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ABSTRACT: 

 

Using a space filled with black-body radiation, we derive a generalization for the Clausius-

Clapeyron relation to account for a phase transition, which involves a change in spatial 

dimension.  We consider phase transitions from dimension of space, 𝑛, to dimension of space, 

(𝑛 − 1), and vice versa, from (𝑛 − 1) to 𝑛-dimensional space.  For the former we can calculate a 

specific release of latent heat, a decrease in entropy, and a change in volume.  For the latter, we 

derive an expression for the absorption of heat, the increase in entropy, and the difference in 

volume.  Total energy is conserved in this transformation process.  We apply this model to black-

body radiation in the early universe and find that for a transition from 𝑛 =  4  to (𝑛 − 1)  =  3, 

there is an immense decrease in entropy accompanied by a tremendous change in volume, much 

like condensation.   However, unlike condensation, the volume change is not three-dimensional.  

The volume changes from 𝑉4, a four-dimensional construct, to 𝑉3, a three-dimensional entity, 

which can be considered a subspace of 𝑉4.   As a specific example of how the equation works, 

we consider a transition temperature of 3 ∗ 1027 𝐾𝑒𝑙𝑣𝑖𝑛, and assume, furthermore, that the latent 

heat release in three-dimensional space is 1.8 ∗ 1094 𝐽𝑜𝑢𝑙𝑒𝑠.  We find that for this transition, the 

energy densities, the entropy densities, and the volumes assume the following values (photons 

only).  In four-dimensional space, we obtain, 𝑢4 = 1.15 ∗ 10125 𝐽 𝑚−4, 𝑠4  =  4.81 ∗
1097 𝐽 𝑚−4 𝐾−1, and 𝑉4  =  2.14 ∗ 10−31 𝑚4.  In three-dimensional space, we have 𝑢3 =
 6.13 ∗ 1094 𝐽 𝑚−3, 𝑠3 =  2.72 ∗ 1067 𝐽 𝑚−3 𝐾−1, and 𝑉3  =  .267 𝑚3.  The subscripts 3 and 4 

refer to three-dimensional and four-dimensional quantities, respectively.  We speculate, based on 

the tremendous change in volume, the explosive release of latent heat, and the magnitudes of the 

other quantities calculated, that this type of transition might have a connection to inflation.  With 

this work, we prove that space, in and of itself, has an inherent energy content.  This is so 

because giving up space releases latent heat, and buying space costs latent heat, which we can 

quantify.  This is in addition to the energy contained within that space due to radiation.  We can 

determine the specific amount of heat exchanged in transitioning between different spatial 

dimensions with our generalized Clausius-Clapeyron equation. 
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I INTRODUCTION 

 

As is well known, the Clausius-Clapeyron relation [1 − 4] is useful in predicting the latent heat 

given off when a substance undergoes a first order phase transition at a particular temperature 

and pressure.  A first order phase transition is a discontinuous phase transition for which there is 

an abrupt change in phase, and latent heat is released or absorbed by a fixed amount.  The 

discontinuity is characterized by a co-existence curve, typically plotted as pressure versus 

temperature, and on this curve, both phases can co-exist at specific temperatures and pressures.  

We assume a closed system where temperature and pressure are clearly defined on either side of 

this curve, and are held constant at a particular point on the curve when transitioning.  

 

The Clausius-Clapeyron relation, as presently formulated, assumes that space is smooth, 

continuous, and three-dimensional, both before and after a transition.  We relax the assumption 

of dimensionality.  We will show that it is possible to generalize this important thermodynamic 

relation to include phase transitions, which are changing spatial dimension itself, while all the 

while conserving total energy.  Furthermore, this kind of analysis may prove consequential in 

understanding the inflation phase of the early universe. 

 

Our motivation for studying this problem is three-fold.  First, it is of general theoretical interest 

for compactification and Kaluza-Klein theories [5 − 10].  When symmetries are broken, whether 

spontaneously or otherwise, the dimensionality of space often remains fixed, but not in 

compactification.  What does it mean if spontaneous symmetry breaking occurs 

thermodynamically with an attendant change in spatial dimension?  While we will not attempt to 

address this question in detail, we will show how it can be done.  The key is the Clausius-

Clapeyron equation. 

 

Second, there may be possible applications to the very early universe, and specifically to 

inflation itself, as alluded to previously.  In inflation, the universe expands exponentially and 

dramatically, within a very short time period, and with a rapid reduction in temperature.  A 

discontinuous phase transition seems to offer those same characteristics except that the 

temperature remains fixed.   A spatially changing phase transition from 𝑛 = 4 dimensions to 𝑛 =
3 dimensions, may offer the order of magnitude scales required for early cosmic evolution, and 

for inflation in particular.  In addition, because it happened at an instant, then and there so to 

speak, with a tremendous release of latent heat, thermal equilibrium was guaranteed shortly 

thereafter.  Moreover, the problem with a-causal exponential expansion may not be an issue if it 

is the space itself, which is expanding upon changing dimensions when transitioning.  Finally, in 

regards to inflation, we will also show that relative fluctuations in temperature, 𝛿𝑇/ 𝑇, can be 

carried over, or even created in certain circumstances, when transitioning from one space to 

another neighboring space.  This appears to be a unique feature for this kind of transformation as 

will be demonstrated. 

 

Third, we recently presented a paper [11] where we advanced the notion that the universe may 

be modeled as a thermodynamic heat engine.  There, we assumed a closed universe, i.e., one 

with a slight positive curvature, which will allow for a big bounce scenario.  To explain inflation, 

and expansion in general, we proposed a Carnot cycle for the cosmos consisting of isothermal 

expansion (from points, 𝑎𝑏), adiabatic expansion (from points, 𝑏𝑐), isothermal contraction 
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(form points, 𝑐𝑑) and isothermal contraction (from points, 𝑑𝑎).  The universe finds itself 

currently in the adiabatic expansion mode.  This four step process brings the universe back to its 

initial configuration, point a, where we have a finite temperature, a finite pressure, a finite 

energy, a finite volume, etc.  The universe, being cyclic, has no real beginning, nor does it have 

an end.  Spatially, there are no ‘edges” as the universe has no boundaries.  The inflation phase is 

identified as the initial isothermal expansion phase, from points, 𝑎𝑏.  This very short phase did 

not last long, of the order of only, 10−35 𝑠. 

 

Time evolved very differently in the isothermal expansion mode, as was shown explicitly in 

reference [11].  Time evolution was not temperature dependent, but, interestingly, volume 

dependent.  The volume expanded by a factor of only 5.65, as did total entropy, and this 

expansion was fueled by thermal quantum fluctuations and heat transfer from surroundings to 

system.  We identified the “surroundings” as those parts of the observable universe, which 

spatially in the WMAP and Planck maps are now slightly cooler.  Those are the pockets of space 

where matter later aggregated.  The “system” consisted of voids, i.e., those parts of space that do 

the actual expanding currently. These regions were slightly hotter in the very early universe.  The 

adiabatic expansion phase, which follows isothermal expansion, is driven by a different 

mechanism, a decrease in internal energy.  The specifics are given in reference [11]. 
 

The connection between this model and a spatially changing phase transition from 𝑛 = 4 to (𝑛 −
1)  = 3 space dimensions is as follows.  This phase transition may have provided the impetus, 

quite literally, the spark, for the start of the cycle as described above.  The amount of heat 

required for the initial isothermal expansion process, which lasted only about 10−35 𝑠, was 

calculated to be very high, roughly 1.8 ∗ 1094 𝐽.  We considered only photons, and so, this 

estimate is, more than likely, on the low side [12 − 14].  We also made use of the present radius 

of the observable universe, about 4.4 ∗ 1026 𝑚, which is in itself, a very crude approximation.  

The temperature for the isothermal process was ascertained to be about 3 ∗ 1027 𝐾.  This number 

was derived using Heisenberg’s uncertainty principle, and the slight spatial temperature 

variations found in the WMAP and Planck missions, namely, 𝛿𝑇/ 𝑇 ≈  ± 5 ∗ 10−5 between the 

hot and cold spots found within the photon blackbody radiation.  Perhaps the source for the heat 

required for the isothermal phase was not the transfer of heat from surroundings to system as 

originally proposed in reference [11].  Perhaps it is due to a spatially changing phase transition 

from 𝑛 = 4 to (𝑛 − 1)  = 3 at 𝑇 ≈  3 ∗ 1027 𝐾.   Irrespective of whether our heat engine model 

is valid, we consider the generalization of the Clausius-Clapeyron relation to be of paramount 

importance for both thermodynamics, and an understanding of compactification theory in 

general. 

 

Recently, researchers [15] have suggested that a 𝑛 = 4 to (𝑛 − 1)  = 3 transition might actually 

have occurred in the very early universe.  At a temperature of .93 ∗ (𝑃𝑙𝑎𝑛𝑐𝑘 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 

they found that the Helmholtz free energy density function reaches a maximum value when 

plotted as a function of spatial dimension, 𝑛 = 1,2,3,4 ….  That maximum was reached for 𝑛 ≈
3.  This was the first of several important thermodynamic variables to do so, and they interpreted 

this extremum as the transition point where nature decided on three spatial dimensions.  While 

we agree with their overall premise that compactification may have occurred, we disagree with 

their estimate for the temperature of this transition.  The Planck temperature is 1.42 ∗ 1032 𝐾, 

and 93% of this is still +1032 𝐾.  We believe in a lower temperature for the 𝑛 = 4 to (𝑛 − 1)  =
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3 transition, which we call 𝑇43  =  𝑇34.  We believe it is closer to 3 ∗ 1027 𝐾 based on our heat 

engine model, as well as other considerations.  Regardless of what the actual transition 

temperature turns out to be, assuming it exists, we approach the problem of a spatial phase 

transition from an entirely different perspective.  We focus on the Clausius-Clapeyron 

(abbreviated CC) relation and generalize the relation to apply for a spatial change in phase.  In 

other words, the dimension of space changes. 

 

The outline of this paper is as follows.  In section II, we generalize the CC relation using 

radiation as the substance filling space.  We believe that radiation in all its forms (photons, 

neutrinos, 𝑒+ 𝑒− pairs, etc.) is the primordial substance found in the very early universe when 

temperatures were very high.  Radiation will define space according to Mach’s principle 

(matter/energy content defines space) and spatial transitions are assumed possible.  To keep the 

discussion simple we will focus exclusively on photons.  In very general terms we derive the 

generalization of the CC equation for an arbitrary 𝑛-dimensional to (𝑛 − 1)-dimensional spatial 

change of phase, and vice versa.  We also consider the conservation of energy and changes in 

hypervolume in general terms.  In section III we focus on the transition from 𝑛 = 4 to (𝑛 −
1)  = 3.  We will assume specific values for temperature of transition, as well as amount of 

latent heat release, in order to show how the equation works.  The specific values chosen are 

motivated by previous work, [11].  Quantities in three-dimensional and four-dimensional spaces 

are then calculated, such as entropy and volume, both before and after.  In section IV, we discuss 

inflation in general, and consider our 𝑛 =  4  (𝑛 − 1)  =  3 model in particular.  The WMAP 

and Planck satellite missions show a remarkable uniformity in photon blackbody temperature.  

Nevertheless, there is a slight inhomogeneity in temperature, which explains the present structure 

of the universe.  That inhomogeneity is of the order, 𝛿𝑇/𝑇 =  ± 5 ∗ 10−5.  How does this non-

uniformity in temperature behave when undergoing a spatially changing phase transition?  How, 

specifically, are the other thermodynamic quantities affected?  We will answer both questions in 

section IV.  Finally, in section V, we present our summary and conclusions. 

 

 

 

 

II GENERALIZATION of the CLAUSIUS-CLAPEYRON RELATION 

 

In this section, we generalize the CC relation to allow for a phase transition from n-dimensional 

space to (𝑛 − 1)-dimensional space and vice versa.  We start with the radiation energy density 

(photons only).  As is known, [16 − 19], the energy density in n-dimensional space is given by 

the following function, which depends only on temperature and the dimensionality of space, 𝑛: 

 

𝑢 =  𝑢(𝑛, 𝑇)  =  2 (𝑛 −  1) 𝜋𝑛/2 (𝑘𝐵 𝑇)𝑛+1 𝜁(𝑛 +  1) 𝛤(𝑛 +  1)/ [(ℎ 𝑐)𝑛 𝛤(𝑛/2)] 
 

                      (2 − 1) 

In this equation, 𝑘𝐵 is Boltzmann’s constant, 𝑐 equals the speed of light, ℎ is Planck’s constant, 

𝜁(𝑥) is the zeta function, and 𝛤(𝑥) is the gamma function.  From this function, we can 

furthermore show that 

 

                      𝑓 =  − 𝑢/𝑛             𝑝 =  𝑢/𝑛           𝑠 =  (𝑛 + 1)/𝑛 𝑢/𝑇                                     (2 − 2) 
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Here, “𝑓” is the Helmholtz free energy density, “𝑝” is the pressure, and “𝑠” is the entropy density.  

The Helmholtz function is defined as 𝐹 ≡  𝑈 –  𝑇 𝑆, and therefore, 𝑓 =  𝑢 −  𝑇 𝑠.   

 

In n-dimensional space, a hypervolume can be defined for a 𝑛-dimensional ball.  The expression 

[20,21] is  

 

                  𝑉𝑛  =  𝑉𝑛(𝑅𝑛)  =  𝜋
𝑛

2  (𝑅𝑛)𝑛 /  𝛤 (
𝑛

2
+  1)                                     (2 − 3) 

 

The subscript “𝑛” on a physical quantity will always refer to the spatial dimension in which the 

quantity is defined.  𝛤(𝑥) is again the gamma function. 

 

If we specialize to three spatial dimensions, 𝑛 = 3, then we obtain familiar formulas using the 

equations above: 

 

 𝑢3  =  8/15 𝜋5 (𝑘𝐵 𝑇)4/ (ℎ 𝑐)3 ,      𝑝3  =  𝑢3/3,      𝑠3  =  4/3 𝑢3/ 𝑇,       𝑉3  =  4/3 𝜋 𝑅3
3  

                                                                                                                                     (2 − 4) 

 

The energy density is often written as  𝑢3  =  4𝜎 𝑇4/𝑐  =  𝐴 𝑇4, where 𝜎 is the Stefan-

Boltzmann constant, and 𝐴 has the numerical value equal to 7.566 ∗ 10−16 𝐽 𝑚−3 𝐾−4.  For = 4 

, 𝑉4 equals (𝜋2/2) (𝑅4)4, and in two dimensions,𝑉2  =  𝜋 (𝑅2)2.  When not specified explicitly, 

we use MKS units throughout this paper. 

 

Next, we consider the entropy in 𝑛-dimensional space.  We find that 

 

                𝑆𝑛  =  𝑠𝑛 𝑉𝑛  =  (𝑛 + 1)/𝑛 (𝑢𝑛/ 𝑇) 𝑉𝑛                                                 (2 − 5) 

 

For (𝑛 − 1)-dimensional space, we obtain 

 

                            𝑆𝑛−1  =  𝑠𝑛−1 𝑉𝑛−1  =  𝑛/(𝑛 − 1) (𝑢𝑛−1/ 𝑇) 𝑉𝑛−1                          (2 − 6) 

 

We can also calculate, using equations (2 − 2) and (2 − 1), (𝑑𝑝𝑛/ 𝑑𝑇) 𝑉𝑛.  The result is 

 

                                  (𝑑𝑝𝑛/ 𝑑𝑇) 𝑉𝑛  =  (𝑛 + 1)/𝑛 (𝑢𝑛/ 𝑇) 𝑉𝑛                                      (2 − 7) 

 

Similarly,  

     (𝑑𝑝𝑛−1/ 𝑑𝑇) 𝑉𝑛−1  =  𝑛/(𝑛 − 1) (𝑢𝑛−1/ 𝑇) 𝑉𝑛−1                          (2 − 8) 

 

Comparing right hand sides of equations (2 − 5) and (2 − 7), it is clear that 

 

𝑆𝑛  =  (𝑑𝑝𝑛/ 𝑑𝑇) 𝑉𝑛                                                                       (2 − 9) 

 

Similarly, comparing right hand sides of (2-6) and (2-8), we see that 

 

           𝑆𝑛−1  =  (𝑑𝑝𝑛−1/ 𝑑𝑇) 𝑉𝑛−1                                                          (2 − 10) 
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Therefore, if we take the difference between equation (2 − 9) and (2 − 10), we find that 

 

                𝑆𝑛  −  𝑆𝑛−1  =  (𝑑𝑝𝑛/ 𝑑𝑇) 𝑉𝑛  −  (𝑑𝑝𝑛−1/ 𝑑𝑇) 𝑉𝑛−1                      (2 − 11) 
 

This is our generalization of the CC relation.  The difference in entropy multiplied by the 

temperature is the latent heat, 𝛥𝑄.  Therefore, equation (2 − 11) can also be written as 

 

                         𝑆𝑛  −  𝑆𝑛−1  =  (𝑑𝑝𝑛/ 𝑑𝑇) 𝑉𝑛  −  (𝑑𝑝𝑛−1/ 𝑑𝑇) 𝑉𝑛−1 =  1/2  𝛥𝑄/ 𝑇             (2 − 12) 

 

The factor of ½ on the right hand side of equation (2 − 12) will be explained shortly.  Equation 

(2 − 12) is dimensionally consistent, as we shall also soon see, even though the densities and 

pressure are defined in different dimensions, and thus have different units. 

 

The general expression for 𝛥𝑆 =  (𝑆𝑓 – 𝑆𝑖 ) 𝑖𝑠  ∆𝑆 = ∫ 𝑑𝑄/𝑇
𝑓

𝑖
.  The 𝑆𝑛 and 𝑆𝑛−1 in equation 

(2 − 12) can be thought of as entropy states, 𝑆𝑖 and 𝑆𝑓.  However, if the temperature is held 

fixed, as in a first order phase transition, this reduces to ∆S=∆Q/T.  When written out, 

(𝑆𝑓 – 𝑆𝑖)  =  (𝑄𝑓 – 𝑄𝑖)/𝑇.  The sign of 𝛥𝑆 determines the sign of 𝛥𝑄.  It will soon become 

apparent that 𝑆𝑛  =  𝑆𝑖 is always greater than 𝑆𝑛−1  =  𝑆𝑓.  Therefore, 𝛥𝑄 in (2 − 12) is positive 

which means that heat is being given off in the final state.  If we reverse the transition from (𝑛 −
1)-space to n-space, we simply multiply equation (2 − 12) by a minus sign.  In this instance, 

𝑆𝑛  =  𝑆𝑓 and 𝑆𝑛−1 =  𝑆𝑖 and 𝛥𝑄 is negative.  This means that latent heat has to be supplied for 

this transition to occur.  The 𝛥𝑄 is often written as 𝐿, which stands for latent heat.  Barring 

exotic scenarios where we have parallel universes or multi-universes, etc., we will assume that 

the latent heat, which is released in the first type of transition where we decrease the number of 

dimensions, will be released in (𝑛 − 1)-space.  For the second type of transition, where we 

increase the dimensionality of space, the heat which needs to be supplied in order for this 

transition to happen, needs to come from the originating (𝑛 − 1)-space. 

 

Equation (2 − 12) reduces to the conventional CC relation (up to a factor of ½) in the limit 

where 𝑛 equals (𝑛 − 1), if we can imagine such a limit allowing for 𝑆𝑛  ≠  𝑆𝑛−1 and 𝑉𝑛  ≠  𝑉𝑛−1.  

Both temperature and dimension of space are similar in this limit, and thus, there is no difference 

between 𝑝𝑛 and 𝑝𝑛−1.  We retrieve the standard CC equation in equation (2 − 12), except for the 

factor of 1/2.  Therefore, in an intriguing way, the familiar CC relation is obtained as a special 

case when neighboring spaces converge.  Since a first order phase transition is a discontinuous 

phase transition, we can easily imagine that 𝑆𝑛  ≠  𝑆𝑛−1 and 𝑉𝑛  ≠  𝑉𝑛−1, even though the 

dimensions of space are now the same in this special limit. 

 

Let us next prove that equation (2 − 12) is dimensionally consistent.  We note that, in terms of 

units, the 𝑑𝑖𝑚[𝑇𝑛]  =  𝑑𝑖𝑚[𝑇𝑛−1]  =  𝑑𝑖𝑚[𝑇].  However, equation (2 − 1) shows us that 

 

       𝑑𝑖𝑚[𝑢𝑛] =  𝐽 𝑚−𝑛  ≠  𝑑𝑖𝑚[𝑢𝑛−1] =  𝐽 𝑚−(𝑛−1)                           (2 − 13) 

 

We are working within the MKS system where “𝐽” stands for Joules and “𝑚” for meters.  From 

relations (2 − 13) and (2 − 2𝑏), we also notice that 
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  𝑑𝑖𝑚[𝑝𝑛] =  𝑑𝑖𝑚[𝑢𝑛] =  𝑁 𝑚−(𝑛−1)  ≠  𝑑𝑖𝑚[𝑝𝑛−1] =  𝑑𝑖𝑚[𝑢(𝑛−1)] =  𝑁 𝑚−(𝑛−2)        (2 − 14) 

 

Here “𝑁’ refers to 𝑁𝑒𝑤𝑡𝑜𝑛𝑠 =  𝐽 𝑚−1.  Furthermore, upon using equation (2 − 2𝑐), we find 

 

           𝑑𝑖𝑚[𝑠𝑛] =  𝐽 𝑚−𝑛 𝐾−1  ≠  𝑑𝑖𝑚[𝑠𝑛−1] =  𝐽 𝑚−(𝑛−1) 𝐾−1                  (2 − 15) 
 

The “𝐾” refers to degrees Kelvin.  Moreover, from equation (2-3) we see that  

 

            𝑑𝑖𝑚[𝑉𝑛] =  𝑚𝑛  ≠  𝑑𝑖𝑚[𝑉(𝑛−1)] =  𝑚(𝑛−1)                            (2 − 16) 

 
From these relations, it is easy to prove that 

 

  𝑑𝑖𝑚[𝑈𝑛] =  𝑑𝑖𝑚[𝑢𝑛] ∗  𝑑𝑖𝑚[𝑉𝑛] =   𝐽 =  𝑑𝑖𝑚[𝑈𝑛−1] =  𝑑𝑖𝑚[𝑢𝑛−1] ∗  𝑑𝑖𝑚[𝑉𝑛−1]        (2 − 17) 
 

𝑑𝑖𝑚[𝑆𝑛]  =  𝑑𝑖𝑚[𝑠𝑛]  ∗  𝑑𝑖𝑚[𝑉𝑛]  =  𝐽/ 𝐾 =  𝑑𝑖𝑚[𝑆𝑛−1]  =  𝑑𝑖𝑚[𝑠𝑛−1]  ∗  𝑑𝑖𝑚[𝑉𝑛−1]  (2 − 18) 

 

The quantities, 𝑈𝑛 and 𝑆𝑛, refer to the internal energy and entropy in 𝑛-spatial dimensions, and 

we notice that these quantities do not depend on the value of “𝑛” as far as dimensional units are 

concerned.  We can substitute the dimensionalities specified above into equation (2 − 12) to 

show that the equation (2 − 12) is, indeed, dimensionally correct. 

 

We now explain the factor of ½ in equation (2 − 12).  Conservation of energy between spatial 

dimensions demands that 

 

  𝑈𝑛  +  𝑝𝑛 𝑉𝑛  +  𝑆𝑛 𝑇 =  𝑈𝑛−1  +  𝑝𝑛−1 𝑉𝑛−1  +  𝑆𝑛−1 𝑇  +  𝐿                    (2 − 19) 

 

In this equation, 𝐿 is the latent heat released in (𝑛 − 1)-dimensional space, which may or may 

not equal zero, at this stage.  (It will turn out that 𝐿 is unequal to zero and positive later.)  The 

various terms on the left hand side of (2 − 19) represent the internal energy, the stored work, 

and the heat content of photons, respectively, in 𝑛-dimensional space.  We have the same on the 

right hand side but in (𝑛 − 1)-dimensional space, plus any latent heat, which may, or may not, 

be released in (𝑛 − 1) space.  We can simplify equation (2 − 19) , utilizing equation (2 − 2𝑏).  

Upon substitution of the latter expression, we now write (2 − 19) as 

 

           [(𝑛 + 1)/𝑛] 𝑈𝑛  +  𝑆𝑛 𝑇 =  [𝑛/(𝑛 − 1)] 𝑈𝑛−1  +  𝑆𝑛−1 𝑇 +  𝐿                     (2 − 20) 

 

We can simplify (2 − 19) further using (2 − 2𝑐) to eliminate 𝑆𝑛 and 𝑆𝑛−1.  Here we obtain 

 

               2 [(𝑛 + 1)/𝑛] 𝑈𝑛  =  2 [𝑛/(𝑛 − 1)] 𝑈𝑛−1  +  𝐿                                (2 − 21) 
 

Alternatively, we use equation (2 − 2𝑐) to eliminate 𝑈𝑛 and 𝑈𝑛−1 in equation (2 − 20) and find 

that 

 

    2 𝑆𝑛 𝑇 =  2 𝑆𝑛−1 𝑇 +  𝐿                                                            (2 − 22) 
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However, from the paragraph following equation (2 − 12), we saw that 

 

   𝑆𝑓 – 𝑆𝑖 =  𝑆𝑛−1 – 𝑆𝑛  =  (𝑄𝑓 – 𝑄𝑖)/ 𝑇 =  (𝑄𝑛−1 – 𝑄𝑛)/ 𝑇 =  − 𝐿/ 𝑇                (2 − 23) 

 

The subscripts, 𝑖 and 𝑓, stand for initial and final states, and 𝐿 refers to the latent heat, which will 

be a positive quantity.   Upon comparison of the two expressions, equations (2 − 22) and (2 −
23), we notice that equation (2 − 23) is really missing a factor of ½.  When transitioning 

between different dimensions, photons need to maintain their identity in each spatial dimension, 

the initial dimension and the final dimension.  This leads to additional terms involving internal 

energy and stored work in equation (2 − 19), on both left and right hand sides.  As it turns out, 

the sum of internal energy and stored work is numerically equal, in each dimension, to the stored 

heat in that dimension.  Therefore, we have the extra factor of two in both equations (2 − 21) 

and (2 − 22).  Wherever we see 𝑄 or 𝐿 in equation (2-23), we should substitute ½ 𝑄, and ½ 𝐿.  

Another way of saying the same thing is that twice the entropy change is needed to release a 

fixed amount of latent heat, 𝐿, due to the requirement of maintaining internal energy and stored 

work, in both spaces.  See equation (2 − 22).  Equation (2 − 22) is another way to write our 

generalized CC equation, equation (2 − 12).  One cannot just transfer internal energy for 

photons, and leave the associated pressure and entropy behind.  It’s all or nothing if a transition 

occurs. 

  

We close this section by deriving an expression for the hypervolume ratio, (𝑉𝑛/ 𝑉𝑛−1), as this 

will be needed later on.  We start with equation (2 − 21), which we rewrite as 

 

2 [(𝑛 + 1)/𝑛] 𝑢𝑛 𝑉𝑛 =  2 [𝑛/(𝑛 − 1)] 𝑢𝑛−1 𝑉𝑛−1  + 𝐿𝑛−1                      (2 − 24) 
     

On the right hand side of (2 − 24), we have made explicit the fact that 𝐿 is defined in (𝑛 − 1)-

space.  We next define latent heat density as 𝑙𝑛  ≡  𝐿𝑛 /𝑉𝑛.   This allows us to reformulate 

equation (2 − 24) as follows: 

 

            𝑉𝑛/ 𝑉𝑛−1  =  [𝑛2/(𝑛2– 1)] 𝑢𝑛−1/𝑢𝑛  +  [𝑛/2(𝑛 + 1)] 𝑙𝑛−1/ 𝑢𝑛                  (2 − 25)  
 

Therefore, 

 

           𝑉𝑛/ 𝑉𝑛−1  =  𝑢𝑛−1/𝑢𝑛 [𝑛2/(𝑛2– 1)  +  𝑛/2(𝑛 + 1) 𝑙𝑛−1/ 𝑢𝑛−1]                   (2 − 26) 
 

, or, alternatively, 

    

            𝑉𝑛/ 𝑉𝑛−1  =  𝑢𝑛−1/𝑢𝑛 [𝑛2/(𝑛2– 1)]  +  𝑛/2(𝑛 + 1) 𝐿𝑛−1/ 𝑈𝑛−1]                (2 − 27) 

 

The latent heat is released in (𝑛 − 1) space for a transition from spatial dimension, 𝑛, to spatial 

dimension, (𝑛 − 1).  As mentioned previously, we will not consider exotic situations where the 

heat can be released in any other kind of space, such as in a parallel universe, multi-universes, 

etc. 
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Both equations, (2 − 26) and (2 − 27), are linear equations where the dependent variable can be 

considered (𝑉𝑛/ 𝑉𝑛−1) and the independent variable is either 𝑙𝑛−1 for equation (2 − 26), or 𝐿𝑛−1 

for equation (2 − 27).  We will be looking at a transition from 𝑛 = 4 to (𝑛 − 1)  = 3 in the next 

section, and it is more likely that we can give an estimation of either 𝑙𝑛−1 or 𝐿𝑛−1, versus 

(𝑉𝑛/ 𝑉𝑛−1).  Hence, we treat the latter as the dependent variable.  Given a specific transition 

temperature, all other quantities can be determined or estimated on the right hand sides of 

equations (2 − 26) and (2 − 27).  We can make use of the general expression, equation (2 −
1), to determine 𝑢𝑛 and 𝑢𝑛−1 for a specific transition temperature.  For 𝑈3 we need to give the 

size of the observable universe, 𝑉3.  However, we can estimate this volume for a particular 

transition temperature. The present size [22,23] of the observable universe is approximately 

4.4 ∗ 1026 𝑚 in radius, and this radius is scaled down by the cosmic scale factor, 𝑎 =  𝑇0/ 𝑇, for 

any other temperature 𝑇.  We will ignore slight kinks due to 𝑒+ 𝑒− radiation annihilation and 

heating up of photons.  For 𝑇 we substitute 𝑇43, the transition temperature, and for 𝑇0, we insert 

the present temperature of the photon blackbody radiation, which is 𝑇0  = 2.7255 𝐾.  Therefore, 

we estimate that 𝑉3  =  𝑎3  ∗  (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒)  =  𝑎3 𝑉0  =  𝑎3 (4𝜋/3) (4.4 ∗
1026 𝑚)3.  For a specific transition temperature of 3 ∗ 1027 𝐾, we obtain 𝑉3  =  .267 𝑚3. 

 

We can easily read off the slope and y-intercept, in both equations, (2 − 26) and (2 − 27).  Both 

slope and y intercept are transition temperature dependent, and only transition temperature 

dependent for a given “𝑛” to (𝑛 − 1) transition.  For any latent heat release in (𝑛 − 1) space, we 

can calculate the volume in 𝑛-space using either equation (2 − 26) or (2 − 27). 

 

 

 

 

III   THE = 𝟒 , to (𝒏 − 𝟏)  = 𝟑 ,  TRANSITION 

 

In this section, we consider the 𝑛 = 4 to (𝑛 − 1)  = 3 transition.  We start with the generalized 

CC equation, equation (2 − 12).  We specialize to 𝑛 = 4, and obtain 

  

(𝑆4  −  𝑆3)   =  (𝑑𝑝4/ 𝑑𝑇) 𝑉4 −  (𝑑𝑝3/ 𝑑𝑇) 𝑉3  =  ½ 𝛥𝑄/ 𝑇                         (3 − 1) 
 

Written more elegantly, we use equation (2 − 22), which is the equivalent.  We focus on this 

second version, and write 

     (𝑆4  −  𝑆3)  =  ½ 𝐿/ 𝑇                                                    (3 − 2) 
 

Our task is to find the hypervolume, 𝑉4, using this equation, as well as other thermodynamic 

quantities of interest in 3-space and 4-space for a specific transition temperature.  We start with 

equation (2 − 1), where we first evaluate 𝑢3 and 𝑢4.  We will assume a transition temperature of 

3 ∗ 1027 𝐾.  Upon evaluating the constants and inserting this temperature, we find: 

 

𝑢3  =  𝐴 𝑇4  =  7.566 ∗  10−16  ∗  𝑇4   and  𝑢4  =  𝑢3  ∗  𝜁 (5)/ 𝜁 (4)  ∗  (𝑘𝐵 𝑇)/ (ћ 𝑐)  ∗  3/2  

         =  6.128 ∗  1094 𝐽/𝑚3        =  𝑢3  ∗ 1.437 ∗ (𝑘𝐵 𝑇)/ (ћ 𝑐) 

                      =  𝑢3  ∗  627.6 ∗  𝑇    

                           =  1.154 ∗  10125 𝐽/𝑚4                        (3 − 3) 
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MKS units will be used exclusively in this paper (even though, sometimes, we will not always 

write them out).  We next evaluate the radiation pressure in both spaces.  Using (2 − 2𝑏) and 

equations (3 − 3), we obtain 

 

𝑝3  =  𝑢3/3 =  2.043 ∗  1094 𝑁/𝑚2      and  𝑝4  =  𝑢4/4 =  2.884 ∗  10124 𝑁/𝑚3

                                                                                                                                                      (3 − 4) 

 

For the entropy density we utilize (2 − 2𝑐) and equations (3 − 3), and discover that 

 

    𝑠3  =  4𝑢3/3𝑇 =  2.724 ∗  1067 𝐽/(𝑚3 𝐾)  and  𝑠4  =  5𝑢4/4𝑇 =  4.807 ∗  1097 𝐽/(𝑚4 𝐾)  

                                                                                                                                                                  (3 − 5) 

 

Furthermore, we know the value of 𝑉3.  This was evaluated in the last section, in the paragraph 

following equation (2 − 27).  The result for a transition temperature of 3 ∗ 1027 𝐾 was 𝑉3  =
 .267 𝑚3.   With this result, we can evaluate both 𝑈3 and 𝑆3 explicitly.  The results are 

 

     𝑈3  =  𝑢3 𝑉3  =  1.639 ∗  1094 𝐽    and    𝑆3  =  𝑠3 𝑉3  =  7.283 ∗  1066 𝐽/𝐾            (3 − 6) 

 

We have made use of equations (3 − 3𝑎) and (3 − 5𝑎). 

 

We next calculate 𝑆4.  For this, we have to assume a value for the latent heat.  We adopt as a 

value, 𝐿 =  1.8 ∗  1094 𝐽, a number which was motivated to some extent in the introduction.  

Using this value in equation (3 − 2) renders 

 

    𝑆4 – 𝑆3  =  3.000 ∗ 1066 𝐽/𝐾                                                     (3 − 7) 
 

In addition, from equation (3 − 6), we have a value for 𝑆3.  Inserting this into equation (3 − 7), 

we find that  𝑆4  equals 1.028 ∗  1067 𝐽/𝐾 .  Finally, we have a value for 𝑠4 , as this was 

numerically evaluated in equation (3 − 5𝑏).  We can therefore obtain the hypervolume, 𝑉4, by 

taking 𝑆4 and dividing out by 𝑠4.  The result is 

 

 𝑉4  =  𝑆4/𝑠4  =  1.028 ∗ 1067/ 4.807 ∗ 1097  =  2.139 ∗ 10−31 𝑚4                          (3 − 8) 

 

This is a fantastically small volume.  To obtain a 3-d volume, 𝑉3  =  .267 𝑚3, from a volume 

such as this, a dimension of space must have curled up on itself to compactify to 𝑉3.  If we call 

that dimension, which has compactified, the 𝑤-dimension, then we notice that 𝑤 =  𝑉4/𝑉3  =
 2.139 ∗ 10−31/ .267 =  7.999 ∗ 10−31 𝑚. 

 

Now that we have 𝑉4, we can find 𝑈4.  𝑈4 is obtained by multiplying the energy density in 4-d 

space, 𝑢4, by the hypervolume, 𝑉4.  Using the results of equations (3 − 3𝑏) and (3 − 8), we find 

 

    𝑈4  =  𝑢4 𝑉4  =  2.468 ∗  1094 𝐽                                                 (3 − 9) 
 

We check our results by verifying our energy balance equation, equation (2 − 19).  Equation 

(2 − 19) reads for 𝑛 = 4: 
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   𝑈4   +   𝑝4 𝑉4   +   𝑆4 𝑇 =   𝑈3   +  𝑝3 𝑉3   +   𝑆3 𝑇  +   𝐿 
 

Upon substitution of equations (3 − 9), (3 − 4𝑏), (3 − 8), (3 − 7) with (3 − 6𝑏), (3 − 6𝑎), 

(3 − 4𝑎) with 𝑉3  = .267 𝑚3, (3 − 6𝑏) and 𝐿 =  1.8 ∗ 1094 𝐽, we have, term for term, 

 

 2.468 ∗ 1094 + .617 ∗ 1094 + 3.085 ∗ 1094 =  1.639 ∗ 1094 + .546 ∗ 1094 +  2.185 ∗ 1094 +
                                                                                         1.8 ∗ 1094  
 

  6.17 ∗ 1094 𝐽 =  6.17 ∗ 1094 𝐽             (3 − 10) 

 

Our energy equation balances, and it is clear that 𝐿 is a positive quantity as claimed previously.  

Furthermore, we notice that in 4-d space, as well as in 3-d space, the sum, (𝑈𝑛 +  𝑝𝑛 𝑉𝑛), always 

equals 𝑆𝑛 𝑇.  This is apparent in equation (3 − 10), on both left and right hand sides, when 

evaluating a sum of the first two terms and comparing with the third term. 

 

We could have obtained the hypervolume, 𝑉4, more directly using equation (2 − 27).  However, 

then, we would not have had the opportunity to specify the other thermodynamic variables.  

Specializing equation (2 − 17) for a 𝑛 = 4 to (𝑛 − 1)  = 3 transition, we obtain   

 

       𝑉4/ 𝑉3  =  𝑢3/𝑢4 [16/15 +  2/5 ∗  𝐿/ 𝑈3]                                (3 − 11) 
  

The ratio, 𝑢4/𝑢3 equals (627.6 ∗  𝑇) from equation (3 − 3𝑏).  Assuming a transition 

temperature of 3 ∗ 1027 𝐾, this gives 𝑢4/𝑢3  =  1.883 ∗ 1030.  𝑈3 is specified in equation (3 −
6𝑎).  Moreover, 𝐿 is assumed to equal 1.8 ∗ 1094 𝐽.  The volume,𝑉3, was determined from the 

transition temperature and has a value of . 267 𝑚3.  Substituting all this into equation (3 −
11) gives the result obtained earlier, namely that 𝑉4  =  2.139 ∗ 10−31 𝑚4, which is equation 

(3 − 8). 

 

If we do not assume a particular value for the latent heat, then equation (3 − 11) is a linear 

equation where we treat 𝑉4/ 𝑉3 as the dependent variable, and 𝐿 is the independent variable.  The 

y-intercept is (16/15) (𝑢3/ 𝑢4), which is a constant at a specified transition temperature.  The 

slope equals (2/5) (𝑢3/ 𝑢4)/𝑈3  =  (2/5)/ (𝑢4𝑉3).  This is also a constant for a specified 

transition temperature because of equation (2 − 1) and since 𝑉3  =  𝑎3 𝑉0  =  𝑎3 (4𝜋/3) (4.4 ∗
1026 𝑚)3 where 𝑎 =  𝑇0/ 𝑇43.  To be specific, we will assume a transition temperature of 𝑇43  =
 𝑇34  =  3 ∗ 1027 𝐾.  We evaluate the quantities on the right hand side of equation (3 − 11), but 

keep the latent heat value, 𝐿, open.  Our specific expression for this transition temperature 

becomes 

 

   𝑉4/ 𝑉3  =  1.296 ∗ 10−125  ∗  𝐿 +  5.666 ∗ 10−31                             (3 − 12) 
 

A plot of 𝑉4/ 𝑉3 versus 𝐿 is illustrated in Figure 1, for various 𝐿 values.  The linearity is 

apparent.  For 𝐿 =  0, we obtain 𝑉4/ 𝑉3  =  5.666 ∗ 10−31𝑚.  Moreover, if 𝐿 assumes a very 

large value, such as 1 ∗ 10100 𝐽𝑜𝑢𝑙𝑒𝑠, then we find correspondingly, that 𝑉4/ 𝑉3  =  1.297 ∗
10−25𝑚.  Utilizing equation (3 − 12), we can assume any value for latent heat and find the 

corresponding ratio of volumes. 
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IV   INFLATION as a 𝒏 = 𝟒 to 𝒏 = 𝟑 PHASE TRANSITION 
 

Inflation is needed in order to explain the relative homogeneity in temperature found in the very 

early universe, as well as the slight inhomogeneity.  The universe underwent a phase transition 

where there was rapid a-causal exponential expansion of the universe.  The theory invokes a 

scalar field, the inflaton field, which drives this expansion.  In the introduction, we discussed a 

heat engine model for the universe, where inflation is treated somewhat differently.  It was 

identified with an initial isothermal expansion phase, where the expansion was not as drastic, 

where there was no inflaton field, and where heat input from surroundings to system drove the 

process.  In this model for inflation, the 3-d volume increased by a factor of only 5.65.  In this 

paper, we entertain the notion that the heat input needed is produced by a spatially changing 

phase transition.  This is an alternative model, or perhaps complementary model, to heat input 

flowing from surroundings to system.  We speculate that inflation is still an isothermal transition, 

but what provides the impetus for initiation of the heat cycle is a 𝑛 = 4 to (n-1) =3 change in 

space dimension.  There is a substantial amount of heat released in such a transition as was 

demonstrated in the previous section.  The energy densities and entropy were also significant.  

This may be an alternative or complementary source of heat to drive the inflation process, in our 

view. 

 

The inhomogeneity in temperature found in the WMAP and Planck satellite data, of the order of 

𝛿𝑇/ 𝑇 =  ± 5 ∗ 10−5, is thought to have produced during this inflationary period.  These 

thermal fluctuations were due to quantum mechanical effects, radiative corrections induced by 

virtual particle creation and annihilation.  The point is that they were heat driven, and since our 
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thermodynamic variables depend critically on temperature, a natural question to ask is how do 

the thermodynamic quantities, introduced previously, depend on these thermal perturbations?  

Moreover, what happens to these fluctuations if a spatially changing phase transition takes place?  

These are the questions, which we will address in this section.   

 

Quite generally, given the fact that the thermodynamic variables for radiation depend strictly on 

temperature and dimension of space, we can vary each thermodynamic quantity with respect to 

temperature.  We start with the internal energy density, equation (2 − 1).  Varying this with 

respect to temperature, we find that  

 

    𝛿𝑢𝑛/ 𝑢𝑛  =  (𝑛 + 1) 𝛿𝑇/ 𝑇                                                          (4 − 1) 

 

Similarly, using equations (2 − 2), we can further claim that 

 

          𝛿𝑓𝑛/ 𝑓𝑛  =  (𝑛 + 1) 𝛿𝑇/ 𝑇,   𝛿𝑝𝑛/ 𝑝𝑛 =  (𝑛 + 1) 𝛿𝑇/ 𝑇,   𝛿𝑠𝑛/ 𝑠𝑛  =  𝑛 𝛿𝑇/ 𝑇         (4 − 2) 
 

From these relations, we see that the dimensionality of space plays a role in determining how the 

thermodynamic entity responds to a relative fluctuation in temperature.  In addition, quite 

generally, we will assert that, if the process is adiabatic in 𝑛-space, then 

 

     

    𝛿𝑉𝑛/ 𝑉𝑛  =  −𝑛 𝛿𝑇/ 𝑇                                                                    (4 − 3) 

 

We will be assuming that a change in cosmic scale parameter in any dimension “𝑛” is inversely 

proportional to temperature.  Just as 𝑎 =  𝑅/𝑅0  =  𝑇0/ 𝑇 holds in 3-d space, we are claiming 

that in 𝑛-dimensional space, 

 

    𝑎𝑛  =  𝑅𝑛 / 𝑅0𝑛  =  𝑇0/ 𝑇                                                             (4 − 4) 

 

, provided we have adiabatic expansion in that 𝑛-space.  In equation (4 − 4), 𝑅𝑛 is the radius of 

the hypervolume in n-dimensional space and 𝑅𝑛0 is some baseline radius in that same space.  

𝑅𝑛0 corresponds to 𝑇0 whereas 𝑅𝑛 corresponds to 𝑇.  The “𝑎𝑛” is chosen such that, at 

temperature 𝑇 =  𝑇0, we have 𝑎0𝑛  =  1. 

 

To prove equation (4 − 3), we notice that equation (2 − 3) allows us to express the 

hypervolume as 𝑉𝑛  =  𝐶 𝑅𝑛
𝑛 where 𝐶 is some constant of order unity.  Therefore, 𝛿𝑉𝑛  =

 𝑛 𝐶 𝑅𝑛
𝑛−1 𝛿𝑅𝑛 and 𝛿𝑉𝑛/ 𝑉𝑛  =  𝑛 𝛿𝑅𝑛/ 𝑅𝑛.  Next, we utilize equation (4 − 4), which holds only 

for adiabatic expansion, and write 𝛿𝑅𝑛/ 𝑅𝑛  =  − 𝛿𝑇/ 𝑇.  Substituting this into our expression 

for 𝛿𝑉𝑛/ 𝑉𝑛 gives 𝛿𝑉𝑛/ 𝑉𝑛  =  −𝑛 𝛿𝑇/𝑇, which is our equation (4 − 3). 

 

With equation (4 − 3), we can demonstrate that 

 

    𝛿𝑈𝑛  =  𝛿𝑢𝑛 𝑉𝑛  +  𝑢𝑛 𝛿𝑉𝑛  

       =  (𝑛 + 1) 𝑢𝑛 𝑉𝑛 𝛿𝑇/𝑇 −  𝑛 𝑢𝑛 𝑉𝑛 𝛿𝑇/𝑇 
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       =  𝑈𝑛 𝛿𝑇/𝑇                (4 − 5) 

 

Therefore, 𝛿𝑈𝑛/𝑈𝑛  =  𝛿𝑇/𝑇.  Similarly, we find for any value of “𝑛”, 

 

  𝛿(𝑝𝑛 𝑉𝑛)/ (𝑝𝑛 𝑉𝑛)  =  𝛿𝑇/𝑇                    𝛿(𝑆𝑛)/ (𝑆𝑛)  =  0                               (4 − 6) 
 

We also recognize from equation (2 − 22), and equation (4 − 6𝑏), that 𝛿(𝐿/𝑇) must equal zero.  

Therefore, it follows that 

     𝛿𝐿/ 𝐿 =  𝛿𝑇/ 𝑇                                                                (4 − 7) 
 

This equation tells us that temperature fluctuations produce proportional latent heat fluctuations 

within a specified region of space.  The relations, equations (4 − 5), (4 − 6) and (4 − 7), do not 

depend explicitly on spatial dimension.  They do assume adiabatic expansion on both sides of the 

transition curve. 

 

The conservation of energy, equation (2 − 19), can be written in the simplified form, equation 

(2 − 21).  Employing equations (4 − 5) and (4 − 7), it is obvious that from equation (2 − 21), 

 

   2 [(𝑛 + 1)/𝑛] 𝛿𝑈𝑛  =  2 [𝑛/(𝑛 − 1)] 𝛿𝑈𝑛−1  +  𝛿𝐿     

   2 [(𝑛 + 1)/𝑛] 𝑈𝑛 𝛿𝑇/𝑇 =  {2 [𝑛/(𝑛 − 1)] 𝑈𝑛−1  +  𝐿} 𝛿𝑇/𝑇         (4 − 8) 

 

This equation shows that for adiabatic expansion or contraction between two neighboring spaces, 

any spatial temperature fluctuations carry through undiminished from one space to the next.  

Therefore, if we consider a 𝑛 = 4 to (𝑛 − 1) = 3 transition, a spatial fluctuation in temperature 

in (𝑛 − 1)  = 3 space transfers over into 𝑛 = 4 space.  Equation (4 − 3) was critical in 

establishing equation (4 − 8).  Moreover, equation (4 − 3) depended in turn on relation (4 −
4). 

 

What happens, however, if, in 𝑛-dimensional space and in its neighboring (𝑛 − 1) space, we do 

not have adiabatic expansion or contraction?  For example, in the heat engine model described in 

the introduction, isothermal expansion preceded adiabatic expansion.  At point “𝑎” in the Carnot 

cycle, isothermal expansion started.  At point “𝑏”, isothermal expansion changed to adiabatic 

expansion.  Between points “𝑎” and “𝑏”, the expansion is strictly isothermal, and between points 

“𝑏” and “𝑐”, it is strictly adiabatic.  If a spatial transition occurred anywhere within that time, 

then we cannot assume that equation (4 − 4) holds.  In this instance, we claim that thermal 

fluctuations could have been created or produced within the transition itself. 

 

To demonstrate this, let us assume a 𝑛 = 4 to (𝑛 − 1)  = 3 transition.  We specialize equation 

(2 − 21) to this situation, and vary that equation.  We find that 

 

    10/4 𝛿𝑈4  =  8/3 𝛿𝑈3  +  𝛿𝐿                                                      (4 − 9) 
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We divide the left hand side of this equation by the left hand side of equation (2 − 21) and we 

do the same on the right hand side.  In this way we obtain after some algebraic manipulation, 

 

   𝛿𝑈4/ 𝑈4  =  (8/3 𝛿𝑈3  +  𝛿𝐿)/ (8/3 𝑈3  +  𝐿) 
 

      =  (𝛿𝑈3/𝑈3  +  3/8 𝛿𝐿/𝑈3)/ (1 +  3/8 𝐿/𝑈3)                 (4 − 10) 

 

For 𝛿𝑈3/𝑈3, we substitute 𝛿𝑇/𝑇 because of equation (4 − 5).  We are assuming that in 3-d 

space, after point “𝑏” in the cycle, we do have adiabatic expansion.  This gives 

  

       𝛿𝑈4/ 𝑈4  =  (𝛿𝑇/𝑇 +  3/8 𝛿𝐿/𝑈3)/ (1 +  3/8 𝐿/𝑈3)                         (4 − 11) 
 

Furthermore, let us assume that 𝛿𝑈4/ 𝑈4  =  0.  This would mean a perfectly smooth spatial 

energy distribution in the originating 4-space, with absolutely no temperature perturbations.  

With this assumption, both the left and the right hand sides of equation (4 − 11) equal zero, and 

we’re left with 

 

     𝛿𝑇/ 𝑇 =  −3/8 𝛿𝐿/𝑈3                                                 (4 − 12) 

 

Finally, we substitute some numerical values for the quantities in equation (4 − 12).  For 𝛿𝑇/𝑇, 

we take ± 5 ∗ 10−5, and for 𝑈3 let us use the value indicated by (3 − 6𝑎).  In equation (4 − 12), 

these values give 

     𝛿𝐿 =  −/+ 2.185 ∗ 1090 𝐽𝑜𝑢𝑙𝑒𝑠                               (4 − 13) 

 

The 𝛿𝐿 is defined in 3-d space and it is a small thermal perturbation when compared with 𝐿 =
 1.8 ∗ 1094 𝐽.  See equation (3 − 10).  From equation (4 − 12), it is clear that an increase in 

temperature for the photons in a spatial pocket leads to a decrease in latent heat in that region.  

The converse holds, i.e, a decrease in temperature for photons spatially will produce an increase 

in latent heat in that particular region of space.  This is opposite to what we had previously, for 

neighboring spaces where adiabatic expansion/contraction holds in each space on either side of 

the transition curve. 

 

By means of this simple example, we have shown that spatial temperature fluctuations can be 

literally produced or created in a neighboring space even though none existed in the originating 

space.  We cannot assume adiabatic expansion or contraction in both spaces though.  At least one 

space has to be different in this regard.  This result can be extended to any 𝑛-space.  It would 

appear that this is a necessary condition for creation of temperature inhomogeneity when 

transitioning between different spaces. 

 

 

 

 

V   SUMMARY and CONCLUSIONS 

 

We have generalized the Clausius-Clapeyron (CC) relation to take into account a type of phase 

transition for which there is a change in spatial dimension.  In going from 𝑛-dimensional space to 
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(𝑛 − 1)-dimensional space we have a release of latent heat, a decrease in entropy, a decrease in 

energy density, and a change in volume from 𝑉𝑛 to 𝑉𝑛−1 .  In transitioning from (𝑛 − 1) 

dimensions in space to n dimensions, latent heat is absorbed, with an accompanying increase in 

entropy, energy density, and a change in volume from 𝑉𝑛−1 to 𝑉𝑛 .  The generalization can be 

written as equation (2 − 12) where the factor of ½ is needed in order to retain the identity of 

photons in both spaces.  In transitioning between spatial dimensions, total energy is conserved.  

See equation (2 − 19).  Another way to write equation (2 − 19) is either equation (2 − 21) or 

(2 − 22).  The volume also changes from 𝑛-space to (𝑛 − 1)-space, and vice versa, according to 

equations (2 − 26), or (2 − 27), depending on whether we wish to work with latent heat density 

or latent heat. 

 

We considered the particular phase transition from 𝑛 = 4 to (𝑛 − 1)  = 3.  To give a specific 

example for how the generalized CC relation works, we assumed a specific value for transition 

temperature, as well as a particular value for latent heat.  We then calculated particular values for 

the energy density, entropy density, and volume both before and after the phase transition.  We 

found that if we assume that 𝑇 =  𝑇43  = 𝑇34  =  3 ∗ 1027  Kelvin, and, furthermore, if we take 𝐿 

to equal 1.8 ∗ 1094 𝐽𝑜𝑢𝑙𝑒𝑠, then we have: 

 

  𝑢4  =  1.15 ∗ 10125 𝐽 𝑚−4,    𝑠4  =  4.81 ∗ 1097 𝐽 𝑚−4 𝐾−1,       𝑉4  =  2.14 ∗ 10−31 𝑚4,    with 

 

  𝑢3  =  6.13 ∗ 1094 𝐽 𝑚−3,   𝑠3  =  2.72 ∗ 1067 𝐽 𝑚−3 𝐾−1,       𝑉3  =  .267 𝑚3   
  

The subscripts 3,4 refer to the dimension of space where the quantity is defined.  We have 

considered only black-body photon radiation in order to keep the discussion simple.  We notice a 

tremendous decrease in entropy in transitioning from 𝑛 = 4 to (𝑛 − 1)  = 3 space, as well as a 

dramatic change in volume.  The volume 𝑉4 is defined in 4-space whereas 𝑉3 is a three-

dimensional construct; as such they cannot readily be compared.  Nevertheless, 𝑉3 is a subspace 

of 𝑉4 because compactification will curl up one of the space dimensions.  We remark that the 

latent heat released was assumed substantial, and we believe that it is released in the residual 𝑛 =
3 space as we discount exotic scenarios such as parallel universes. 

 

The 4-volume, 𝑉4, can be calculated once the latent heat, 𝐿, is known and vice versa.  We assume 

that the 𝑉3 value is known since the cosmic scale parameter is determined by the temperature, 

and the temperature is specified.  The 𝑉3 value at transition temperature 𝑇34  =  𝑇43 must be 

equal to 𝑉3 =  𝑉0 𝑎−3 where “𝑎” is the cosmic scale parameter, and 𝑉0 is the present size of the 

observable universe.  Since 𝑎 =  𝑇0/𝑇43 where 𝑇0  = 2.725 𝐾, and since the radius of the 

observable universe is, at present, 4.4 ∗ 1026 𝑚𝑒𝑡𝑒𝑟𝑠, we calculate for 𝑉3 a value of . 267 𝑚3 at 

a temperature of 𝑇43  =  3 ∗ 1027 𝐾.  The relation between 𝑉4 and latent heat, 𝐿, is a linear 

relation with an increase in 𝐿 leading to an increase in 𝑉4.  See equation (3 − 12), or what is 

equivalent, equation (3 − 11).  A graph for 𝑉4/ 𝑉3 versus 𝐿, for various 𝐿 values, is illustrated in 

Figure 1 on page 12. 

 

The numbers calculated above have a direct connection to a previous work by the author [11] on 

inflation.  We treated inflation as an isothermal expansion process, within a greater Carnot heat 

engine cycle.  We hypothesize in this paper that the beginning of the isothermal process may 

have started with a 𝑛 = 4  to (𝑛 − 1)  = 3 phase transition.  This would account for the 
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tremendous amount of heat release, which is needed for the isothermal process, from points 

𝑎  𝑏 in the cycle.  While this is conjecture, the numbers are seen to have the right order of 

magnitude.  In addition, when we focus on the inhomogeneity in temperature in WMAP and 

Planck maps, which is of the order 𝑜𝑓 𝛿𝑇/𝑇 =  ± 5 ∗ 10−5, we find that the temperature 

fluctuations can be produced from one spatial dimension to the next when transitioning between 

spaces.  See, for example, equations (4 − 12) and (4 − 13).  If both neighboring spaces allow 

for adiabatic expansion/contraction, then there will be a smooth carry-over of temperature 

inhomogeneity from one spatial dimension to the next.  This seems to be a special feature of our 

generalized CC relation.  The specific thermodynamic variables vary in a characteristic way with 

respect to a variation in temperature.  See equations (4 − 1), (4 − 2).  If we assume adiabatic 

expansion or adiabatic contraction in n-dimensional space, then we have the further relations, 

equations (4 − 3), (4 − 4), (4 − 5), (4 − 6), and (4 − 7). 

 

Higher order spatial phase transitions can be considered, e.g., from 𝑛 = 5 to (𝑛 − 1)  = 4, from 

𝑛 = 6 to (𝑛 − 1)  = 5, etc.  We can apply the generalized CC relation, equation (2 − 12), to 

these situations. If we multiply equation (2 − 12) by negative one, left and right hand sides, we 

can also transition in reverse, from (𝑛 − 1) spatial dimensions to n-spatial dimensions.  Now 

latent heat must be supplied for the process to happen, as entropy will increase as well as internal 

energy density. 

 

If we decrease the number of spatial dimensions, then we can only transition from 𝑛 = 3 to (𝑛 −
1)  = 2, and from 𝑛 = 2 to (𝑛 − 1)  = 1.  We notice that the energy density, specified by 

equation (2 − 1), is infinite for 𝑛 = 0 as we are then dividing by 𝛤(0), which is in the 

denominator and is zero.  If 𝑛 = 1 is substituted in equation (2 − 1), then the denominator is 

well defined, but we obtain a zero value in the numerator.  Radiation energy cannot exist in a 1-

dimensional space.  Nevertheless, a transition from 𝑛 = 2 to (𝑛 − 1)  = 1 is a possibility.  As 

the dimension decreases, there is less latent heat released, and the energy densities decrease as 

well.  The entropy also decreases, as more space allows for more disorder, and less space means 

less disorder. 

 

Finally, we close this paper with the observation that space, in and of itself, must have energy.  

We know that space filled with radiation has energy.  This is obvious from equation (2 − 1) 

because any finite temperature above absolute zero will give us a finite energy density for n 

greater than one.  The energy is trapped in the radiation itself, i.e., within the photons, within a 

given dimension.  What we have shown in this work is that if one gives up space, by decreasing 

the dimension, one automatically releases latent heat.  When one adds space, by increasing the 

spatial dimension, then one has to necessarily supply latent heat.  Therefore, space itself must 

have energy content since transitioning between spaces supplies or costs energy. In other words, 

the latent heat supplied can be either positive or negative depending on the direction of the 

spatial transition.  We can quantify the amount of energy released and taken in, when switching 

from one spatial dimension to another, with our generalized CC relation.  This is the most 

spectacular result of this paper. 
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