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Problem: Zeta Function Zeros
A key question unresolved in Riemann’s 1859
paper [1] (translation in [2]) is the nature of the
roots of the Riemann xi function - are they all
real? - which is equivalent to asking if the Rie-
mann Zeta function (see below) roots all have
real parts equal to 1/2.

Overview
Triggered by an observation of the charac-
teristics of the Zeta function, we will look
at the Dirichlet Eta function (same zeros as
the Zeta function but converges in the criti-
cal strip), investigate the implicit functions of
Re(eta)=Im(eta) (noting the regions where σ
and a are functions of each other and show that
since the derivative of Re(eta) does not change
sign when Re(eta)=Im(eta), then the eta func-
tion only has a single zero on each separate
curve. Combined with the property of the Rie-
mann xi function (xi(s) = xi(1-s)), this means
that all the zeros have real part 1/2.
NB s=σ+ ai for eta(s) and zeta(s). The critical
strip is defined as 0 < σ < 1. Riemann proved
that there are no zeros outside the critical strip,
so we focus only on the critical strip.

Riemann Zeta Observation
The figure below shows in detail the real and
imaginary components of the Zeta function for
varying σ and a around a known zero. Note the
visible zero at σ = 1/2 and the way the func-
tion changes for different values of σ - especially
the always positive derivative for the value of
Re(zeta) when Re(zeta)=Im(zeta).
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Eta Components, Implicit Functions and Derivatives
The Dirichlet η function [3] is related to the ζ function by η(s)=(1-2(1−s))ζ(s) and is convergent
(uniformly not absolutely) for σ > 0, so it can be used to explore the zeros of ζ(s) in the critical
strip.
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When Re(η(s)) = Im(η(s)) then Re(η(s))-Im(η(s))=0, describing an implicit function that relates σ
and a when Re(η(s)) = Im(η(s)). This function is illustrated below.

The implicit function theorem [4] tells us that the above expression (being continuously differentiable)
describes a curve with neighbourhoods where σ is a function of a, except where dσ

da is undefined as
the denominator is zero, alternatively where a is a function of σ, except where da

dσ is undefined where
the denominator is zero.
Differentiating and rearranging: dσ
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Totally differentiating Re(η(s)): D(Re(η)) =dσ da ( log(2)cos(alog(2))
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A similar process can be completed for da
dσ .

In addition, a similar process is valid for Im(η(s)).

Harmonic Addition Theorem, Riemann Xi and Conclusion
Noting the Harmonic Addition Theorem [5]:
Given xs(t)=ΣLi=1αisin(ω0t+ φi) or xc(t)=ΣLi=1αicos(ω0t+ φi), it is possible to find β and Ψ
so that xs(t) = βsin(ω0t+ Ψ) or xc(t) = βcos(ω0t+ Ψ), where:
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NB β as an amplitude does not change sign as σ and a are varied (without rearranging series), but
can have a minimum of zero.

Applying this theorem to the derivative expressions above by substituting log(2) for ω0 and a for t and
noticing that the αi and φi terms are identical for both the sin and cos series (and noting that both
the series in the expression for Ψ converge as they are phase shifted versions of the sin and cos series
and that we can determine β from the value of Ψ and the convergent series of the real or imaginary
component of eta - even though it may be difficult to show the convergence of the series for β directly):

dσ
da = ((-βsin(log(2)a+ Ψ)+βcos(log(2)a+ Ψ))/(βcos(log(2)a+ Ψ)+βsin(log(2)a+ Ψ))) Exp 1
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And: da
dσ = ((-βsin(log(2)a+ Ψ)-βcos(log(2)a+ Ψ))/(-βcos(log(2)a+ Ψ)+βsin(log(2)a+ Ψ))) Exp 3
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The csc function has no zeros (and is undefined in between sections of alternating all positive values
and all negative values) . All expressions are valid for all σ and a values for η(s) (and describe a
single valued function for each σ,a input) - except those points where dσ

da and da
dσ are undefined.

Exp 1 describes a number of curves with neighbourhoods where σ is a function of a, except where
Exp 1 is undefined when the denominator is zero. Exp 2 gives the derivative of the function which
describes the value of the real part of η(s) in those neighbourhoods, which is pos(neg) in one
neighbourhood where σ is a function of a (ie the value of the real part of η(s) incs(decs) for inc a),
is undefined at the same points where Exp 1 is undefined and is neg(pos) in the adjacent neigh-
bourhood (ie the value of the real part of η(s) incs(decs) for dec a). This means that each separate
curve segment describing the value of the real part of η(s) when Re(η(s)) = Im(η(s)) always has a
pos(neg) derivative. The same argument holds for Exps 3 and 4 (except that a is now a function of σ)

This means that the separate curve segments described by Exp2 and Exp 4 either have all pos or all
neg derivatives (not changing sign, although individual segments might have pos or neg derivatives)
- which means that they can only have a single zero per curve. This, in turn, means that there can
be only one zero in the local region of any particular value of a.

To conclude, noting that one of the key properties of the Riemann ξ(s) function (which has the same
zeros as ζ(s) and η(s)) is that ξ(s)=ξ(1 − s), this means that for each value of a there is at most 1
zero, at σ = 1/2 for ζ(s) and η(s) (ie a real zero in the case of ξ(s)). Riemann Hypothesis Proved.


