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Introduction

Jonathan Sondow’s geometric proof that e is irrational [1] uses nested closed
intervals and the Bolzano-Weierstrass theorem. It’s a trap: the endpoints of
the intervals are systematically excluded as possible values for e. They are
collectively all possible rational values, so e is proven to be irrational.

Here we re-frame Sondow’s idea replacing his intervals with concentric
circles with classes from natural number moduli on them. We call such
sets of points a circular moduli lattice (CML). This idea leads to a general
criterion for irrationality of a series.

We explore some applications of the CML idea by by giving Sondow’s
original proof for the irrationality of e using the CML associated with it.
Next, we see how Sondow’s proof doesn’t generalize to show
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is irrational. Finally, we give a proofs for the irrationality of e and z5 using
the criterion given earlier in the article.

Circular moduli lattice

Let’s suppose the circle in Figure 1 has a radius of 1/y/m. Then its area
is 1. We've placed equally spaced moduli classes for modulus 5 around the



circle. Now sector areas correspond to fractions with numerators given by
classes and denominators with the value of the modulus. The area associated
with the radial in the figure is 3/5. Clearly, for any rational number m/n,
0 < m < n, this procedure can be done.

Definition 1. We will designate the set of such points in this arrangement
with C' K, where n is the modulus used and refer to such sets as clocks.
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Figure 1: The shaded area is given by a modulo class.

Additional clocks can be added. In order to make them all sweep the
same areas we use radii of \/n/m. For example, in Figure 2(a) there are a
3-clock and a 5-clock. The radial given in this figure sweeps the same area
in the inner circle and the annulus. In this way the clocks can be used as
a crude measurement device. We can infer from Figure 2(b) that the area
associated with the sector given by the radial shown in Figure 2(a) measures
neither thirds or fifths of the inner circle’s area.

The circles can also be used to construct areas corresponding to the ad-
dition of fractions. In Figure 2(b) an addition method is given. It is similar
to the head to tail method of vector addition. The 5-clock is rotated so as
to place its 0 position at the 1 position of the 3-clock. The new 1 position of
the 5-clock corresponds, gives the area 1/3+1/5. The radial generated is the
same as that in Figure 2(a). Thus we can infer that 1/3 + 1/5 is not in the
set {1/3,2/3,1/5,2/5,3/5,4/5} or any un-reduced form of these fractions.
The clocks give both a way to measure and construct addition of fractions.

In Figure 3, the first few terms for 25 are given by clocks and their addition
method. We formalize the idea with a definition.
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Figure 2: Circles as measuring device (a) and construction device (b).

Figure 3: A partial sum for 2, is constructed using C M L{k?*}.

Definition 2. Given an infinite series with positive, strictly decreasing terms
of the form 1/a;, a; € N, let the set of all points on C K, be called the circular
moduli lattice for the series. Designate this set with CM L{a;}.

Using sets of clocks associated with an infinite series, we can frame the
question of convergence to an irrational point. In Figure 4 the partial sum
1/441/9+1/16 for z, is depicted using the original, un-rotated clocks. The
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Figure 4: The radial for the partial doesn’t intersect lattice points.

radial OR generates a sector of this sums area and it doesn’t intersect any of
the points on the three circles. This means 1/4 + 1/9 4+ 1/16 doesn’t have a
reduced form associated with C Ky, C'Ky, or C'Ky¢. If this is always true, i.e.,
if the radial for z,, the infinite series, doesn’t go through a lattice point and
all the lattice points give all the possible rational areas, then zs is irrational.
We formalize the notion of all possible rational areas with a definition.

Definition 3. For a given series with terms 1/a;, if there exists for every
m/n, with 0 < m < n, CK, and modulus class s such that s/r = m/n
then the CML associated with the series, CML{a;} is said to be expressive
(complete?).

We can give a necessary and sufficient condition for a series to converge
to an irrational number.

Theorem 1. Given an expressive CM L{ay} associated with a series if the
partial sums for the series are such that
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where o(n) is a natural number, strictly increasing function, then the series
converges to an irrational number.

Proof. Using (1),

0 o(n)
lim | JCKa \ | CKa, =0,
k=2 k=2
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so the the limit of the partials is not in CM L{ay} and must be irrational. [

Sondow’s proof

Here’s Sondow’s proof that e is irrational. Figure 5 has a radial that sweeps
an arc giving a sector of area e. The second sector is used to delimit where
the sum radial line can exist. So the first 1/4 area is in white (its passed),
but the second in red, indicating its boundary radial lines give limits to the
convergence radial. As the series rate of convergence is fast and terms are
multiplies of each other, factorial values, the sectors perpetually nest (neatly)
with C' K} points being excluded.

Here’s 2z,

It doesn’t work. They don’t nest. It’s a mess.
The technique given in section 2 replaces interval endpoint exclusions
with general, in effect, denominator exclusions.

Examples

It’s easy. We need to move away from the ¢ — § world of point set topology
and analysis and use just sets. To show what we mean by this consider the
task of proving the limit of 1 —1/n is not of the form m/n, 0 < m < n. That
is we want to show the limit is an integer and not a fraction, of one class and
not another. Now
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Figure 5: Sondow’s proof that e is irrational using C M L{k!}.

and )
lim | K, \ | J CKy = CK.
k=1 k=2

Recall that (n —1,n) =1, so (n — 1)/n is a reduced fraction.
Consider next a less trivial example. Suppose we want to show that .1
base 4 converges to a denominator that is relatively prime to 4.

0o n—1
lim U cr\ | CKw #0. (2)
k=2 k=1

We can deduce from this example that a necessary condition for an infinite
decimal to be rational is the limit formed using its partials, as in (2), is not
empty. If, instead of .1 base 4, we used /2 given as an infinite, non-repeating
decimal, we would still get a non-empty set, so the test is not sufficient to
show rationality. However, if
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Figure 6: Sondow’s interval technique fails for proving 2, is irrational.

and UCK,, contains all candidate rationals for the series in question, the
series converges to an irrational number.

Irrationality proofs

The irrationality of e:

n—oQ

lim D CKu \ O CKy =0
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and all candidate rational numbers, p/q, can be written as p(¢ — 1)!/q. As
the partials for e, Y5 1/k!, require k! denominators, the result follows.
The irrationality of zs:

k=2

k=2

and all candidate rational numbers, p/q, can be written as pg/q*. We need to
show that the partials for zo, >, 1/k?, require greater than n? denominators,
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for example. At prime p partials will be given by

a 1 pla+bd

b p? p2b
where p 1 b. This implies that partials for upper limit a prime require at least
the upper limit squared in their denominators.
Conclusion

Is our proof of the irrationality of 25 a geometric proof? The radial is per-
petually offset from all possible rational convergence points, so its limit is
not rational. Look at the picture and remember that (n,n + 1) = 1.
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