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Here, we propose a new type of quantum algorithm for determining the values of a function. By
measuring the output state, we determine all the values of f(x) for all x. This is very interesting
indeed: the quantum circuit gives us the ability to determine a perfect property of f(x), namely,
f(x). This is faster than a classical apparatus.
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I. INTRODUCTION

Articles on the history of research into quantum computing [1] are mentioned as follows: An implementation of a
quantum algorithm to solve Deutsch’s problem [2—4] on a nuclear magnetic resonance quantum computer is reported
[5]. An implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is reported [6]. Oliveira
et al. implements Deutsch’s algorithm with polarization and transverse spatial modes of the electromagnetic field
as qubits [7]. Single-photon Bell states are prepared and measured [8]. The decoherence-free implementation of
Deutsch’s algorithm is introduced by using such a single-photon and by using two logical qubits [9]. A one-way based
experimental implementation of Deutsch’s algorithm is reported [10].

In 1993, the Bernstein-Vazirani algorithm was published [11, 12]. In 1994, Simon’s algorithm [13] and Shor’s algo-
rithm [14] were discussed. In 1996, Grover [15] provided the motivation for exploring the computational possibilities
offered by quantum mechanics. An implementation of a quantum algorithm to solve the Bernstein-Vazirani parity
problem without entanglement in an ensemble quantum computer is mentioned [16]. Fiber-optics implementation
of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits is discussed [17]. The question
whether or not quantum learning is robust against noise is a subject of a study [18].

A quantum algorithm for approximating the influences of Boolean functions and its applications are studied [19].
Quantum computation with coherent spin states and the close Hadamard problem are reported [20]. Transport im-
plementation of the Bernstein-Vazirani algorithm with ion qubits is studied [21]. Quantum Gauss-Jordan elimination
and simulation of accounting principles on quantum computers are discussed [22]. The dynamical analysis of Grover’s
search algorithm in arbitrarily high-dimensional search spaces is studied [23]. The relation between quantum computer
and secret sharing with the use of quantum principles is discussed [24]. An application of quantum Gauss-Jordan
elimination code to quantum secret sharing code is studied [25]. Designing quantum circuit by one step method and
similarity with neural network are discussed. [26].

There are many researches concerning quantum computing, quantum algorithm, and their experiments. However,
a complete understanding of a fundamental structure of quantum computing is not given.

In this contribution, we propose a new type of quantum algorithm for determining the values of a function. By
measuring the output state, we determine all the values of f(x) for all x. This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(x), namely, f(x). This is faster than a classical
apparatus.

II. A NEW TYPE OF QUANTUM ALGORITHM

Our discussion is based on Nielsen and Chuang [27]. Quantum superposition is a fundamental feature of many
quantum algorithms. It allows quantum computers to evaluate the values of a function f(x) for many different x
simultaneously. Suppose

f : {0, 1} → {0, 1} (1)

is a function with a one-bit domain and range. A convenient way of computing the function on a quantum computer
is to consider a two-qubit quantum computer that starts in the state |x, y�. With an appropriate sequence of logic
gates, it is possible to transform this state into

|x, y ⊕ f(x)�, (2)

where ⊕ indicates addition modulo 2. We denote by Uf the transformation defined by the map

Uf : |x, y� → |x, y ⊕ f(x)�. (3)

Here, the input state is as follows:

|ψ0� = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
,

(α2 + β2 = 1). (4)
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We have the following formula:

Uf |0�(|0� − i|1�)/
√
2→ +|0�(|f(0)� − i|f(0)�)/

√
2

=

�
(−i)f(0)|0�(|0� − i|1�)/

√
2 if f(0) = 0,

(−i)f(0)|0�(|0�+ i|1�)/
√
2 if f(0) = 1.

(5)

Uf |1�(|0� − |1�)/
√
2→ +|1�(|f(1)� − |f(1)�)/

√
2

=

�
(−1)f(1)|1�(|0� − |1�)/

√
2 if f(1) = 0,

(−1)f(1)|1�(|0� − |1�)/
√
2 if f(1) = 1.

(6)

Applying Uf to |ψ0� therefore leaves us with one of four possibilities:

|ψ1� =






α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�

if f(0) = 0, f(1) = 0,

−iα|0�
� |0�+ i|1�√

2

�
− β|1�

� |0� − |1�√
2

�

if f(0) = 1, f(1) = 1,

α|0�
� |0� − i|1�√

2

�
− β|1�

� |0� − |1�√
2

�

if f(0) = 0, f(1) = 1,

−iα|0�
� |0�+ i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�

if f(0) = 1, f(1) = 0.

(7)

So, by measuring |ψ1�, we may determine all the values of f(x) for all x. This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(x), namely, f(x). This is faster than a classical
apparatus, which would require at least two evaluations.

III. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE VALUES OF A

FUNCTION

We propose a quantum algorithm for determining the values of a function.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the values of a function f(x) for many different x simultaneously. Suppose

f : {0, 1, 2, 3} → {0, 1} (8)

is a function.
Here, the input state is as follows:

|ψ0� = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�
,

(a21 + a
2
2 + a

2
3 + a

2
4 = 1). (9)

We have the following formula:

Uf |00�(|0� − i|1�)/
√
2→ +|00�(|f(00)� − i|f(00)�)/

√
2

=

�
(−i)f(00)|00�(|0� − i|1�)/

√
2 if f(00) = 0,

(−i)f(00)|00�(|0�+ i|1�)/
√
2 if f(00) = 1.

(10)

Uf |01�(|0� − i|1�)/
√
2→ +|01�(|f(01)� − i|f(01)�)/

√
2

=

�
(−i)f(01)|01�(|0� − i|1�)/

√
2 if f(01) = 0,

(−i)f(01)|01�(|0�+ i|1�)/
√
2 if f(01) = 1.

(11)
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Uf |10�(|0� − |1�)/
√
2→ +|10�(|f(10)� − |f(10)�)/

√
2

=

�
(−1)f(10)|10�(|0� − |1�)/

√
2 if f(10) = 0,

(−1)f(10)|10�(|0� − |1�)/
√
2 if f(10) = 1.

(12)

Uf |11�(|0� − |1�)/
√
2→ +|11�(|f(11)� − |f(11)�)/

√
2

=

�
(−1)f(11)|11�(|0� − |1�)/

√
2 if f(11) = 0,

(−1)f(11)|11�(|0� − |1�)/
√
2 if f(11) = 1.

(13)

Applying Uf to |ψ0�, Uf |ψ0� = |ψ1�, therefore leaves us with one of 24 possibilities:

a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 0, f(10) = 0, f(11) = 0, (14)

−ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 0, f(10) = 0, f(11) = 0, (15)

a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 1, f(10) = 0, f(11) = 0, (16)

a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 0, f(10) = 1, f(11) = 0, (17)

a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 0, f(10) = 0, f(11) = 1, (18)

−ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 1, f(10) = 0, f(11) = 0, (19)

−ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 0, f(10) = 1, f(11) = 0, (20)

−ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 0, f(10) = 0, f(11) = 1, (21)
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a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 1, f(10) = 1, f(11) = 0, (22)

a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 1, f(10) = 0, f(11) = 1, (23)

a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 0, f(10) = 1, f(11) = 1, (24)

a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 0, f(01) = 1, f(10) = 1, f(11) = 1, (25)

−ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 0, f(10) = 1, f(11) = 1, (26)

−ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 1, f(10) = 0, f(11) = 1, (27)

−ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 1, f(10) = 1, f(11) = 0, (28)

−ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

if f(00) = 1, f(01) = 1, f(10) = 1, f(11) = 1. (29)

So, by measuring |ψ1�, we may determine all the values of f(x) for all x. This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(x), namely, f(x). This is faster than a classical
apparatus, which would require at least four evaluations.

IV. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE 2N VALUES OF A

FUNCTION

We propose a quantum algorithm for determining the 2N values of a function.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the values of a function f(x) for many different x simultaneously. Suppose

f : {0, 1, ..., 2N − 1} → {0, 1} (30)

is a function.
Here, the input state is as follows:

|ψ0� =
2(N−1)

−1�

j=0

aj |j�
� |0� − i|1�√

2

�
+

2N−1�

k=2(N−1)

ak|k�
� |0� − |1�√

2

�
,

(a20 + a
2
1 + ...+ a

2
2N−1 = 1). (31)
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Applying Uf to |ψ0�, Uf |ψ0� = |ψ1�, therefore leaves us with one of 22
N

possibilities:

|ψ1� =
2(N−1)

−1�

j=0

(−i)f(j)aj |j�
� |0� − (−i)f(j)|1�√

2

�
+

2N−1�

k=2(N−1)

(−1)f(k)ak|k�
� |0� − |1�√

2

�
. (32)

So, by measuring |ψ1�, we may determine all the values of f(x) for all x. This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(x), namely, f(x). This is faster than a classical
apparatus, which would require at least 2N evaluations.

V. CONCLUSIONS

In conclusion, a new type of quantum algorithm has been proposed. By measuring the output state, we have
determined all the values of f(x) for all x. This has been faster than a classical apparatus.

NOTE
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