formed from the two

circles. In this way the clocks can be used as a crude measurement
device. We can infer from Figure 3(b) that the area associated with

the sector given by the radial shown in Figure 3(a) measures neither
thirds or fifths of the inner circle’s area. It is in this sense that it is a

very crude measuring device for sums of fractions: it doesn’t say what
the sum is equal to, but only what it is not equal to.

The circles can also be used to construct areas corresponding to
the addition of fractions. In Figure 3(b) an addition method is given.
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Figure 3: Circles as measuring device (a) and construction device
(b).

It is similar to the head to tail method of vector addition. The 5-

clock is rotated so as to place its 0 (head) position at the 1 position
(tail) of the 3-clock. The radius at the new 1 position of the 5-clock

gives a sector area or 1/3 + 1/5. The radial generated is the same
as that in Figure 3(a). Thus we can infer that 1/3 + 1/5 is not in

the set {1/3, 2/3, 1/5, 2/5, 3/5, 4/5} or any un-reduced form of these
fractions. The clocks give both a way to construct addition of fractions
and measure the result.

Sondow’s proof

Here’s Sondow’s proof that e is irrational, using the CML idea as a
visual aid. We omit the first two terms so the series converges to a

number less than 1:

e − 2 =
∞
∑

k=2

1

k!
< 1. (2)

Figure 4 has a final radius that sweeps an arc giving a sector of area

e− 2. To see this note that the inner most circle has two sectors each
of one half area: the first term in the series for e − 2 is 1/2! = 1/2.

So we sweep one half and then repeat the procedure to sweep another
1/3! = 1/6 using CK6; the annulus’s blue band gives the next location

of the series final radius. This procedure continues to infinity via
adding CKk! clocks. As subsequent terms are fractional multiplies of
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each other, the sectors perpetually nest. The CK{ak}, where ak are
the denominators of (2), covers the rationals: p(q − 1)!/q! = p/q with

p < q. This implies that all possible rational convergence points are
excluded.

Sondow, in his article, uses a series of lines representing intervals
that give boundaries for possible convergence points. He doesn’t drop

the first two terms. Dropping the first two terms, as we do, makes the
argument clearer; and, of course, if e − 2 is irrational, so is e.
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Figure 4: Sondow’s proof that e is irrational using CML{k!}.
The number of circles goes to infinity.
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Attempt to use Sondow with ζ(2)

In Figure 5, we attempt to use Sondow’s strategy on

z2 = ζ(2) − 1 =

∞
∑

k=2

1

k2
< 1

It doesn’t work. They don’t nest. It’s a mess.

05

16

2 7

3
8

09

1:

2;

3 <

4 =

5
>

6
?

7
@

8
A

0B

1C

2D

3E4F

5 G

6 H

7 I

8
J

9
K

10
L

11
M

12
N 13

O

14
P

15
Q

Figure 5: Sondow’s interval technique fails for proving z2 is irrational.
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A pattern emerges
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Figure 6: A partial sum for z2 is constructed using CML{k2}.
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Figure 7: The radial for the partial doesn’t intersect lattice points.
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Partial sums don’t equal fractions from the circles that are used to
construct the partial sums. For z2 we can see that at least the partial

1/4+1/9+1/16 is not equal to any of the sector areas from the circles
that are used to construct its radius. This is shown in Figure 6 which

constructs the value of the partial and Figure 7 which shows that it
doesn’t go through any points on the circles used. For e−2, we notice

that the partial associated with n can’t be expressed with CK(n−1)!.

Criterion for irrationality

Perhaps instead of using Sondow’s nested interval proof, we can use
the CML with a criterion that the partial sum radius always misses

all the dots (values) on its constructing circles. These dots in the case
of e give all possible rational convergence points.

Using sets of clocks associated with an infinite series, we can frame
the question of convergence to an irrational point. In Figure 7 the

partial sum 1/4 + 1/9 + 1/16 for z2 is depicted using the original,
un-rotated clocks. The radial OR generates a sector of this sums area

and it doesn’t intersect any of the points on the three circles. This
means 1/4 + 1/9 + 1/16 doesn’t have a reduced form associated with

CK4, CK9, or CK16. If this is always true, i.e., if the radial for z2,
the infinite series, doesn’t go through a lattice point and all the lattice
points give all the possible rational areas, then z2 is irrational.

Here is the criterion in two definitions and a theorem.

Definition 2. Given an infinite series with positive, strictly decreas-

ing terms of the form 1/aj, aj ∈ N, let the set of all points on CKaj

be called the circular moduli lattice for the series. Designate this set

with CML{aj}.

Definition 3. For a given series with terms 1/aj, if there exists for

every m/n, with 0 < m < n, CKr and modulus class s such that

s/r = m/n then the CML associated with the series, CML{aj} is

said to cover the rational numbers.

Theorem 1. If CML{ak} covers the rational numbers and partial

sums for the series are such that

n
∑

k=2

1

ak

∈ R(0, 1) \
ϕ(n)
⋃

k=2

CKak
, (3)
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where ϕ(n) is a natural number, strictly increasing function, then the

series converges to an irrational number.

Proof. Using (3),

lim
n→∞

R(0, 1) \
ϕ(n)
⋃

k=2

CKak
= H(0, 1),

where R(0, 1) are the reals in (0, 1) and H(0, 1) are the irrational num-
bers in (0, 1). We have used

R(0, 1) = Q(0, 1)∪ H(0, 1),

where Q(0, 1) are the rational numbers in (0, 1).
Now we have

lim
n→∞

n
∑

k=2

1

ak

=

∞
∑

k=2

1

ak

∈ lim
n→∞

R(0, 1) \
ϕ(n)
⋃

k=2

CKak
= H(0, 1)

and this implies the series converges to an irrational.

Examples

The technique given in section 2 replaces interval endpoint exclusions
with general, in effect, denominator exclusions. It’s easy. We need to

move away from the ε−δ world of point set topology and analysis and
use just sets without a defined metric. Here are two examples that

motivate the idea.
Consider the task of proving the limit of 1−1/n is not of the form

m/n, 0 < m < n with n > 4. That is we want to show the limit is an
integer and not a fraction, of one class and not another. Now

1 − 1/n =
n − 1

n
∈

∞
⋃

k=1

CKk \
n−1
⋃

k=2

CKk

and, as (n − 1, n) = 1, (n − 1)/n is a reduced fraction,

lim
n→∞

∞
⋃

k=1

CKk \
n−1
⋃

k=2

CKk = CK1.
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This implies that the limit is in CK1; CK1 only has 1 as a non-zero
element.

Consider next a less trivial example. Suppose we want to show that
.1 base 4 converges to a denominator that does not have a denominator

of a power of 4. Using clocks, the set

n−1
⋃

k=1

CK4k

gives all positive finite decimals of length n−1 or less. So .1, .11, . . . , .1n−1

are in this set, where the last decimal represents n−1 repeated 1 dec-
imal digits. The following set

∞
⋃

k=2

CKk

gives all finite decimals in the unit interval, [0, 1], in all bases. Ob-
serving

.1n ∈
∞
⋃

k=2

CKk \
n−1
⋃

k=1

CK4k ,

we can infer

lim
n→∞

∞
⋃

k=2

CKk \
n−1
⋃

k=1

CK4k = F 6= ∅. (4)

As, in the limit, all finite decimals in base 4 are exhausted, the con-

vergence point must not be a finite decimal in base 4. Note: .1 in base
4 converges to 1/3 and (4) is consistent with this: 1/3 ∈ F .

If, instead of .1 base 4, we used
√

2 given as an infinite, non-
repeating decimal, we would still get a non-empty set, so the test

is not sufficient to show rationality. We could not infer (4) as the
decimals are non-repeating and not all ones, violating the antecedents

of Theorem 1. The criterion demands that the terms of the series
be complete or cover the rationals; that is that the denominators of

the terms, taken as bases, allow all rationals to be expressed as finite
decimals within a base given by such denominators.

Irrationality proofs

There are two essential steps necessary to use Theorem 1. First, the

denominators of the series must cover the rationals; second, the par-
tials must reside in a set given by a set difference; and third, taking
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the limit of this set difference results in an empty set; this last result
should be automatic. We illustrate these steps to show e and z2 are

irrational in this section.

Irrationality of e − 2

The denominators cover the rationals: given reduced p/q with p < q,
p(q−1)!/q! ∈ CKq!. That’s step one. Step two: we must find a strictly

increasing function φ(n), per Theorem 1, such that

n
∑

k=2

1

k!
∈ R(0, 1) \

φ(n)
⋃

k=2

CKk!.

We observe that

(n − 1)!

n
∑

k=2

1

k!
= K +

1

n
,

where K is a positive integer. This implies that

n
∑

k=2

1

k!
∈ R(0, 1) \

n−1
⋃

k=2

CKk!. (5)

We can set φ(n) = n − 1 with n > 3. Taking the limit in (5),

n
∑

k=2

1

k!
∈ H(0, 1),

implying that e − 2 is irrational.

Irrationality of zn

The denominators cover the rationals: all candidate rational numbers,
p/q, can be written as pq/q2 ∈ CKq2 . That’s step one. Step two: we

must find a strictly increasing function φ(n), per Theorem 1, such that

n
∑

k=2

1

k2
∈ R \

φ(n)
⋃

k=2

CKk2 .

We need to show that the partials for z2,
∑n

2 1/k2, require greater

than n2 denominators, for example. We show this in the next section.
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Assuming this for the moment, we have

n
∑

k=2

1

k2
∈ R(0, 1) \

n
⋃

k=2

CKk2 (6)

and taking the limit, we get zn ∈ H(0, 1): zn is irrational.

zn’s partials

Our aim in this section is to show that the reduced fractions that give
the partial sums of zn require a denominator greater than that of the

last term defining the partial sum. Restated this says that partial
sums of zn can’t be expressed as a finite decimal using for a base the

denominators of any of the partial sum’s terms. Lemma 1 is similar to
Apostol’s chapter 1, problem 30. See [5] for a solution to this problem.

We use the following notation: for integers n, n > 1, partial sums
of zn are given by

sn
k =

k
∑

j=2

1

jn
.

Lemma 1. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a;
the set {2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k!

will have a powers of 2 divisor with exponent b; and (k!)n will have a
greatest power of 2 exponent of nb. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · ·+ (k!)n/kn

(k!)n
. (7)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving

a term with an exponent of nb − na for 2. As all other terms but
this term will have more than an exponent of 2nb−na in their prime
factorization, we have the numerator of (7) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the

terms in the factored numerator have powers of 2 in them except
the factored term (k!)n/2na. The denominator, meanwhile, has the

factored form
2nbC,
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where 2 - C. This leaves 2na as a factor in the denominator with no
powers of 2 in the numerator, as needed.

Lemma 2. If sn
k = r/s with r/s a reduced fraction and p is a prime

such that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist
r such that rp = k, but by k > p > k/2, 2p > k making the existence
of a natural number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + · · ·+ (k!)n/pn + · · ·+ (k!)n/kn

(k!)n
. (8)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum

of all such terms will not be divisible by p, otherwise p would divide
(k!)n/pn. As p < k, pn divides (k!)n, the denominator of r/s, as

needed.

Theorem 2. If sn
k = r

s , with r/s reduced, then s > kn.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a

prime p such that k < p < 2k [4]. For even k, we are assured that there
exists a prime p such that k > p > k/2. If k is odd, k−1 is even and we

are assured of the existence of prime p such that k−1 > p > (k−1)/2.
As k − 1 is even, p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k,

as 2p = k implies k is even, a contradiction.
For both odd and even k, using Bertrand’s postulate, we have as-

surance of the existence of a p that satisfies Lemma 2. Using Lemmas 1
and 2, we have 2npn divides the denominator of r/s and as 2npn > kn,
the proof is completed.

In light of this result we give the following definitions and corollary.

Definition 4.

Djn = {0, 1/jn, . . . , (jn − 1)/jn} = {0, .1, . . . , .(jn − 1)} base jn

Definition 5.
k
⋃

j=2

Djn = Ξn
k
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Corollary 1.

sn
k /∈ Ξn

k

Proof. Reduced fractions are unique. Suppose, to obtain a contradic-

tion, that there exists a/b ∈ Ξn
k such that a/b = r/s then b < s by

Theorem 1. If a/b is not reduced, reduce it: a/b = a1/b1. A reduced

fraction must have a smaller denominator than the unreduced form so
b1 ≤ b < s and this contradicts the uniqueness of the denominator of

a reduced fraction.

An extension of Sondow

We can make this proof of the irrationality of zn more clearly an
extension of Sondow’s proof of the irrationality of e. We will show

how to do this for the z2 case, but clearly all zn will work the same.
First let

I1 = R(0, 1) \ CK4.

This gives gives I1 = (0, 1/4)∪ (1/4, 2/4)∪ (2/4, 3/4)∪ (3/4, 1). Then
let

I2 = R(0, 1) \ CK4 ∪ CK9.

When the fractions are sorted in ascending order they are

1

9
,
2

9
,
1

4
,
3

9
,
4

9
,
1

2
,
5

9
,
6

9
,
3

4
,
7

9
,
8

9
,

so

I2 = (0, 1/9)∪(1/9, 2/9)∪(2/9, 1/4)∪(1/4, 3/9)∪(3/9, 4/9) and so on.

Clearly I2 ⊂ I1. Eventually In, for n large enough, will have one closed

set [an, bn], such that z2 ∈ [an, z2] ⊂ Xn ⊂ In, where Xn is one of the
open intervals of In; we are using the convergence to zn implies for

every ε, force them smaller and smaller, there is an Nε such that an
interval (a, b) contains z2 and all partial sums with upper limit greater

than N . These nest, just like as in Sondow’s proof for e, and hence
all possible rational convergence points will be eliminated.

We can prove, not that a proof is really needed, our main con-

tention

lim
n→∞

R \
ϕ(n)
⋃

k=2

CKak
= H,
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by noting
∞
⋂

n=1

In = H(0, 1) the irrationals in (0, 1).

Counter-examples

It may be of interest to consider examples of where just one of the

two criteria of Theorem 1 apply. The telescoping series below gives
an example of when the terms of a series cover the rationals, but the

partials don’t escape these terms. The infinite geometric series given
by .1 base 4 gives an example of the terms not covering the rationals,
but the partials do escape the terms.

Consider the telescoping series:

1

2
=

1

2
− 1

3
+

1

3
− 1

4
+

1

4
− 1

5
+ . . . .

The terms of this series are of the form 1/n(n−1), n > 1. They cover
the rationals: p/q = p(q − 1)/q(q − 1) ∈ CKq(q−1). Is there a φ(n)

such that
n

∑

k=3

1

k(k − 1)
∈ R \

φ(n)
⋃

k=3

CKk(k−1)?

If there was this series would give a counter-example. But the partials

don’t force an increasing function. Using upper limits of 3, 4, 5, and
6, the partials sum to 1/6, 1/4, 2/7, 1/3.

Consider the geometric series:

∞
∑

k=1

1

4k
= .1 base 4.

If (4, q) = 1 then 0 < p/q < 1 can’t be expressed as a finite decimal
in base 4. This means the terms don’t cover the rationals. But the

partials do escape the terms:

n
∑

k=1

1

4k
∈ R \

n−1
⋃

k=1

CK4k .

That is .1n can’t be expressed with less than n decimal places.
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Conclusion

The set theory used in this article seems to not be the standard type.

What does

lim
n→∞

R \
ϕ(n)
⋃

k=2

CKak
= H, (9)

mean, if one insists on an epsilon/delta type idea? There doesn’t seem

to be any metric involved.
But, isn’t it obvious: if one has a glass full of fluid and drains it

to nothing, nothing is left. The oddness of the mathematics is that at
any moment the number of fractions is countably infinite. How can

it go from countably infinite to the empty set in a gradual way? But
set theory does address this. The metric of number in a set gives the
idea: in the finite domain, removing marbles of a certain number from

a glass full of marbles, one can at any moment say how many remain to
go. But this finite world is not the world of fluids or abstract numbers

that remain infinitely divisible: an interval, no matter how small, will
have a uncountable cardinality, for example. And yet (0, 1/n) will

drain to zero elements, as in the empty set, with increasing n.
Perhaps (9) requires an axiom in set theory: its true.
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