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Here, we propose a new type of quantum algorithm for determining the values of a function. By
measuring the output state, we determine all the values of f(z) for all . This is very interesting
indeed: the quantum circuit gives us the ability to determine a perfect property of f(z), namely,
f(x). This is faster than a classical apparatus.
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I. INTRODUCTION

Articles on the history of research into quantum computing [1] are mentioned as follows: An implementation of a
quantum algorithm to solve Deutsch’s problem [2—4] on a nuclear magnetic resonance quantum computer is reported
[6]. An implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is reported [6]. Oliveira
et al. implements Deutsch’s algorithm with polarization and transverse spatial modes of the electromagnetic field
as qubits [7]. Single-photon Bell states are prepared and measured [8]. The decoherence-free implementation of
Deutsch’s algorithm is introduced by using such a single-photon and by using two logical qubits [9]. A one-way based
experimental implementation of Deutsch’s algorithm is reported [10].

In 1993, the Bernstein-Vazirani algorithm was published [11, 12]. In 1994, Simon’s algorithm [13] and Shor’s algo-
rithm [14] were discussed. In 1996, Grover [15] provided the motivation for exploring the computational possibilities
offered by quantum mechanics. An implementation of a quantum algorithm to solve the Bernstein-Vazirani parity
problem without entanglement in an ensemble quantum computer is mentioned [16]. Fiber-optics implementation
of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits is discussed [17]. The question
whether or not quantum learning is robust against noise is a subject of a study [18].

A quantum algorithm for approximating the influences of Boolean functions and its applications are studied [19].
Quantum computation with coherent spin states and the close Hadamard problem are reported [20]. Transport im-
plementation of the Bernstein-Vazirani algorithm with ion qubits is studied [21]. Quantum Gauss-Jordan elimination
and simulation of accounting principles on quantum computers are discussed [22]. The dynamical analysis of Grover’s
search algorithm in arbitrarily high-dimensional search spaces is studied [23]. The relation between quantum computer
and secret sharing with the use of quantum principles is discussed [24]. An application of quantum Gauss-Jordan
elimination code to quantum secret sharing code is studied [25]. Designing quantum circuit by one step method and
similarity with neural network are discussed. [26].

There are many researches concerning quantum computing, quantum algorithm, and their experiments. However,
a complete understanding of a fundamental structure of quantum computing is not given.

In this contribution, we propose a new type of quantum algorithm for determining the values of a function. By
measuring the output state, we determine all the values of f(z) for all . This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(z), namely, f(z). This is faster than a classical
apparatus.

II. A NEW TYPE OF QUANTUM ALGORITHM

Our discussion is based on Nielsen and Chuang [27]. Quantum superposition is a fundamental feature of many
quantum algorithms. It allows quantum computers to evaluate the values of a function f(z) for many different x
simultaneously. Suppose

f:{0,1} = {0,1} (1)
is a function with a one-bit domain and range. A convenient way of computing the function on a quantum computer

is to consider a two-qubit quantum computer that starts in the state |z,y). With an appropriate sequence of logic
gates, it is possible to transform this state into

2,y @ f(z)), (2)
where @ indicates addition modulo 2. We denote by Uy the transformation defined by the map
Ur |z, y) = |2,y © f(2)). 3)
Here, the input state is as follows:
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We have the following formula:
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So, by measuring [1);), we may determine all the values of f(z) for all . This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(z), namely, f(z). This is faster than a classical
apparatus, which would require at least two evaluations.

III. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE VALUES OF A
FUNCTION

We propose a quantum algorithm for determining the values of a function.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to
evaluate the values of a function f(z) for many different  simultaneously. Suppose

f:{0,1,2,3} —{0,1} (8)

is a function.
Here, the input state is as follows:
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We have the following formula:
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So, by measuring [1);), we may determine all the values of f(z) for all . This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(z), namely, f(z). This is faster than a classical
apparatus, which would require at least four evaluations.

IV. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE 2" VALUES OF A
FUNCTION

We propose a quantum algorithm for determining the 2V values of a function.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to
evaluate the values of a function f(z) for many different  simultaneously. Suppose

f:40,1,....2Y —1} — {0,1} (30)
is a function.
Here, the input state is as follows:
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Applying Uy to |¢po), Uy|tho) = |1h1), therefore leaves us with one of 22" possibilities:
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So, by measuring |17 ), we may determine all the values of f(z) for all . This is very interesting indeed: the quantum
circuit gives us the ability to determine a perfect property of f(z), namely, f(z). This is faster than a classical
apparatus, which would require at least 2%V evaluations.

(32)

V. CONCLUSIONS

In conclusion, a new type of quantum algorithm has been proposed. By measuring the output state, we have
determined all the values of f(z) for all z. This has been faster than a classical apparatus.
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