On Thermal Relativity, Modified
Hawking Radiation, and the
Generalized Uncertainty Principle

Carlos Castro Perelman
Center for Theoretical Studies of Physical Systems
Clark Atlanta University, Atlanta, Georgia. 30314.
Ronin Institute, 127 Haddon Place, Montclair, N.J. 07043.
perelmanc@hotmail.com

March 2019

Abstract

After a brief review of the thermal relativistic corrections to the
Schwarzschild black hole entropy, it is shown how the Stefan-Boltzman law
furnishes large modifications to the evaporation times of Planck-size mini-
black holes, and which might furnish important clues to the nature of dark
matter and dark energy since one of the novel consequences of thermal rel-
ativity is that black holes do not completely evaporate but leave a Planck
size remnant. Equating the expression for the modified entropy (due to
thermal relativity corrections) with Wald’s entropy should in principle
determine the functional form of the modified gravitational Lagrangian
L(Rapea). We proceed to derive the generalized uncertainty relation which

2
corresponds to the effective temperature Tepy = TH(1 — %)_1/2 associ-

2
ated with thermal relativity and given in terms of the Hawking (Tx) and
Planck (Tp) temperature, respectively. Such modified uncertainty rela-
tion agrees with the one provided by string theory up to first order in

(6p)*
M2

size) uncertainty. Finally, an e;()plicit analytical expression is found for the
modifications to the purely thermal spectrum of Hawking radiation which
could cast some light into the resolution of the black hole information
paradox.

the expansion in powers of . Both lead to a minimal length (Planck
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Recently we derived the exact thermal relativistic corrections to the Schwarzschild,
Reissner-Nordstrom, Kerr-Newman black hole entropies, and provide a detailed



analysis of the many novel applications and consequences of thermal relativity
to the physics of black holes, quantum gravity, minimal area, minimal mass,
Yang-Mills mass gap, information paradox, arrow of time, dark matter, and
dark energy [1]. The deep origins of the connection between Black Holes and
Thermodynamics is still a mystery (to our knowledge). As pointed out by [§],
the idea of describing classical thermodynamics using geometric approaches has
a long history. Among various treatments, Weinhold [3] used the Hessian of
internal energy to define a metric for thermodynamic fluctuations, Ruppeiner
[4] used the Hessian of entropy for the same purpose. More recently, Quevedo
[5] introduced a formalism called Geometrothermodynamics (GTD) which also
introduces metric structures on the configuration space £ of the thermodynamic
equilibrium states spanned by all the extensive variables.

Another fact that was missing is that the above authors (to my knowledge)
did not realize that their constructions are particular examples of the many
important applications of Finsler geometry [6], to the field of Thermodynamics,
contact geometry and a vast number of many other topics [7] . Zhao [8] was
able to outline the essential principles of Thermal Relativity; i.e. invariance
under the group G of general coordinate transformations on the thermodynamic
configuration space, and introduced a metric with a Lorentzian signature on the
space. The line element was identified as the square of the proper entropy. Thus
the first and second law of thermodynamics admitted an invariant formulation
under general coordinate transformations, which justified the foundations for
the principle of Thermal Relativity.

In our case above, one may implement Zhao’s formulation [8] of Thermal
Relativity in the flat analog of Minkowski space as

(ds)* = (TpdS)? — (AM)? <« (dr)? = (cdt)* — (dz)? (1)

The maximal Planck temperature Tp plays the role of the speed of light, and s
is the so-called proper entropy which is invariant under the thermodynamical
version of Lorentz transformations [8]. Note the s <> 7 correspondence. Thus
the flow of the proper entropy s is consistent with the arrow of time.

The left hand side of (1) yields after recurring to the first law of Thermo-

dynamics TdS = dM = T = ds ,

(ds)> = (TpdS)? (1 — ;; = (ds) = (Tp dS) 1/ T2

dM T2
Tp (— 1 - — = dM = 2
(- &) T —— @)
Eg-(1) allowed to derive the thermal relativistic corrections to the Black Hole
Entropy [1]
Given the thermal dilation factor one can always define an “effective” tem-
perature by



Tesp = LTZ (3)
1-I2
T3

such that dM = v(T)T(ds/Tp) becomes then the thermal relativistic analog of

the Energy-Momentum relations E = m,c?(1 — Z—i)’%, P =myt(l — Z—z)’% in

Special Relativity, in terms of the rest mass m,, velocity v, and maximal speed
of light c.

After renaming S = (s/Tp), in terms of the proper entropy s, the first law of

black hole thermal-relativity dynamics dM = ~(Ty)TxdS yields the corrected

entropy
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inserting T (M) = (87GM)~! into eq-(4) gives, after setting (Tp) =2 = (Mp) 2
L% = G, the following integral

- M aQ M 5
§-8, = /MD dM (87GM) ,/um = /MO dM \/(87GM)? — G
(5)

The indefinite integral

Va¥iZ — b b
/dx\/a2x2 - b= %—%ln(a[ a?x? —b—l—asc]) (6)

permits to evaluate the definite integral in the right hand side of (5) between
the upper limit M, and a lower limit M, defined by (87GM,)? — G = 0, giving
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after using the relations for the ordinary entropy in the Schwarzschild black hole

A , A

1

= )b (5)

and (87GM,)? = G = 87GM, = +/G. The lower limit M, of integration is

required in eq-(5) to ensure the terms inside the square root are positive definite
and the integral is real-valued.

One could then ask what is the modified gravitational action which cor-

responds to the corrected (proper) entropy found in eq-(7). Equating Wald’s
entropy (a Noether charge) [9]
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with the expression for the modified entropy found in eq-(7) should in principle
determine the functional form of modified gravitational Lagrangian L£(Raped)
that would reproduce the entropy (7). The integral (9) is defined over the
bifurcate horizon and n® are the binormals to the horizon.
Let us evaluate now the modifications to the black hole emission rate. As-
suming the black hole radiates photons according to the Stefan-Boltzman law
P = AoT*, the rate of mass loss through the horizon area A = 4772 is

dM 4 w2kt 9 9
e —AoT® o = TSR A = Adn(rs)® = 4n(2GM)*, T = Ty =
(10)
upon integrating eq-(10) yields the evaporation time
1610362 M3
. 6m°G= M~ (1)
o 3

A solar-mass black hole’s evaporation time is of the order of GZM? = (MMP)i)’tp ~
1092 years which is much greater than the age of the universe.

The thermal relativistic corrections to the emission rate are simply ob-
tained by replacing 7' in the Stefan-Boltzman law for the effective Topr =

T(1 - %)’1/ 2. and by setting the end point of evaporation to the minimal
P

of mass M, = %. The modified expression for the evaporation time becomes
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Taking the ratio of the expressions (11,12) gives

SRS

M, M, M,

from which one learns that for large masses M >> M,, % ~ 1 and the corrections
are negligible. However for small masses M ~ M, (Planck size mini-black holes)

)* = 3( (13)

the ratio is much smaller % << 1, consequently the mini-black holes evaporate
much faster than before, and their lifetimes are much shorter.

This fact can have important consequences for Dark Matter. The possibility
that the dark matter comprises primordial black holes (PBHs) has been con-
sidered by many [12]. While there exist various candidates, the nature of dark
matter remains unresolved. It has been argued that the generalized uncertainty
principle (GUP) may prevent a black hole from evaporating completely, and as
a result there should exist a Planck-size black hole remnant at the end of its
evaporation [13]. If a sufficient amount of small black holes can be produced in
the early universe, then the resultant black hole remnants can be an interesting
candidate for Dark Matter [12]. Because above we also have found a minimal




black hole mass remnant of mass M,, for this reason we shall analyze next the
GUP and its connection to thermal relativity.
Let us begin with the stringy uncertainty relation [10] in A = ¢ =k =1
units
1 (op)°

Sz 6p > =
xp_2+5M1%,

Mp =Tp (14)

the position uncertainty of photons emitted by the static spherically symmetric
black hole is of the order of the Schwarzschild diameter (radius) dz ~ 2rg ~
4GM. The momentum uncertainty is represented by the characteristic energy
of the emitted photons [11] dp ~ p = E = T. If one sets the proportionality
factor dx ~ 2ry as dx = 27ry = 4wGM, the stringy uncertainty relation (14)
can be expressed in terms of the Hawking temperature Ty = ﬁ as follows

1 1 T
> il 1
2Ty — 2T+ﬂT1% (15)

the last equation yields Ty in terms of T'. Inverting it gives T in terms of Ty
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and which in turn can be rewritten in terms of M by substituting Ty =
(87GM)~!

T = T(M) = (87GM) % (1 - \/1 - 28 (&T(;WTP)Q) (17)

The expression for T'(Tx) in eq-(16) based on the generalized uncertainty prin-
ciple inspired from string theory [10] is denoted by T'= Tgup(Tw). The 8 — 0
limit of eq-(17) gives T — Ty = ﬁ as expected.

After erforming a Taylor expansion of the square root terms of the expression
for T = Tqup(Th) in eq- (16) gives

T3 T 1 T
T ~ P 1 — (1—p=H _ Z(9p)2H =
GUP BTh ( ( 5T1% 8( B) T3 + )
B Ty
Ty + = =5 + -+ (17)
> T2
whereas a Taylor expansion of expression for thermal relativistic effective tem-
2
perature T = Trp(Ty) == Ty (1 — %)*1/2 gives
P
1713
T ~ T - ZH 18
TR H + > T2 + (18)



After comparing the first two terms of eqs-(17,18) we find an agreement when
B = 1. Therefore, the second order Taylor expansion of Tgup(TH) agrees
precisely with the first order Taylor expansion of Trgr(Ty) when 8 = 1. The
value of 8 = 1 agrees with the authors [11] who have shown by other means
that g = O(1).

However, since there is no exact agreement in the higher order terms of the
expansions of Ty p and Trgr one can still show that the full thermal relativistic
expression Trp(Ty) =Ty (1— %)*1/2 can be derived exactly from the modified

uncertainty relation

1 (dp)?

when op ~p=F =T, and Mp = Tp, eq-(19) leads to

J >1 L_}_i_l L_FL (20)
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given dz = 277, = 47GM = 51—, eq-(20) yields
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and one recovers the thermal relativistic expression for the modified Hawking
temperature T = Tyy(Ty). Concluding, the modified uncertainty relation (19)
is the one which is associated with the modified temperature Ty — Tuy(TH)
consistent with thermal relativity. Note that the first two terms of the Taylor
expansion of the right hand side in eq-(19) yields the initial stringy uncer-
tainty relation (14) for 5 = i. Hence, the thermal relativity theory singles out
the modified uncertainty relation (19) from a number of many other plausible
choices.
It is important to remark that when

p= <p> =0=0p?= <p>> (22)
and due to the inequalities

(0p)°" = (< p* >)" # < p" > (23)

the modified Weyl-Heisenberg algebra given by

[2,p] = i,/1+% (24)



does not exactly reproduce the modified uncertainty relation (19) because

5m§p2%\<[5£,ﬁ]>\:%|< 1+§\;£>|¢ fvi'j’l% (25)
Given the general definition
(6A? = < (A - <A>)? > (26)
by writing A = p”, it gives
(") = < (0" = <p"> ) > = <P > - (<" > (2]
and one arrives at the inequality
(op")? < < P > (28)
resulting from eq-(27) due to (< p* >)2 > 0.
If, and only if, (6p™)? = (6p)?", namely if we impose the conditions
<(P" - <p"> ) > = (< (p - <p>)" ) (29)
then eq-(28) becomes
(6p")* = (0p)*" < < P > (30)
in this very special case the modified commutator
o) = 8 1o (o 1\ 1e O (32

1
given in terms of the absolute values |C,,| of the binomial coefficients C,, = (2)
leads to the sought-after modified uncertainty relation

1 . 1 (dp)?
> — _
dx op > 2|< [Z,p] >| > 5 1+ M2

(33)

and which is associated to the effective temperature (21) resulting from thermal
relativity.

Evenfurther, one can bypass the introduction of absolute values |C,| for
the binomial coeflicients if instead one chooses the modified commutators to be
given by the same form as the thermal relativistic dilation factor

o () _1

ol = i (= ) (34)
and whose binomial expansion automatically yields positive coefficients for all
values of n.



One can still proceed further and propose another modified uncertainty re-
lation to be

1 1
Srop > - 35
TP = T o (350)

2
MP

which is also compatible with the commutator in eq-(34), provide the conditions
(29) are obeyed. Meaning that

(B)* _1 1 1
0z

1 1
5z op > - o - -
xp_2|<[x,p]>\ 3

However one still needs to justify imposing the conditions (29) which seem
ad hoc. If one does not impose those conditions (29) then one has to find out
what is the appropriate modified commutator [Z, p] (which would differ from eq-
(34)) which reproduces the modified uncertainty relations (19) which are linked
to thermal relativity. As stated earlier [Z,p] cannot have the form provided
by eq-(24) due to the inequality in the last term of eq-(25). This problem is
currently under investigation.

The modified uncertainty relation (19) leads to a minimal length uncertainty
(02) min = % of the order of the Planck length Lp when dp — oo ; i.e it takes
an infinite momentum to reach the Planck scale, this is consistent with Scale
Relativity [16] (based on fractals) and Doubly Special Relativity [17] (based
on k-deformed Poincare algebra). This result should be contrasted with the
stringy uncertainty relation of eq-(14) that leads to minimal length uncertainty

of Lpy/2B (Lp = 1/Mp) at a finite value of ép = \1\//[2% When S = 1, the

minimal length uncertainty is of the same order of the Planck scale.
To finalize, the non-thermal distribution spectrum due to thermal relativity
is given by

E
1 1 eTn —1 1
N = —5— = & < 5 ) = f—= (36)
eTH TH) — 1 eTn —1 eTur(Tu) — 1] eTn —1
where the deviation from the purely thermal spectrum is encoded in the multi-
plicative factor f. Given A = %, B= ﬁw, one has
1 1 A1 1 A _eB
- < - R (37)
eB -1 ed—1eB -1 ed —1 eB —1
The following fraction can be expanded as
A B A A
e —e e e
= 1—ef4 ~ (A-B 38
" g e ) ~ )57 (38)

Eqs-(37,38) allow us then to evaluate the multiplicative factor f



Frolt g (39)

where the higher order corrections to the factor f are of the form

E n
1 E T? Ty
/A AR (40)
2Ty Tp ¢tu —1

In the thermal non-relativistic limit Tp — oo one recovers f — 1 as expected.
The facts that thermal relativity leads to a Planck-size black hole remnant and to
modifications to the thermal spectrum could cast some light into the resolution
of the black hole information paradox (loss of unitarity).

We conclude by reflecting on our proposal towards a Space-Time-Matter
Unification program where matter can be converted into spacetime quanta, and
vice versa [1]. Our minimal mass M, of the order of the Planck mass corre-
sponding to a Planck-size black hole, and whose horizon has Planck-sized area,
could be viewed as spacetime “quanta” (gravitons). This proposal must not
be confused with the view by [14] of classical background geometries as quan-
tum Bose-condensates with large occupation numbers of soft gravitons, such
that a black hole is a leaky bound-state in form of a cold Bose-condensate of
N weakly-interacting soft gravitons (very low energy) of wave-length v NLp,
and of quantum interaction strength 1/N. Nor with the view that the event
horizon of a black hole is a quantum phase transition of the vacuum of space-
time analogous to the liquid-vapor critical point of a Bose fluid [15]. There is a
fundamental difference between quantization in spacetime versus quantization
of spacetime. The Generalized Uncertainty Principle and Corspuscular Gravity
within the context of quantum Bose-condensates was recently studied by [11].
It is warranted to investigate all these topics further.
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