
A new algebraic approach to

the graph isomorphism and clique problems

Roman Galay

As it follows from Gödel's incompleteness theorems, any consistent formal system of axioms

and rules of inference should imply a true unprovable statement. Actually this fundamental

principle can be efficiently applicable in Computational Mathematics and Complexity Theory

concerning the computational complexity of problems from the class NP, particularly and

especially the NP-complete ones. While there is a wide set of algorithms for these problems

that we call heuristic, the correctness or/and complexity of each concrete algorithm (or the

probability of its correct and polynomial-time work) on a class of instances is often too difficult

to determine, although we may also assume the existence of a variety of algorithms for NP-

complete problems that are both correct and polynomial-time on all the instances from a given

class (where the given problem remains NP-complete), but whose correctness or/and

polynomial-time complexity on the class is impossible to prove as an example for Gödel's

theorems. However, supposedly such algorithms should possess a certain complicatedness of

processing the input data and treat it in a certain algebraically “entangled” manner. The same

algorithmic analysis in fact concerns all the other significant problems and subclasses of NP,

such as the graph isomorphism problem and its associated complexity class GI.

The following short article offers a couple of algebraically entangled polynomial-time

algorithms for the graph isomorphism and clique problems whose correctness is yet to be

determined either empirically or through attempting to find proofs.

Besides, the paper contains a description of an equation system for elements of a set of groups

(which can also be interpreted as an algebraic equation system) that can be polynomial-time

reduced to a graph isomorphism problem and, in the same time, is a non-linear extension of a

system of modular linear equations where each equation has its own modulus (hence implying

the question whether it’s NP-complete).

An heuristic polynomial-time algorithm

for the graph isomorphism problem.

Denotation:

For a real-valued matrix B, by Sp(B) let’s denote the set of values its entries are equal to, and by

MSp(B) the multi-set of those values (including the multiplicity of each value). We’ll call those

set and multi-set the entry spectrum and the entry multi-spectrum of B correspondingly.

Given two simple undirected graphs G1 and G2 with n vertices whose adjacency matrices are

A1 and A2 correspondingly, we’re going to build two sequences of real-valued matrices A1
(i)

 and

A2
(i)

 by the following recursive scheme:

A1
(0)

= A1, A2
(0)

= A2

Beginning with i = 1, at the step i of our recursive process, first of all we determine whether

MSp(A1
(i)

) = MSp(A2
(i)).

If it’s not so then G1 and G2 are definitely non-isomorphic. If, otherwise, the equality holds then

we create a random |Sp(A1
(i)

)|-vector y and in both matrices A1
(i)

 and A2
(i)

 we replace each entry

whose value is the j-th element of Sp(A1
(i)

) by yj . After that, we choose a random polynomial

p(t) of degree n-1 and calculate A1
(i+1)

= p(A1
(i)

) and A2
(i+1)

= p(A2
(i)

).

We stop the whole process when either the entry multi-spectrums of the two current matrices

are different or the cardinality of their common entry spectrum doesn’t increase any more from

one step to another, i.e. |Sp(A1
(k)

)| = |Sp(A1
(k−1)

)| (accordingly, the overall number k of

performed steps can’t exceed n2).

We hence declare the initial graphs’ non-isomorphism in the former case, and their

isomorphism in the latter one.

When the process is stopped, with the overall number of steps equal to k and the final entry

spectrum {α1, … , αm}, there should exist symmetric 0,1-matrices H1
(1)

, … , H1
(m)

, H2
(1)

, … , H2
(m)

such that

A1
(k)

= ∑ αuH1
(u)

m

u=1

, A2
(k)

= ∑αuH2
(u)

m

u=1

,

We can consider, for u = 1,..,m, H1
(u)

 and H2
(u)

 as the adjacency matrices of some graphs G1
(u)

and G2
(u)

. In case if the initial graphs G1 and G2 are really isomorphic, those two graphs should

be isomorphic as well. Moreover, due to the entry spectrum’s non-growing at the end of the

above-described process, for any pair v,w ∈ {1, … ,m}, v ≠ w, G1
(v)

 and G1
(w)

 should possess no

common edges and G2
(v)

 and G2
(w)

 should too; also there should exist a sequence of coefficients

d1
(v,w)

, … , dm
(v,w)

 such that H1
(v)

H1
(w)

+ H1
(w)

H1
(v)

= ∑ du
(v,w)

H1
(u)m

u=1 and H2
(v)

H2
(w)

+

H2
(w)

H2
(v)

= ∑ du
(v,w)

H2
(u)m

u=1 (the latter condition also concerns the case v = w). Verifying these

additional relations is the proposed algorithm’s final action when declaring the isomorphism of

G1 and G2. Thus we get a pair of identical commutative algebras that are two linear spaces

 with the bases H1
(1)

, … , H1
(m)

 and H2
(1)

, … , H2
(m)

 whose elements are X = ∑ xuH1
(u)m

u=1 and X =

∑ xuH2
(u)m

u=1 correspondingly and whose algebra product is defined as X ∗ Y = XY + YX.

However, if, after some global steps, in each of the above linear spaces we take “standard”

matrix products of various space elements (related by having the same coefficients for each

space) then we’ll receive, upon the entry-spectrum’s ceasing to grow with further performed

steps, a pair of corresponding identical non-commutative algebras whose algebra product is

just the standard matrix product (instead of the above-introduced symmetric one) and whose

product closure condition is, accordingly, H1
(v)

H1
(w)

= ∑ du
(v,w)

H1
(u)m

u=1 and H2
(v)

H2
(w)

=

∑ du
(v,w)

H2
(u)m

u=1 for any v, w ∈ {1,… ,m} (instead of the above symmetric one).

The above-formulated algorithm can be naturally adjusted for digraphs with absolutely the

same computational circuit (while, though strange, generating, in the commutative algebra

case, commutative algebras at the very end as well and, in case if the chosen field is of

characteristic 2, we’ll receive Lie algebras). Moreover, it can be generalized for an arbitrary field

(instead of ℝ) with all the computations performed over that field.

Another type of generalization this algorithm might be subjected to is as follows.

Definition:

Given an n×n- matrix B, let’s define a product Br1JnB
r2Jn …Brs−1JnB

rs (where Jn is an n×n-

matrix all whose entries equal unity and r1, … , rs are non-negative integers unexceeding n-1) as

its meta-power of meta-degree (r1, r2, … , rs) and a linear combination of a set of its meta-

powers with coefficients taken from a chosen field as a meta-polynomial in B over the field.

If an n×n-matrix can be turned into another one via permuting its rows and columns by a

permutation π (i.e. if we have a pair of isomorphic matrices) then an arbitrary meta-polynomial

computed in both of them should give us a pair of isomorphic matrices as well (with the same

transitional permutation π). Hence the idea of replacing, in the proposed algorithmic approach,

random polynomials p(t) of degree n-1 by random meta-polynomials may look yet perspective,

even though it’s still difficult to figure out how the meta-polynomials’ sets of utilized meta-

degrees could be restricted in such a case. Nevertheless, the principle of stopping the recursive

process upon getting either different entry multi-spectrums of the two current matrices or their

common entry spectrum’s cardinality ceasing to grow from one step to another remains intact

(while the matrices A1
(i)

 and A2
(i)

 generically cease to be symmetric for i > 0 even in the case of

undirected initial graphs). The final splittings of the two matrices A1
(k)

 and A2
(k)

 (where k is the

overall number of performed steps) apparently will have nearly the same structure as in the

case of random polynomials p(t), but with the only additional condition of H1
(u)

Jn and JnH1
(u)

belonging to the first final algebra and H2
(u)

Jn and JnH2
(u)

 to the second one for u = 1,…,m.

In case if we deal with a problem of partitioned graph isomorphism where the set of vertices V

is partitioned into subsets V1, … , Vm and the task is to determine whether there exists an

isomorphism from G1 to G2 mapping Vk to itself for k = 1,…,m, the matrix Jn can be replaced by

the block-diagonal matrix J(V1, … , Vm) whose k-th diagonal block is J|Vk| for k = 1,…,m.

Such a final algebra doesn’t depend on the chosen random polynomials or, generally, meta-

polynomials within the algorithmic circuit (as well as the random substitution vectors we use

for entry spectrums’ replacements). A proof of this fact can be received via using, instead of

random elements of the basic field, independent indeterminates as the entries of substitution

vectors in each spectrum replacement and the coefficients of utilized polynomials at each

global step and getting, accordingly, polynomials in those indeterminates as the entries of

transformed matrices (in such a case the algorithm ceases to be polynomial-time, though).

We’ll call it a splitting algebra of a graph that is a system of its invariants (though, depending on

the context, sometimes we’ll also interpret it as the corresponding set of matrices ∑ xuH1
(u)m

u=1

which isn’t invariant), while an associative splitting algebra will be also called a splitting ring.

Definition:

Given a set of n×n-matrices S over F and an algorithm 𝔄 for receiving a splitting algebra over a

field F (we’ll call it the algebra builder that is supposed to be defined uniformly for all n), by

Alg(S, 𝔄) we’ll denote the splitting algebra received via applying 𝔄 to a formal (i.e. with

independent formal variables taken as coefficients) linear combination of S over F.

As it was stated earlier, Alg(S,𝔄) can be received via taking a random set of values of the formal

coefficients. When the generating set S isn’t given, we’ll just write Alg(…,𝔄) what will be

equivalent to referring to the algebra builder 𝔄. Also, in the partial case of a singleton S

containing just one matrix A, we’ll write Alg(A,𝔄).

Hence we can reduce, via the proposed method, determining whether two graphs are

isomorphic to determining whether a related (by having identical sequences of coefficients at

H1
(u)

 and H2
(u)

) random pair of elements of their splitting algebras represented by the

corresponding matrices ∑ xuH1
(u)m

u=1 and ∑ xuH2
(u)m

u=1 is isomorphic as a pair of weighted

graphs (or digraphs), hence providing new splitting options for possibly building some

extensions of the splitting algebras.

In this regard, it would be worth noting that all the above-described algebras can’t separate

two non-isomorphic strongly regular graphs with the same set of parameters (as the square of

a strongly regular n-graph’s adjacency matrix is a linear combination of its adjacency matrix, In

and Jn), even though they do work out for nearly all graphs. Therefore some more refined

transformations preserving the set of isomorphisms between two matrices are needed for to

resolve the hardest cases of graph isomorphism.

Definition:

Given an r×r-matrix invariant 𝔩 and an r×r-matrix algebra with the basis H(1), … , H(m) over a

basic field, we’ll call Alg𝔩(A
({1,…,n}\L,{1,…,n}\L), 𝔄) = ∑ 𝔩(H(t))m

t=1 H(t) its 𝔩-element.

Definition:

Given a splitting algebra Alg(… ,𝔄) and an (n-k)×(n-k)-matrix invariant 𝔩, by its k-th 𝔩-derivative

Alg𝔩
(k)

(… ,𝔄) (or its k-th derivative in 𝔩) we’ll understand the sum, over all the subsets L⊆

{1,… , n} of cardinality k, of the matrices received via replacing all the entries lying in either

rows or columns from the set L by zero and the principal submatrix A({1,…,n}\L,{1,…,n}\L) by

Alg𝔩(A
({1,…,n}\L,{1,…,n}\L), 𝔄) .

Definition:

for a real m×n-matrix B of rank m, m ≤ n, let’s define its j-th LP-height heightj(B) as the

optimal goal value of the LP-problem

 Bx ≤ B1⃗ n, x ∈ ℝn,

 xi ≥ 0, i = 1,… , n

xj → max

and the vector height(B) = {heightj(B)}n ∈ ℝn as its LP-height vector (or just its height-

vector).

Definition:

For a real symmetric n×n-matrix M = PJP−1 = ∑ λkPk
|λ|
k=1 Pk

T where J is its diagonal Jordan

form, P is an orthogonal matrix (i.e. its orthonormal Jordan basis), λ is its eigenvalue spectrum

and the matrix Pk is composed of its eigenvectors corresponding to the eigenvalue λk for k =

1,…,|λ|, we’ll define height(Pk
T) as M’s eigenheight-vector corresponding to the eigenvalue λk

and, generally, height (

Pk1

T

…
Pkq

T
) as M’s eigenheight-vector corresponding to the subset

{λk1
, … , λkq

} of M’s eigenvalue spectrum.

Hence adding the matrix height (

Pk1

T

…
Pkq

T
)heightT (

Pk1

T

…
Pkq

T
) multiplied by an arbitrary scalar to the

matrix M won’t change its automorphism group and, therefore, subjecting two matrices with

the same eigenvalue spectrum to such a transformation corresponding to the same subset of

their common spectrum won’t change the set of isomorphisms between them.

Altogether, we hence got one more isomorphism-preserving transformation that can be

applied, along with the earlier introduced meta-polynomial transformations, for searching a

difference between two matrices in case if they’re not isomorphic, while each new

transformation generates an extension of their splitting algebras. Besides, as it was also

introduced above, any splitting algebra yields its derivatives, and those derivatives of a

bounded degree preserve a polynomial-time computable algebra’s belonging to the complexity

class P what provides us with another family of polynomial-time computable extensions of any

splitting algebra.

It would be also worth noting that other types of splitting algebras’ extensions might be based

on other compatible (with any isomorphism) matrix decompositions such as the polar

decomposition. In this regard, further we’re going to formalize this principle, as well to give

some set-theoretical basis to all the above-stated algorithmic schemes.

Denotation:

Given a permutation π ∈ Sn, by Iπ we’ll denote the matrix received from In via subjecting its

rows to the permutation π.

Definition:

Given a ring K, a transformation ω: Kn×n → Kn×n (applicable for any natural n) will be called

isomorphism-commuting if ∀ π ∈ Sn, ∀ X ∈ Kn×n ω(IπXIπ
T) = Iπω(X)Iπ

T .

Lemma 1:

The function composition of two isomorphism-commuting transformations is an isomorphism-

commuting transformation, i.e. the set of isomorphism-commuting transformations is a

semigroup under the function composition operation.

Lemma 2:

Given a square matrix A over a ring K, the set of its isomorphism-commuting transformations is

a ring (that is an extension of K) under the matrix arithmetic operations.

Hence the set of isomorphism-commuting transformations has the two important properties

that it’s closed under function composition and the matrix arithmetic operations. However, the

same two properties are possessed by the set of isomorphism-commuting transformations

computable in polynomial time. Let’s denote the two sets by ICT and ICTP correspondingly.

Definition:

Given a ring K, a function f: Kn×n × …× Kn×n → Kn×n in m n×n-matrix variables X1, … , Xm

(applicable for any natural n) will be called isomorphism-commuting if ∀ π ∈ Sn, ∀ X1, … , Xm ∈

K f(IπX1Iπ
T, … , IπXmIπ

T) = Iπf(X1, … , Xm)Iπ
T.

We hence can consider an isomorphism-commuting transformation as an isomorphism-

commuting function in one variable. Besides, the set of isomorphism-commuting functions is

also closed under function composition and the matrix arithmetic operations.

Definition:

Given a set f = {f0(X1, … , Xm), f1(X1, … , Xm), … , fr(X1, … , Xm)} of r+1 n×n-matrix functions in

m n×n-matrices and an n×n-matrix A over a ring K such that the matrix equation system

f0(X1, … , Xm) = Y

 fq(X1, … , Xm) = 0n×n for q = 1,…,r

has a unique solution Decom1(Y, f), … , Decomm(Y, f) for any Y ∈ Kn×n . Then

Decom1(A, f), … , Decomm(A, f) will be called the f-decomposition of A over K.

Lemma 3:

Given a set f = {f0(X1, … , Xm), f1(X1, … , Xm), … , fr(X1, … , Xm)} of isomorphism-commuting

functions over a ring K, Decom1(A, f),… , Decomm(A, f) are isomorphism-commuting

transformations of a square matrix A over K.

Conjecture 1:

For any ring K, any two square matrices A, B over K are isomorphic if and only if MSp(ω(A)) =

MSp(ω(B)) for any isomorphism-commuting transformation.

Conjecture 2:

For any ring K, there exists a polynomial p(n) such that, for any two n×n-matrices A, B over K, A

and B are isomorphic if and only if MSp(ω(A)) = MSp(ω(B)) for any isomorphism-commuting

transformation computable in p(n) arithmetic operations over K.

If the latter conjecture is true then the question whether two given matrices are isomorphic can

be answered, by an algorithm from the complexity class RP, via subjecting both matrices to a

random isomorphism-commuting transformation computable in p(n) arithmetic operations

over the basic ring (i.e. a random element of ICTP generating, accordingly, the algorithm’s

polynomial-time complexity) and determining whether the entry multi-spectrums of the two

transformed matrices are equal. In such a case we’ll also get a randomized complete system of

graph invariants, although, as it was already mentioned earlier for splitting algebras received

via the use of eigenvectors, there might exist a fixed set of ITCP’s elements that is the complete

invariant system.

A special case of the graph isomorphism problem that is a system of group equations.

Let’s consider a special case of the isomorphism problem for two colored graphs (where all the

vertices and edges are given colors) G1 = (V, E1) and G2 = (V, E2) such that

 V = ⋃ V[i]m
i=1 , ∀v ∈ V[i] color(v) = ci,

 V[j] ∩ V[k] = ∅ and cj ≠ ck if j≠k

In such a case we get the following system of equations:

ψkψjG(V[j] ∪ V[k], E1(V
[j], V[k])) = G(V[j] ∪ V[k], E2(V

[j], V[k]))

where G (V[j] ∪ V[k], E1(V
[j], V[k])) , G(V[j] ∪ V[k], E2(V

[j], V[k])) are the bipartite graphs

generated by G1, G2 correspondingly on the set V[j] ∪ V[k] as the induced graphs where all the

internal edges inside the sets V[j], V[k] were eliminated, and ψi is a permutation of V[i]

(considered as a transformation of any graph whose vertex set contains V[i]) belonging to the

set of isomorphisms between G(V[i], E1(V
[i])) and G(V[i], E2(V

[i])) where G(V[i], E1(V
[i])),

G(V[i], E2(V
[i])) are the graphs induced by V[i] in G1, G2 correspondingly. As we can represent

any ψi as ρiφi where ρi is a fixed isomorphism between G(V[i], E1(V
[i])) and G(V[i], E2(V

[i]))

and φi ∈ Aut(G(V[i], E1(V
[i])), we’ll hence receive the system of group equations for φ1,…, φm

ρjφjρkφkG(V[j] ∪ V[k], E1(V
[j], V[k])) = G(V[j] ∪ V[k], E2(V

[j], V[k])) j, k = 1,…,m, j≠k

The latter equation for a given pair j, k is a requirement for ρjφj, ρkφk to transform the

|V[j]| × |V[k]|-matrix M1
[j,k]

 generated by G(V[j] ∪ V[k], E1(V
[j], V[k])) as the labeled (according

to the given colors) bipartite adjacency matrix (let’s call it a bridge-matrix) between its parts

V[j], V[k] into the corresponding matrix M2
[j,k]

 generated by G(V[j] ∪ V[k], E2(V
[j], V[k])) – while

ρjφj acts as a permutation of M1
[j,k]

’s rows and ρkφk as a permutation of M1
[j,k]

’s columns.

We can also consider the two compacted weighted graphs Com(G1), Com(G2) with the

common vertex set {V[1], … , V[m]} where the weight-graph of an existing (i.e. having at least

one initial edge between the sets V[j], V[k]) edge (V[j], V[k]) is defined, for j≠k, as G(V[j] ∪

V[k], E1(V
[j], V[k])) for Com(G1) and as G(V[j] ∪ V[k], E2(V

[j], V[k])) for Com(G2), and the loop

(V[i], V[i])’s weight-graph (or the loop-graph of V[i]) is defined as G(V[i], E1(V
[i])) for

Com(G1) and as G(V[i], E2(V
[i])) for Com(G2).

One interesting partial case of such a construction is a couple of bipartite weighted graphs

Com(G1), Com(G2) where the two connected parts their vertex set {V[1], … , V[m]} is

partitioned into are interpreted as the set of “variables” and the set of “equations”.

Particularly, let’s consider the following subcase. Let any pair of corresponding “variables” have

equal loop-graphs in Com(G1), Com(G2), and any pair of corresponding “equations” do too.

Also let the bridge-matrix M1
[j,k]

 between the j-th “variable” and the k-th “equation” have mj,k

columns and possess a non-singleton group Autrow(j, k) of permutations μ of its rows such that

each μ is an automorphism of the j-th “variable’s” loop-graph and generates a non-empty

group Autcolumn(μ, j, k) of permutations of M1
[j,k]

’s columns mapping the matrix IμM1
[j,k]

 back to

M1
[j,k]

, while M2
[j,k]

 is received from M1
[j,k]

 via permuting its columns by a permutation

σj,k ∈ Smj,k
. We’ll also denote Autcolumn(j, k) = ⋃ Autcolumn(μ, j, k) μ∈Autrow(j,k) that is,

obviously, a subgroup of Smj,k
. Also let, in both graphs Com(G1) and Com(G2), the k-th

“equation’s” (whose set of “variables” it connected with we’ll denote by Var(k)) loop-graph be a

weighted bipartite graph one of whose parts is connected with “variables” from Var(k) and

another one is a “free” part such that the bridge-matrix between the two parts is composed, in

an arbitrary order of columns, of all the column-vectors (

Iπj1,k,k
gj1,k,k

…
Iπj|Var(k)|,k,k

gj1,k,k

) – where Var(k) =

{j1,k, … , j|Var(k)|,k} and, for t = 1,…, |Var(k)|, gjt,k,k is an mjt,k,k-vector with pair-wise distinct

entries, πjt,k,k is an mjt,k,k-permutation from a group Hjt,k,k intersecting (in Smjt,k,k
) with the left

coset σjt,k,k Autcolumn(jt,k, k) – such that (πj1,k,k,…,πj|Var(k)|,k,k) ∈ Hk = 〈S〉 where S⊆

Hj1,k,k × …× Hj|Var(k)|,k,k and Hk is the group generated by S (we’ll call it the “equation’s”

formula group). And let all the columns of M1

[jt,k,k]
 and M2

[jt,k,k]
 non-incident to the t-th vector-

coordinate of (

Iπj1,k,k
gj1,k,k

…
Iπj|Var(k)|,k,k

gj|Var(k)|,k,k

) be equal to a zero column, for t = 1,…,|Var(k)| (and, for

the purpose of simplicity, let’s further understand by M1

[jt,k,k]
 and M2

[jt,k,k]
 just the matrices

composed of all the columns incident to that t-th vector-coordinate).

For a permutation π(j,k) ∈ Autcolumn(j, k), let’s define its row-permutation M1
[j,k]

-generator

group Autcolumn
−1 (π(j,k), j, k) = {μ: μ ∈ Autrow(j, k), π(j,k) ∈ Autcolumn(μ, j, k)} that is

Autrow(j, k)’s subgroup consisting of all its elements generating, particularly, π(j,k). Actually, in

a set-theoretic notation, Autcolumn
−1 (Autcolumn(j, k), j, k) = Autrow(j, k). We’ll also denote by

Eq(j) the set of “equations” the “variable” j is involved in.

Altogether, when we have r “equations” and q “variables”, we receive the following system of

equations for the permutation variables π(j,k):

(σj1,k,k π
(j1,k,k),…,σj|Var(k)|,k,kπ

(j|Var(k)|,k,k)) ∈ Hk for k = 1,…,r that we’ll call the “equation”

conditions

and ⋂ Autcolumn
−1 (π(j,k), j, k) ≠ ∅k∈Eq(j) for j = 1,…,q that we’ll call the “variable” conditions.

The above two sets of conditions also imply the set of conditions σj,kπ
(j,k) ∈ Hj,k for all the

given “variable”-“equation” edges (j,k) that we’ll call the edge conditions.

However, if in some “equations” from a set Klinear ⊆ {1,… , r} we take the partial case of their

formula groups generated by the equality ∏ χjt,k,k(πjt,k,k)
|Var(k)|
t=1 = 1, where χjt,k,k is a

multiplicative character of Hjt,k,k over a field Fk, then we’ll receive the following subsystem of

equations for k ∈ Klinear and the variables π(j,k) such that σj,kπ
(j,k) ∈ Hj,k:

∑ logak
(χj,k(π

(j,k)))j∈Var(k) = −∑ logak
 χj,k(σj,k)j∈Var(k) (mod (|Fk| - 1))

(where ak is a generating element of the field Fk).

If we also simplify all the bridge-matrices between the “variables” and the “equations” to

identity matrices then, for any “variable”-“equation” edge (j,k), Autrow(j, k) would coincide

with Autcolumn(j, k) and, for any j, the j-th “variable” condition would become the condition

that for any k′, k′′ ∈ Eq(j) π(j,k′) = π(j,k′′) = π(j) where π(j) ∈ ⋂ Hj,kk∈Eq(j) is an automorphism

of the j-th “variable’s” loop-graph. Then the whole system of equations would turn into the set

Klinear of linear equations for the values logak
(χj,k(π

(j,k))) = logak
(χj,k(π

(j))) and the set

{1, … , r}\Klinear of non-linear equations (σj1,k,k π
(j1,k),…,σj|Var(k)|,k,k π

(j|Var(k)|,k)) ∈ Hk for all k

belonging to it (where, once again, Var(k) = {j1.k, … , j|Var(k)|,k}). It therefore implies the

question whether such a system of equations is NP-compete.

To summarize, taking into account the fact that the proposed graph with “variables” and

“equations” is just one of the simplest cases of the above-stated compacted graph construction

(for instance, the introduced bipartite loop-graphs of “equations” could be further developed

via adding initial edges inside their parts), we can say that we accordingly get an apparatus for

formulating a variety of conjectures for both graph isomorphism and group theories whose

correctness implies the equality GI = NP.

A polynomial-time heuristic approach

to the clique problem

The general types of techniques and notions that we applied when dealing with the graph

isomorphism problem could also be applicable in resolving the much more important problems

of determining a graph’s clique number and finding its maximum clique, i.e. for the clique

problem which is well-known to be NP-complete, unlike the graph isomorphism one.

Given a simple undirected graph G with n vertices whose adjacency matrix is A, we’re going to

build a sequence of real-valued n×n-matrices X(q) = X(q)(G) (whose columns we’ll consider as

the coordinate-vectors of n points in ℝn , while the j-th point we’ll associate with the vertex j of

G) by the following recursive scheme:

X(0) = In

Beginning with q = 1, at the step q of our recursive process, we define for j =1,…,n

(*) xj
(q+1)

= xj
(q)

+ g∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
)

where xj
(q)

 is the j-th column of X(q), h, s, ε are the proposed algorithm’s parameters (h, s, ε >

0), and for two n-vectors y, z d(y,z) denotes the Euclidean distance between them in ℝn.

The above recursive relation is, in fact, a computational circuit for numerically solving the

autonomous system of differential equations

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t))

and the chief idea standing behind it is the conjecture that after a certain period of time since

the beginning of the initial point system’s contraction under the influence of the introduced

“gravitational forces” between pairs of points connected, as vertices, by G’s edges the

smallest distance will always appear between a pair of vertices belonging to a maximum

clique of G.

A special interest this conjecture presents for the case of regular and semi-regular graphs,

particularly for the graph generated by a CNF so that its vertex set is the CNF’s set of literals and

a pair of literals isn’t to be connected by an edge if and only if either both of them belong to

one disjunctive clause or they’re the opposite powers of one variable (this graph’s clique

number equals the CNF’s number of disjunctive clauses if and only if the CNF is satisfiable and is

smaller otherwise, and the graph becomes close to regular upon bounding by constants the

CNF’s quantity of literals in a disjunctive clause and the number of times a variable can occur in

literals, while it’s regular when the two numbers are just constants, i.e. same for all the clauses

and all the variables correspondingly). It’s actually known that the clique problem is NP-

complete for regular graphs, even when restricted to the case of graphs complimentary to cubic

planar ones.

Hence such an algorithm is supposed to perform a certain polynomial (in n) number of steps (*)

(considered as the algorithm’s functional parameter), determine a pair of vertices (u,v) of the

smallest distance, and construct the graph GNG(u,v) received from G as the graph induced by the

set NG(u, v) of common neighbors of u and v in G. (We additionally conjecture that, after a

certain period of time since the gravitational contraction’s beginning, any pair of vertices of the

smallest distance is to belong to a maximum clique, although we may also suppose that graphs

with no automorphism should get just one such pair at each moment). After that the whole

process is to be repeated for GNG(u,v) etc. until we get either an empty graph or a graph with

one vertex.

An additional idea for enhancing the above approach to the clique problem may be introducing

“repelling forces” (aka “anti-gravitational”) between pairs of points that aren’t connected, as

vertices, in G. In such a case we’ll receive the equation

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t)) −

− g1 ∑
1 − ajk

𝐝s1 (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t))

with the corresponding computational circuit for numerical solving

(**) xj
(q+1)

= xj
(q)

+ g∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
) −

− g1 ∑
ε(1 − ajk)

𝐝s1(xj

(q)
, xk

(q)
)
(xk

(q)

k∈{1,…,n}\{j}

− xj
(q)

)

Let’s call g and g1 the gravitation and anti-gravitation coefficients correspondingly.

Besides, we can notice that the matrices X(q)(G) are, of course, invariant under any of G’s

automorphisms and, given two graphs G1 and G2, we accordingly may also use X(q)(G1) and

X(q)(G2) for determining if they’re isomorphic (via comparing MSp(X(q)(G1)) and

MSp(X(q)(G2)) and eventually obtaining a pair of final algebras upon their entry spectrums’

ceasing to grow), but, nevertheless, in such a case we’re actually supposed to figure out

whether it’s not a partial case of the initial graph’s adjacency matrix’s modification via a series

of meta-polynomial and entry spectrum replacement transformations, though, in any case,

X(q)(G) is, of course, an isomorphism-commuting transformation of G’s adjacency matrix.

The proposed algorithm for the clique problem had been tested (via computer modeling) on

graphs received (as described above) from random CNF samples with several hundred Boolean

variables whose maximal number of literals in a clause and maximal number of a variable’s

occurrence was 3 and showed correctness and polynomial-time performance in finding, in case

of the CNF’s satisfiability, a satisfying Boolean vector.

And, at last, it would be worth noting that any kind of approach to the clique problem can be

further enhanced with a randomization parameter via embedding the given graph G with n

vertices whose clique number we need to determine into the graph received from G through

bipartitely gluing it with a random graph G1 with n1 vertices whose clique number we know, --

while we define the bipartite gluing of two graphs G = (V, E), G1 = (V1, E1) for disjoint V, V1

as the graph G ⊘ G1 = (V ∪ V1, E ∪ E1 ∪ KV,V1
) where KV,V1

 is the complete bipartite graph on

the parts V, V1 . The clique number of G ⊘ G1 obviously equals the sum of the clique numbers

of G and G1 and this gluing is (k + n1)-regular when G is k-regular, G1 is k1-regular and n +

k1 = n1 + k. Hence, in case if our algorithm works out on a certain sufficiently large fraction of

q-regular graphs with m vertices for a certain set of values of the ratio q:m (containing NP-

complete cases), we can also conjecture that such a random gluing may be quite capable of

resolving, via the proposed “gravitational” algorithm, the most hard cases of instances with a

sufficiently high (for being a polynomial-time randomized computational circuit) probability of

success. However, the general direction of research regarding the above-stated gravitation

contraction model may, of course, be rather related to attempting to understand the behavior

of its differential equation’s solution and even trying, on the basis of such understanding, to

reduce the algorithm’s polynomial-time complexity through modifying its vertex selection

criterion for to take, at each global step, not just one pair, but a much bigger set of vertices as

supposedly belonging to a maximum clique.

References:

Levin, Leonid (1986). "Average-case complete problems". SIAM J. Comput. 15 (1): 285–
6. doi:10.1137/0215020.

Levin, Leonid (2014), “Computational Complexity of Functions” https://arxiv.org/abs/1411.3010

Levin, Leonid; Ramarathnam Venkatesan (1988), “Random instances of a graph coloring problem are
hard”,

STOC '88 Proceedings of the twentieth annual ACM symposium on Theory of computing

Pages 217-222

Babai, László (1980), "On the complexity of canonical labeling of strongly regular graphs",

SIAM Journal on Computing, 9 (1): 212–216, doi:10.1137/0209018, MR 0557839.

Babai, László; Codenotti, Paolo (2008), "Isomorphism of hypergraphs of low rank in moderately

exponential time" (PDF), Proceedings of the 49th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2008), IEEE Computer Society, pp. 667–676,

doi:10.1109/FOCS.2008.80, ISBN 978-0-7695-3436-7.

http://epubs.siam.org/doi/abs/10.1137/0215020
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1137%2F0215020
https://arxiv.org/abs/1411.3010

 Babai, László; Grigoryev, D. Yu.; Mount, David M. (1982), "Isomorphism of graphs with

bounded eigenvalue multiplicity", Proceedings of the 14th Annual ACM Symposium on Theory

of Computing, pp. 310–324, doi:10.1145/800070.802206, ISBN 0-89791-070-2.

Babai, László; Kantor, William; Luks, Eugene (1983), "Computational complexity and the

classification of finite simple groups", Proceedings of the 24th Annual Symposium on

Foundations of Computer Science (FOCS), pp. 162–171, doi:10.1109/SFCS.1983.10.

Babai, László; Luks, Eugene M. (1983), "Canonical labeling of graphs", Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing (STOC '83), pp. 171–183,

doi:10.1145/800061.808746, ISBN 0-89791-099-0.

Babai, László (2015), Graph Isomorphism in Quasipolynomial Time, arXiv:1512.03547,

Bibcode:2015arXiv151203547B * Baird, H. S.; Cho, Y. E. (1975), "An artwork design

verification system", Proceedings of the 12th Design Automation Conference (DAC '75),

Piscataway, NJ, USA: IEEE Press, pp. 414–420.

Blum, Manuel; Kannan, Sampath (1995), "Designing programs that check their work", Journal

of the ACM, 42 (1): 269–291, doi:10.1145/200836.200880.

Bodlaender, Hans (1990), "Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees", Journal of Algorithms, 11 (4): 631–643, doi:10.1016/0196-6774(90)90013-5,

MR 1079454. * Booth, Kellogg S.; Colbourn, C. J. (1977), Problems polynomially equivalent to

graph isomorphism, Technical Report, CS-77-04, Computer Science Department, University of

Waterloo.

Booth, Kellogg S.; Lueker, George S. (1979), "A linear time algorithm for deciding interval

graph isomorphism", Journal of the ACM, 26 (2): 183–195, doi:10.1145/322123.322125, MR

0528025.

* Boucher, C.; Loker, D. (2006), Graph isomorphism completeness for perfect graphs and

subclasses of perfect graphs (PDF), Technical Report, CS-2006-32, Computer Science

Department, University of Waterloo.

Abello, J.; Pardalos, P. M.; Resende, M. G. C. (1999), "On maximum clique problems in very

large graphs" (PDF), in Abello, J.; Vitter, J., External Memory Algorithms, DIMACS Series on

Discrete Mathematics and Theoretical Computer Science, 50, American Mathematical Society,

pp. 119–130, ISBN 0-8218-1184-3.

Amano, Kazuyuki; Maruoka, Akira (2005), "A superpolynomial lower bound for a circuit

computing the clique function with at most (1/6)log log N negation gates", SIAM Journal on

Computing, 35 (1): 201–216, doi:10.1137/S0097539701396959, MR 2178806.

 Arora, Sanjeev; Lund, Carsten; Motwani, Rajeev; Sudan, Madhu; Szegedy, Mario (1998),

"Proof verification and the hardness of approximation problems", Journal of the ACM, 45 (3):

501–555, doi:10.1145/278298.278306, ECCC TR98-008. Originally presented at the 1992

Symposium on Foundations of Computer Science, doi:10.1109/SFCS.1992.267823.

 Arora, S.; Safra, S. (1998), "Probabilistic checking of proofs: A new characterization of NP",

Journal of the ACM, 45 (1): 70–122, doi:10.1145/273865.273901. Originally presented at the

1992 Symposium on Foundations of Computer Science, doi:10.1109/SFCS.1992.267824.

Balas, E.; Yu, C. S. (1986), "Finding a maximum clique in an arbitrary graph", SIAM Journal on

Computing, 15 (4): 1054–1068, doi:10.1137/0215075.

Barrow, H.; Burstall, R. (1976), "Subgraph isomorphism, matching relational structures and

maximal cliques", Information Processing Letters, 4 (4): 83–84, doi:10.1016/0020-

0190(76)90049-1.

 Battiti, R.; Protasi, M. (2001), "Reactive local search for the maximum clique problem",

Algorithmica, 29 (4): 610–637, doi:10.1007/s004530010074. * Bollobás, Béla (1976),

"Complete subgraphs are elusive", Journal of Combinatorial Theory, Series B, 21 (1): 1–7,

doi:10.1016/0095-8956(76)90021-6, ISSN 0095-8956.

Boppana, R.; Halldórsson, M. M. (1992), "Approximating maximum independent sets by

excluding subgraphs", BIT Numerical Mathematics, 32 (2): 180–196, doi:10.1007/BF01994876.

Cazals, F.; Karande, C. (2008), "A note on the problem of reporting maximal cliques" (PDF),

Theoretical Computer Science, 407 (1): 564–568, doi:10.1016/j.tcs.2008.

