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Abstract

This tutorial begins with the relationship of source-free classical electromagnetism to ultra-relativistic free-
photon quantum mechanics. The linear transformation of the source-free classical-electromagnetic real-
valued transverse vector potential to its corresponding free-photon Schrödinger-equation complex-valued
transverse vector wave function is obtained. It is then pointed out that despite the free-photon Klein-
Gordon equation’s being formally identical to the source-free classical-electromagnetic vector-potential
wave equation, it yields not only free-photon Schrödinger-equation wave functions but also their complex
conjugates, which don’t satisfy the free-photon Schrödinger equation. This is a consequence of admitting
complex-valued solutions of the Klein-Gordon equation—of course only its real-valued solutions apply to
the classical vector potential. It is pointed out that solutions of the free-particle Dirac equation likewise
occur in conjugate pairs, and that its Hamiltonian operator implies a variety of unphysical consequences,
e.g., any Dirac free particle’s speed is that of light times the square root of three.

Source-free classical electromagnetism’s vector potential wave equation

The Maxwell field equations of source-free electromagnetism are,

∇ ·E = 0, ∇×E + (1/c)Ḃ = 0, ∇ ·B = 0, ∇×B − (1/c)Ė = 0. (1a)

If we express the transverse B and the transverse E in terms of a transverse vector potential A as follows,

B = ∇×A, E = −(1/c)Ȧ, ∇ ·A = 0, (1b)

then the first three source-free Maxwell field equations given by Eq. (1a) are all satisfied. The insertion
of Eqs. (1b) into the last Eq. (1a) source-free Maxwell field equation then yields the following transverse
vector-potential wave equation,[

(1/c)2(∂/∂t)2 −∇2
]
A(r, t) = 0, where ∇ ·A(r, t) = 0. (1c)

The free-photon Schrödinger equation

The relativistic Hamiltonian operator for a free particle of mass m is,

H =
(
m2c4 + |cp|2

) 1
2 , (2a)

which in the massless free-photon case reduces to,

H = |cp| = c(p · p)
1
2 . (2b)

This Hamiltonian operator yields the free-photon velocity and speed,

ṙ = (−i/h̄)
[
r, c(p · p)

1
2

]
= ∇p

(
c(p · p)

1
2

)
= cp/(p · p)

1
2 = cp/|p| ⇒ |ṙ| = c, (2c)

and also the free-photon Schrödinger equation,

ih̄(∂Ψ/∂t) = c(p · p)
1
2 Ψ, where p ·Ψ = 0, (2d)

because a free photon’s wave function Ψ is a transverse vector entity.
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In configuration representation p = −ih̄∇, so Eq. (2d) becomes,[
(i/c)(∂/∂t)−

(
−∇2

) 1
2

]
Ψ(r, t) = 0, where ∇ ·Ψ(r, t) = 0. (2e)

Since, [
(i/c)(∂/∂t)−

(
−∇2

) 1
2

][
−(i/c)(∂/∂t)−

(
−∇2

) 1
2

]
=
[
(1/c)2(∂/∂t)2 −∇2

]
, (2f)

we have the following homogeneous linear transformation of the source-free classical-electromagnetic real-
valued transverse vector potential A(r, t) of Eq. (1c) to its corresponding free-photon Schrödinger-equation
complex-valued transverse vector wave function Ψ(r, t) of Eq. (2e),

Ψ(r, t) =
[
−(i/c)(∂/∂t)−

(
−∇2

) 1
2

](
−∇2

)− 1
4 A(r, t)/(h̄c)

1
2 , (2g)

where the two additional factors (−∇2)−
1
4 and (1/(h̄c)

1
2 ) which appear in Eq. (2g) but not in Eq. (2f) are

present to reconcile the fact that the dimension of the source-free transverse vector potential A(r, t) is the
square root of the quotient of energy divided by length, whereas the dimension of the free photon’s transverse
vector wave function Ψ(r, t) is of course the square root of inverse volume. Eqs. (1c), (2d), (2e), (2f) and
(2g) show that source-free classical electromagnetism and ultra-relativistic free-photon Schrödinger-equation
quantum mechanics are one and the same.

The Klein-Gordon equation’s unphysical complex-conjugate solution pairs

If we multiply the free-photon Schrödinger equation of Eq. (2e) by the factor [−(i/c)(∂/∂t) − (−∇2)
1
2 ], we

see from Eq. (2f) that the result is,[
(1/c)2(∂/∂t)2 −∇2

]
Ψ(r, t) = 0, where ∇ ·Ψ(r, t) = 0, (3a)

namely the Klein-Gordon equation for Ψ(r, t). The Eq. (3a) Klein-Gordon equation is obviously satisfied by
any solution of the Eq. (2e) free-photon Schrödinger equation, and it is equally obvious that it is also satisfied
by the complex-conjugate of any such solution. Those complex conjugates Ψ∗(r, t) of solutions Ψ(r, t) of
Eq. (2e) free-photon Schrödinger equation obviously satisfy the entirely distinct complex-conjugate of the
Eq. (2e) free-photon Schrödinger equation, namely ,[

−(i/c)(∂/∂t)−
(
−∇2

) 1
2

]
Ψ∗(r, t) = 0, where ∇ ·Ψ∗(r, t) = 0, (3b)

and therefore are incompatible with the Eq. (2e) free-photon Schrödinger equation itself . Thus the Klein-
Gordon Eq. (3a) always has extraneous solutions which are complex conjugates of solutions of the free-photon
Schrödinger equation, and are incompatible with that equation. Although the Eq. (1c) source-free classical-
electromagnetic transverse vector potential wave equation is identical in form to the Klein-Gordon Eq. (3a),
the fact that its solutions A(r, t) are rigidly stipulated to be real-valued obviously completely prevents
complex-conjugate solution pairs from being in play .

Conjugate solution pairs are a prominent feature of the free-particle Dirac equation, however.

The Dirac equation’s conjugate solution pairs and unphysical particle speed

Up to this point we have been discussing free photons, which have zero mass and are described by transverse
vector wave functions, but in this section it will be convenient to instead discuss relativistic free particles
whose mass m isn’t necessarily zero and whose wave-function characteristics are generic rather than particu-
lar, so we shall denote wave functions by using the generic symbol ψ. We therefore begin by considering the
Schrödinger equation for the wave function ψS , which has the relativistic free-particle Hamiltonian operator
H = (m2c4 + |cp|2)

1
2 given by Eq. (2a),

ih̄(∂ψS/∂t) =
(
m2c4 + |cp|2

) 1
2 ψS . (4a)

It is convenient to rewrite Eq. (4a) in a form which is similar to that of Eq. (2e),[
(i/c)(∂/∂t)−

(
|p/h̄|2 + µ2

) 1
2

]
ψS = 0, where µ

def
= (mc/h̄). (4b)
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Since p = −ih̄∇ in configuration representation, |p/h̄|2 is −∇2 in that representation. Thus analogously to
Eq. (2f) we have that,[
−(i/c)(∂/∂t)−

(
|p/h̄|2 + µ2

) 1
2

][
(i/c)(∂/∂t)−

(
|p/h̄|2 + µ2

) 1
2

]
=
[
(1/c)2(∂/∂t)2 + |p/h̄|2 + µ2

]
, (4c)

which implies that ψS satisfies the following Klein-Gordon equation that extends the Klein-Gordon equation
of Eq. (3a) to free particles which have nonzero mass,[

(1/c)2(∂/∂t)2 + |p/h̄|2 + µ2
]
ψS = 0. (4d)

Unlike the Eq. (2a) relativistic free-particle H = (m2c4 + |cp|2)
1
2 , the free-particle Dirac Hamiltonian,

HD = c~α · p + βmc2, (5a)

deliberately eliminates the square root because its presence balks solution by separation of variables in cases
such as that of the hydrogen atom where a central potential is added to the free-particle Hamiltonian. Simul-
taneously the algebraic properties of the coefficients ~α and β of the Eq. (5a) free-particle Dirac Hamiltonian
HD are specifically chosen to make (HD)2 = H2 = |cp|2 + m2c4, so that HD implies exactly the same
Eq. (4d) Klein-Gordon equation as is obtained from the Eq. (2a) H = (m2c4 + |cp|2)

1
2 . The algebraic

properties of ~α = (α1, α2, α3) and β which make (HD)2 = H2 = |cp|2 +m2c4 are,

(α1)2 = (α2)2 = (α3)2 = β2 = 1, and in addition α1, α2, α3 and β all mutually anticommute. (5b)

It is furthermore assumed that α1, α2, α3 and β are all Hermitian so that HD is Hermitian. These algebraic
properties imply that the entity (−i/2)(~α× ~α) has all of the algebraic properties of the Pauli vector operator
~σ = (σ1, σ2, σ3). Since the above algebraic properties of ~α and β can be realized by 4 × 4 matrices, Dirac
wave functions are conventionally assumed to be four-component spinors.

In the discussion underneath Eq. (3a) it was pointed out that in configuration representation the complex
conjugate of any solution of the Klein-Gordon equation as well satisfies the Klein-Gordon equation; this is
clearly also the case for the extended Eq. (4d) version of the Klein-Gordon equation, since |p/h̄|2 = −∇2

in configuration representation. It was also pointed out in connection with Eq. (3b) that these complex
conjugates of solutions of the Klein-Gordon equation very frequently aren’t in fact solutions of the Schrö-
dinger equation which is the precursor of the Klein-Gordon equation; the Klein-Gordon equation has the
defect of being beset by a plethora of extraneous solutions that arise from repetitious application of operators,
such as that illustrated in Eq. (4c). We now show that the algebraic properties of α1, α2, α3 and β very
similarly cause any solution of the free-particle Dirac equation to be beset by a conjugate partner .

The free-particle Dirac equation,

ih̄(∂ψD/∂t) =
(
c~α · p + βmc2

)
ψD. (6a)

is conveniently reexpressed in a form similar to that of Eq. (4b),

[(i/c)(∂/∂t)− (~α · (p/h̄) + βµ)]ψD = 0. (6b)

Since ~α, p and β are all Hermitian operators, the Hermitian conjugate of Eq. (6b) is,

ψ†D[−(i/c)(∂/∂t)− (~α · (p/h̄) + βµ)] = 0. (6c)

We now define the operator α5 as,

α5
def
= α1α2α3β, (6d)

and note that α5 is Hermitian because, since α1, α2, α3 and β are Hermitian,

α†5 = βα3α2α1 = −α3α2α1β = −α2α1α3β = α1α2α3β = α5. (6e)

We also note that (α5)2 = 1 because,

(α5)2 = α5α
†
5 = α1α2α3ββα3α2α1 = 1. (6f)
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Finally, it is obvious that α5 anticommutes with α1, α2, α3 and β, e.g.,

α5β = α1α2α3ββ = α1α2α3 and βα5 = βα1α2α3β = −α1α2α3ββ = −α1α2α3 so α5β + βα5 = 0. (6g)

We now multiply Eq. (6c) on the right by α5 to produce,

ψ†D[−(i/c)(∂/∂t)− (~α · (p/h̄) + βµ)]α5 = 0. (6h)

Using the fact that α5 anticommutes with ~α and β allows us to reexpress Eq. (6h) as,

ψ†Dα5[−(i/c)(∂/∂t) + (~α · (p/h̄) + βµ)] = 0. (6i)

Multiplying Eq. (6i) by (−1) produces,

(ψ†Dα5)[(i/c)(∂/∂t)− (~α · (p/h̄) + βµ)] = 0. (6j)

Comparison of Eq. (6j) with Eq. (6b) shows that if ψD satisfies the free-particle Dirac equation, then the

particular conjugate of ψD which is given by (ψ†Dα5) also satisfies the free-particle Dirac equation. Note that

(ψ†Dα5) is indeed a particular conjugate of ψD because,

α5(ψ†Dα5)† = α5(α5ψD) = (α5)2ψD = ψD, (6k)

where we have used the facts that α5 is Hermitian and its square is unity.
Thus the Dirac equation is much more akin to the Klein-Gordon Eq. (4d) than it is to the Schrödinger

Eq. (4b); no analogous solution conjugation theorem applies to the Schrödinger Eqs. (4b) and (4a). In fact,
it can in addition be shown that the Dirac Hamiltonian HD = c~α · p + βmc2 of Eq. (5a) egregiously violates
tenets of special relativity which are upheld by the Hamiltonian H = (m2c4 + |cp|2)

1
2 of Eq. (2a) that is at

the heart of the Schrödinger Eqs. (4a) and (4b). Analogous to the free-photon velocity and speed obtained
in Eq. (2c) from the specialized free-photon Hamiltonian given by Eq. (2b), we now apply the relativistic
Hamiltonian of Eq. (2a) for free particles of mass m ≥ 0 to obtain their relativistic velocity and speed,

ṙ = (−i/h̄)
[
r,
(
m2c4 + |cp|2

) 1
2

]
= c∇p

(
(mc)2 + (p · p)

) 1
2 =

cp/
(
(mc)2 + |p|2

) 1
2 ⇒ |ṙ| = c|p|/

(
(mc)2 + |p|2

) 1
2 ≤ c.

(7a)

Thus the relativistic free-particle Hamiltonian H = (m2c4 + |cp|2)
1
2 of Eq. (2a) yields that the free particle’s

velocity ṙ is always parallel to its momentum p, and its speed |ṙ| never exceeds c. The Dirac Hamiltonian
HD = c~α · p + βmc2 of Eq. (5a) however yields,

ṙ = (−i/h̄)
[
r, c~α · p + βmc2

]
= ∇p

(
c~α · p + βmc2

)
= c~α ⇒

|ṙ| = c|~α| = c
√

(α1)2 + (α2)2 + (α3)2 = c
√

1 + 1 + 1 = c
√

3 = 1.732c > c,
(7b)

which egregiously contradicts the relativistic tenets that a free particle’s velocity ṙ is always parallel to its
momentum p, and that its speed |ṙ| never exceeds c. In fact, the Dirac Hamilton result that ṙ = cα goes
beyond merely contradicting special relativity; it implies that the three observable components (ṙ)1 = cα1,
(ṙ)2 = cα2 and (ṙ)3 = cα3 of a free particle’s velocity anticommute with each other even in the limit that h̄→
0, which flatly contradicts the correspondence-limit requirement of quantum mechanics that observables must
all commute with each other in the limit that h̄ → 0. Violation of the quantum mechanics correspondence
principle by the free-particle Dirac Hamiltonian HD is part and parcel of the spontaneous acceleration of
Dirac free particles which is known as zitterbewegung . The magnitude of this zitterbewegung spontaneous
acceleration is of order (mc3/h̄) for a zero-momentum Dirac free particle of mass m, which for an electron
works out to approximately 1028g, where g equals 9.8 meters per second squared, the acceleration of gravity
at the earth’s surface. Of course the spontaneous zitterbewegung acceleration magnitude (mc3/h̄) goes to
infinity in the classical correspondence limit h̄→ 0.
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